3,042 research outputs found

    Information-theoretic lower bounds for quantum sorting

    Full text link
    We analyze the quantum query complexity of sorting under partial information. In this problem, we are given a partially ordered set PP and are asked to identify a linear extension of PP using pairwise comparisons. For the standard sorting problem, in which PP is empty, it is known that the quantum query complexity is not asymptotically smaller than the classical information-theoretic lower bound. We prove that this holds for a wide class of partially ordered sets, thereby improving on a result from Yao (STOC'04)

    ESCIM: A System for the Investigation of Meaningful Motion

    Get PDF
    A language is described whose purpose is the investigation of meaningful motion using Stimulus Response animation techniques. The language is capable of adjusting the shape, size and velocity of an actor in real-time computer animation. Some results are presented showing how it is possible to generate such behaviours as chasing, avoidance and hitting using this animation technique. A set of primitives are presented which we find invaluable in the control of size, stretch and velocity parameters when attempting to produce fluid and meaningful interactions

    Modeling multi-cellular systems using sub-cellular elements

    Full text link
    We introduce a model for describing the dynamics of large numbers of interacting cells. The fundamental dynamical variables in the model are sub-cellular elements, which interact with each other through phenomenological intra- and inter-cellular potentials. Advantages of the model include i) adaptive cell-shape dynamics, ii) flexible accommodation of additional intra-cellular biology, and iii) the absence of an underlying grid. We present here a detailed description of the model, and use successive mean-field approximations to connect it to more coarse-grained approaches, such as discrete cell-based algorithms and coupled partial differential equations. We also discuss efficient algorithms for encoding the model, and give an example of a simulation of an epithelial sheet. Given the biological flexibility of the model, we propose that it can be used effectively for modeling a range of multi-cellular processes, such as tumor dynamics and embryogenesis.Comment: 20 pages, 4 figure

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    Summary Conclusions: Computation of Minimum Volume Covering Ellipsoids*

    Get PDF
    We present a practical algorithm for computing the minimum volume n-dimensional ellipsoid that must contain m given points a₁,..., am â Rn. This convex constrained problem arises in a variety of applied computational settings, particularly in data mining and robust statistics. Its structure makes it particularly amenable to solution by interior-point methods, and it has been the subject of much theoretical complexity analysis. Here we focus on computation. We present a combined interior-point and active-set method for solving this problem. Our computational results demonstrate that our method solves very large problem instances (m = 30,000 and n = 30) to a high degree of accuracy in under 30 seconds on a personal computer.Singapore-MIT Alliance (SMA

    Compute-and-Forward: Finding the Best Equation

    Get PDF
    Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.Comment: Paper presented at 52nd Allerton Conference, October 201
    corecore