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Abstract— We present a practical algorithm for computing the
minimum volume � -dimensional ellipsoid that must contain �
given points ���	��
�
�
����������� . This convex constrained problem
arises in a variety of applied computational settings, particularly
in data mining and robust statistics. Its structure makes it
particularly amenable to solution by interior-point methods,
and it has been the subject of much theoretical complexity
analysis. Here we focus on computation. We present a combined
interior-point and active-set method for solving this problem.
Our computational results demonstrate that our method solves
very large problem instances ( ��������������� and ������� ) to a
high degree of accuracy in under 30 seconds on a personal
computer.

Index Terms— Ellipsoid, Newton’s method, interior-point
method, barrier method, active set, semidefinite program, data
mining, robust statistics, clustering analysis.

I. INTRODUCTION

This paper is concerned with computing the minimum vol-
ume ellipsoid in � -dimensional space �! containing " given
points #%$'&(#*)�&,+,+,+,&(#*-/.0�� . This minimum volume covering
ellipsoid (MVCE) problem is useful in a variety of different
application areas. In computational statistics, the minimum
volume ellipsoid covering 1 of " given points in �2 is
well known for its affine equivariance and positive breakdown
properties as a multivariate location and scattering estimator
[3]. In the area of robust statistics and data mining, efficiently
finding outliers is a challenge that has attracted much research
interest [8]. Indeed, one can identify data outliers quickly if
one can compute the minimum volume ellipsoid quickly, since
outliers are essentially points on the boundary of the minimum
volume covering ellipsoid. Another emerging research area in
data mining is that of finding linear-transformation-invariant
(or scale-invariant) clustering methods that work for very large
data sets; invariance under linear transformation is important
in a multi-dimensional setting where different coefficients have
different units of measurement. Traditional distance-based
clustering methods such as 1 -mean or 1 -median methods
are not scale-invariant. However, clustering using minimum
volume ellipsoids, which use the minimum volume covering
ellipsoid to cover all points in each cluster and minimizes
the total volume of these covering ellipsoids, has the linear-
transformation-invariance property.

*This paper contains substantial material from the full-length paper [10]
“Computation of Minimum Volume Covering Ellipsoids” which has been
accepted for publication in Operations Research. This research has been
partially supported through the Singapore-MIT Alliance.

The minimum volume covering ellipsoid problem has been
studied for over fifty years. As early as 1948, Fritz John [5]
discussed this problem in his work on optimality conditions.
Barnes [1] provides an algorithm for this problem based on
matrix eigenvalue decomposition. Khachiyan and Todd [7] first
used interior-point methods in developing an algorithm and a
complexity bound for the closely related maximum volume
inscribed ellipsoid problem (MVIE) together with a linear
reduction from MVCE to MVIE; the complexity of their al-
gorithm is 3546"87:9 ;=< >@? -BACED < >@?  GF H ACID�J arithmetic operations.
Here K is defined such that the convex hull of the given
points contains the unit ball centered at 0 and is contained
in the concentric ball of a given radius K . Nesterov and
Nemirovski [9] obtain a complexity bound of 3546"L7:9 ;M< >G4 -BACEJ�J
operations, and more recently Khachiyan [6] has reduced this
to 3546"87:9 ;=< >N4 - C J�J operations. Zhang [15] presents interior-
point algorithms for MVIE, based on various equation system
reduction schemes. In [16], Zhang and Gao extend their earlier
results and compare different practical algorithms for the
maximum volume inscribed ellipsoid problem. Boyd et. al [14]
and Toh [11] both consider the minimum volume ellipsoid
problem as a special case of the more general maximum
determinant problem.

In contrast to the theoretical work on the MVCE problem,
herein we develop a practical algorithm for the problem that
is designed to solve very large instances ( "PORQ�S%&(S�S�S and
�TOUQ�S ) such as those that arise in data mining contexts. We
present a combined interior-point and active-set method for
solving this problem. Our computational results demonstrate
that our method solves these very large problem instances to
a high degree of accuracy in under 30 seconds on a personal
computer.

The paper is organized as follows. In the rest of this section,
we present notation. In Section II, we review formulations of
the minimum volume covering ellipsoid problem and issues
in solving the problem via available interior-point software. In
Section III we present our algorithm for solving the MVCE.
In section IV-B, we review dual problem formulations and
the conditional gradient method for solving the dual, and in
Section V we develop active set strategies. Computational
results are presented in Section VI and Section VII contains
concluding remarks.
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A. Notation

Let �  � and �  ��� denote the convex cone of ��� � symmetric
positive semidefinite matrices and symmetric positive definite
matrices, respectively. We use � and � to denote the partial
ordering induced by the cones �N � and �G ��� , respectively. The
vector of ones is denoted by �	� O 4�
�&�
�&,+,+,+:&�
 J� , where the
dimension is dictated by context. The capital letters � and�

are used to denote the diagonal matrices whose diagonal
entries correspond to the entries of the vectors � and � : ��� O������� 4�� J and

� � O ������� 4�� J . The Euclidean norm � �  � is
denoted by ����� . For a given symmetric positive definite matrix 

, define the
 

-norm by ��!"�$#%� O'& !   ! .
II. FORMULATIONS AND SOLUTION VIA AVAILABLE

INTERIOR-POINT SOFTWARE

Our concern is with covering " given points
#%$'&(#*)�&,+,+,+,&(#*- . �� with an ellipsoid of minimum
volume. Let ( denote the �)�L" matrix whose columns are
the vectors #%$'&(#*)�&,+,+,+,&(#*- .8�� :(*� O�+ #%$�, #*)-,�.�.�.$, #*-0/B+
In order to avoid trivialities, we make the following assump-
tion for the remainder of this paper which guarantees that any
ellipsoid containing # $'&(#*)�&,+,+,+:&(#*- has positive volume:

Assumption 1: The affine hull of # $'&(#*)�&,+,+,+:&(#*- spans 1B .
Equivalently,

rank 2 (� 43 O��657
 +
We point out that in most applications of the minimum

volume covering ellipsoid problem, particularly those in data
mining, one cannot presume much in the way of special
structure of the data # $'&(#*)�&,+,+,+:&(#*- . In particular, the matrix( may be fairly dense, and in all likelihood (  ( as well as(8(  will be completely dense.

For 9 . �� and : .;�G ��� , we define the ellipsoid<>=@? A � OCB$D .8K  ,:4�DFEG9 J  :�4HDFEG9 JJI 
�KFL
here 9 is the center of the ellipsoid and : determines its
general shape. The volume of

<M=@? A
is given by the formulaN�O PQ 4 O P � $ J $R S�TVU = , see [4] for example. Here W 4�. J is the standard

gamma function of calculus.
By the change of variables:

 OX:ZYP and [ OX:	YP 9 ,
the convex optimization formulation of the minimum volume
covering ellipsoid problem is:\

MVCE Y�]_^@` H$acb dfe \ # ?hg ]ji kml F H S�TVU #
s.t.

\ #on�p l g ]rq \ #on�p l g ]ts $ ?vu k $ ? 9�9 9 ? -#�wyx ?
(1)

If 40z & z[ J is a solution of MVCE $ , we recover the parameters
for the optimal ellipsoid by setting 4"z:5& z9 J O 48z ) &{z l $ z[ J .
A. Solution via Available Interior-Point Software

MVCE $ can be re-written as a log-determinant maximiza-
tion problem subject to linear equations and second-order cone

constraints:

4 MVCE
) J}| � >v# ? g�? ~�? � E8< > �����  

s.t.
 # u EG[�EZ� u O S8&0�!OC
�&,+,+,+,&�"� u O*
@&0��O*
�&,+,+,+:&�"
4�� u & � u J .��  ) &0�!OC
�&,+,+,+:&�" ��S8&

where �  ) denotes the second-order cone B*4�� & � J .
�� � $ ,M����� I � K . The format of MVCE ) is suitable for
solution using a slightly modified version of the software
SDPT3 (see [12], [13]), where the software is modified in
order to handle the parameterized family of barrier functions:�M� 4  &�� & � J � O*E8< > �����  EG� -� u k $ < >@? � )u E�4�� u J  4�� u J�D (2)

for �o��S . The Newton step at each iteration must unavoidably
form and factorize an "046�05;
 J � "046�05;
 J Schur-complement
matrix. Even for only reasonably large values � and " the
computational burden becomes prohibitive.

One can construct the following dual problem of MVCE $ ,
see Section IV for details and further exposition:

4 RD J}| ������ ?  ) < > � D 5 $) < > �����M� (���M(  ( ����  (  �  ��0�
s.t. �  ��8OC
�����S + (3)

Notice that RD is also a determinant maximization problem
subject to linear inequality constraints and can also be solved
using a modified version of SDPT3. In solving RD via
SDPT3, the computational bottleneck at each iteration lies in
forming and factorizing a Schur complement matrix of size�
 P � 7( �"�) � � �  P � 7( �"�) � ; furthermore, computing each entry

of the Schur complement matrix involves " additions.
In order to solve large practical instances of the minimum

volume covering ellipsoid problem ( ���j��S%&�"���
�&(S�S�S ,
for example), we develop our own specialized methodology,
designed to take explicit advantage of the structure of the
problem and the typical instance sizes that one might en-
counter in practice, particularly in the context of data mining.
In Section III, we present our basic algorithm, which we call
the “dual reduced Newton” (DRN) algorithm; this algorithm is
then applied and/or modified to work with active set strategies
in Section V.

III. DUAL REDUCED NEWTON ALGORITHM

In this section we describe and derive our basic algorithm
for the minimum volume covering ellipsoid problem; we
call this algorithm the “dual reduced Newton” algorithm for
reasons that will soon be clear.



A. Newton Step
By adding a logarithmic barrier function to the problem

formulation MVCE $ , we obtain the formulation\
MVCE

P � ]_^@` H$acb d b � l F H S�TVU # l ����p � Y F H�� p
s.t.

\ #on�p l g ] q \ #on�p l g ] � � p k $ ?vu k $ ? 9�9 9 ? -#*wyx��� x 9
The parameterized solutions to this problem as � varies in

the interval 4 S%&
	 J defines the central trajectory of the problem
MVCE $ . Identifying dual multipliers � u &�� O 
�&,+,+,+:&�" , with
the equality constraints in MVCE ) � , the optimality conditions
for (MVCE ) � ) can be written as:��p � Y � p� � a�� p�� d���� qp�� � p�� a�� p�� d�� q�� � a � Y ��� (4)��p � Y � p�� d � a�� p � ��� (5)� a�� p�� d � q � a�� p�� d � � � p � Y b p�� Y b �����Vb � (6)! � � ��"

(7)� b �$# � (8)a&% � � (9)

We could attempt to solve (4)-(9) for 4  & [ &��	&�� J directly
using Newton’s method, which would necessitate forming
and factorizing an

�  \  � 7 ]) 5 � " � � �  \  � 7 ]) 5 � " � matrix.
However, as we now show, the variables

 
and [ can be

directly eliminated, and further analysis will result in only
having to form and factorize a single " � " matrix. To see
how this is done, note that we can solve (5) for [ and obtain:[ O  (0��  � + (10)

Substituting (10) into (4), we arrive at the following equation
for the matrix

 
:'�(*)+(+,.- (0/�/ , ( ,1 , /32�46574 '�(*)+(+,�- (0/�/ , ( ,1 , /3298:4<; �>=

(11)

The following proposition demonstrates an important property
of the matrix arising in (11):

Proposition 2: Under Assumption 1, if � � S , then� (M�M(  E@? ��� q ? qA q � � ��S .
The following remark presents a closed form solution for the
equation system (11), see Lemma 4 of Zhang and Gao [16]:

Remark 3: For a given B � S , CX� ODB l YP is the unique
positive definite solution of the equation system:
� ?EC	+B;5FBGC D OHC l $ +
Utilizing Proposition 2 and Remark 3, the unique solution of
(11) is easily derived: � O  4�� J � O�2�� � (M�M(8;E (0�v�  ( �  � � 3 l YP & (12)

and substituting (12) into (10), we conclude:
Proposition 4: Under Assumption 1, if � � S , then the

unique solution of (4) and (5) in
 & [ is given by: � O  4�� J � O�2�� � (M�M(8;E (0�v�  ( �  � � 3 l YP (13)

and

[o� O [ 4�� J � OJI � � (M�M(  E ? ��� q ? qA q � ��K l YP (0��  � + (14)

Substituting (13) and (14) into the optimality conditions (4)-
(9), we can eliminate the variables

 
and [ explicitly from

the optimality conditions, obtaining the following reduced
optimality conditions involving only the variables 4��N&�� J :L 4�� J 5)� O ��>� O � � (15)�N&�� � S &
where

L u 4�� J is the following nonlinear function of � :M p \ � ] i k \ # \ � ] n�p l g \ � ]�]hq \ # \ � ] n�p l g \ � ]�]k N n�p lPO �" q �RQ qTS ) N ?0UV? q>l:O �
� q O q" q �WQYX � Y N n�p l6O �" q �RQ ?
(16)

for ��O*
�&,+,+,+:&�" , where
 4�� J and [ 4�� J are specified by (13)

and (14).
For a given value of the barrier parameter � , we will

attempt to approximately solve (15) using Newton’s method.
Let Z � L 4�� J denote the Jacobian matrix of

L 4�� J . The Newton
direction 4\[y�N&�[y� J for (15) at the point 4��N&�� J is then the solu-
tion of the following system of linear equations in 4\[y�N&�[y� J :Z � L 4�� J [y� 5 [y� O^] $ � O �0EZ��E L 4�� J� [y� 5 �_[y� O^]�) � O � �0E��>� + (17)

This system will have the unique solution:[y� O ?�Z � L 4�� J E�� l $ � D l $ ?E] $JE�� l $ ]�) D[y� O � l $ ]�) E�� l $ � [y� & (18)

provided we can show that the matrix ?�Z � L 4�� J E�� l $ � D is
nonsingular.

In order to implement the above methodology, we need
to explicitly compute Z � L 4�� J , and we also need to show
that ?�Z � L 4�� J E�� l $ � D is nonsingular. Towards this end, we
define the following matrix function:` 4�� J � O � ( E (0� � �  � �   ) 4�� J � (7E (0� � �  � � (19)

as a function of the dual variables � . Let (ba � denote the
Hadamard product of the matrices ( & � , namely 4h(Fa � J u c � O( u c��>u c for ��&�d O 
�&,+,+,+:&�" . The following result conveys
an explicit formula for Z � L 4�� J and also demonstrates other
useful properties.

Proposition 5: Under Assumption 1,

4�� J Z � L 4�� J O*E8� �fe \ � ]A q � 5 ` 4�� J a ` 4�� J �
4��V� J Z � L 4�� J�g S
4��V�V� J L 4�� J O ������� 4 ` 4�� J�J .
From part 4��V� J of Proposition 5 and the fact that � l $ � � S
whenvever �N&�� ��S , we then have:

Corollary 6: Under Assumption 1, if �;��S and � ��S , then
?�Z � L 4�� J E�� l $ � Dih S , and so is nonsingular.



Now let us put all of this together. In order to compute
the Newton direction 4\[y�N&�[y� J for the reduced optimality
conditions (15) at a given point 4��N&�� J , we compute according
to the following procedure:
Procedure DRN-DIRECTION 4��N&��	&�� J : Given 4��N&�� J satisfy-
ing �N&�� ��S and given �o��S ,

(i) form and factorize the matrix
 l ) 4�� J OI � � (M�M(  E@? ��� q ? qA q � ��K

(ii) form the matrix
` 4�� J O� ( E@? ��A qA q � �   ) 4�� J � (7E@? ��A qA q � �

(iii) form Z � L 4�� J O E8� � e \ � ]A q � 5 ` 4�� J a ` 4�� J � and factor-

ize ?�Z � L 4�� J E�� l $ � D
(iv) solve (18) for 4\[y�N&�[y� J .

The computational burden of each of the four steps in
Procedure DRN-DIRECTION is dominated by the need to
factorize the matrices in steps (i) and (iii) above. The matrix� (M�M(  E ? ��� q ? qA q � � in step (i) is �7� � ; it requires " � )
operations to form and �G7 steps to factorize, while the matrix
?�Z � L 4�� J E�� l $ � D in step (iv) is " �0" ; it requires �=" )
steps to form and " 7 steps to factorize.

The direction 4\[y�N&�[y� J given in Procedure DRN-
DIRECTION is the solution to the linearization of the reduced
optimality conditions (15), which were derived from the origi-
nal optimality conditions (4)-(9) of MVCE ) � . We call 4\[y�N&�[y� J
the DRN direction for “dual reduced Newton.” The reason for
this is that we started with the optimality conditions (4)-(9),
and reduced them by eliminating the primal variables

 & [
before linearizing the resulting equation system in defining
the Newton step.

Notice that MVCE ) � is itself an optimization problem of a
self-concordant barrier function, see [9]. Because the theory of
self-concordant functions is essentially a theory for Newton-
based algorithms, it is natural to ask whether or not the Newton
direction 4\[y�N&�[y� J given in Procedure DRN-DIRECTION is
the Newton direction for minimizing some self-concordant
function. We are able to show that the answer to this question
is negative. However, we can also show that the Newton
direction 4\[y�N&�[y� J given in Procedure DRN-DIRECTION is
the Newton direction for the minimization of a function that
is “almost” self-concordant.

Note from (10) that 9 O  l $ [TO ? �A q � , which states that
the center of the optimal ellipsoid is a convex weighting of
the points #%$'&,+,+,+,&(#*- , with the weights being the normalized
dual variables

� pA q � &�� O 
�&,+,+,+:&�" . It is also easy to see that
when � O S , the complementarity condition � u � u O ��O S has
a nice geometric interpretation: a point has positive weight � u
only if it lies on the boundary of the optimal ellipsoid. These
observations are well-known. Another property is that if one
considers the points # $'&,+,+,+,&(#*- to be a random sample of "
i.i.d. random variables, then with �;� O A- we have

 l ) 4�� J O
)-
� (7E ? A A q- � � ( E ? A A q- �  is proportional to the sample

covariance matrix.

B. Algorithm DRN

Based on the Newton step procedure outlined in Subsection
III-A, we construct the following basic interior-point algorithm
for solving the MVCE ) � formulation of the minimum volume
covering ellipsoid problem. We name this algorithm “DRN”
for dual reduced Newton algorithm.
Algorithm DRN

Step 0: Initialization. Set ] � S%+ ��� . Choose initial
values of 4�� x &�� x J satisfying � x &�� x � S . Set 4��N&�� J �
4�� x &�� x J .
Step 1: Check Stopping Criteria. OBJ � O�E8< > �����  4�� J
If ���0E L 4�� J EG��� I�� $ and

� q �OBJ I�� ) , STOP. Return � ,:�� O�+  4�� J / ) , and 9>� O�+  4�� J / l $ [ 4�� J .
Step 2: Compute Direction. Set � � � q �$ x�- . Compute
4\[y�N&�[y� J using Procedure DRN-DIRECTION 4��N&��	&�� J .
Step 3: Step-size Computation and Step. Compute z� �| ��� B � , 4��N&�� J 5 � 4\[y�N&�[y� J ��S�K and �� � | � >�B ] z� &�
�K .
Set 4��N&�� J � 4��N&�� J 5 �� 4\[y�N&�[y� J . Go to Step 1.

The algorithm is initialized in Step 0. Strategies for choosing
4�� x &�� x J are discussed immediately below in Subsection III-
C. The quantity ]�� 
 is used to keep the iterate values
of 4��N&�� J strictly positive, see Step 3. The stopping criteria
are checked in Step 1; the tolerances are � $ for feasibility
and � ) for optimality. We discuss the stopping criterion in
a bit more detail below in Subsection III-D. In Step 2 the
barrier parameter � is updated and the DRN direction is
computed; similar to standard interior-point methods for conic
optimization, we use a rather aggressive shrinking factor of
�S when updating � at each iteration. In step 3 we compute
the step-size using a standard min-ratio test augmented by a
fraction ]�.04 S%&�
�+ S J that keeps the new iterate values of 4��N&�� J
strictly positive. We found that setting ]�O�S%+ ��� tended to
work best.

C. Initialization Strategies

One way to start algorithm DRN is to choose any pair
4�� x &�� x J that satisfies � x &�� x � S , for example 4�� x &�� x J O
4
	�� &�	�� J for some suitable positive scalar 	 . However, we
found it preferable to choose 4�� x &�� x J in a way that guarantees
the initial primal feasibility of

 4�� x J & [ 4�� x J . We start by set-
ting � x O  )(- � (where the factor  )(- was chosen empirically).
We then compute

 4�� x J & [ 4�� x J via (13) and (14) and test for
strict primal feasibility by checking if

L 4�� x J{I 4 S%+ �� J � , and
if so we set � x O4�>E L 4�� x J � S , thus ensuring positivity of
4�� x &�� x J as well as initial feasibility of the equations

L 4�� J 5{�2O� at 4��N&�� J O 4�� x &�� x J . If
L 4�� x J��I 4 S%+ �� J � , observe that sinceL 4
	 � J O $� L 4�� J from (16), we can rescale � x to ensure strict

feasibility of the algorithm as follows: compute

	 O ^������ M Y \ � � ] ? 9 9 9 ? M � \ � � ]��x 9 �(;� x � 	 � x� x � �0E L 4�� x J + (20)

This initialization strategy then guarantees strict positivity of
4�� x &�� x J as well as initial feasibility of the equations

L 4�� J 5{�2O� at 4��N&�� J O 4�� x &�� x J .



D. Stopping Criteria

The following result is the basis of the stopping criteria of
Algorithm DRN:

Proposition 7: Under Assumption 1, suppose that �'� S .
If

L 4�� J)I � , then 4  & [ J � O 4  4�� J & [ 4�� J�J is feasible for
MVCE $ and � 4  & [ J E	�  � is a lower bound on the optimal
objective function value of MVCE $ .

Proposition 7 states that the optimality gap of a feasible
solution 4  & [ J � O 4  4�� J & [ 4�� J�J of MVCE $ is at most �  � ,
where � O*�>E L 4�� J � S . The stopping criteria of Algorithm
DRN, specified in Step 1, is to check that primal feasibility is
satisfied to a pre-specified tolerance � $ , and then to check if
the relative optimality gap is not greater than the pre-specified
tolerance � ) . In our computational tests, we set � $LO � )EO
�S l�� . However, in practical applications in data mining where
optimal objective function values are desirable but not critical,
we might expect the optimality tolerance to be on the order
of � ) O*
�S l � , for example.

IV. DUAL FORMULATIONS AND THE CONDITIONAL

GRADIENT METHOD FOR THE DUAL

A. Dual Formulations

Using standard Lagrangian duality constructs, one can con-
struct the following dual problem of MVCE $ :����� �	��
 ���� ��� O P�� � P � O P�� � YP�� ��������� O ! O q � O �
� q O q" q ��� � " q �

s.t. � # � b (21)

and �N4�� JJI � 4  & [ J for all � and 4  & [ J feasible for (1) and
(21), respectively.

Re-write � as � O � �� where � O �  � and ��R. � -� .
Through some arithmetic matipulations, we can re-write (21)
as follows:�����"!# b !� � O P�� � P � O P$� � O � YP%� � !# � YP�� �$�����$& O !! O q O !�!� q O q " q !�(' � YP�� � !# � !#s.t.

" q !� � Y!# # � b !� # � � (22)

Gathering terms in the objective function of (22) and optimiz-
ing with respect to � yields � O  ) , which when substituted
yields the refined dual problem RD of (3). We refer to RD
as a refinement of (22) because (22) has been optimized with
respect to the scalar variable � . The );E optimal experimental
design problem can be formulated as an instance of RD,
see for example [14], and hence the computational methods
developed herein are applicable to large-scale experimental
design problems.

Taking the Lagrange dual of RD and further refining the
resulting minimization problem yields the following problem:

4 PL J}| � >�* ?  ) < > � D E ?  � $) < >G46�657
 J D E $) < > ������+
s.t.

� # u
 �  + + / � # u
 � I 
 &0��O*
�&,+,+,+:&�"+ . �  � $��� +
(23)

Problem (PL) seeks to find the minimum volume ellip-
soid in �� � $ centered at the origin that contains the lifted
points 4 # u &�
 J� for � O 
�&,+,+,+:&�" , where each point # u

has now been lifted into �  � $ onto the hyperplane , � OB*4�DG&�D  � $ J , D  � $ O�
�K . [7], [6], and [9] propose algorithms
for solving minimum volume covering ellipsoids based on this
lifting. The minimum volume ellipsoid of the original problem
is recovered as the intersection of the hyperplane , and the
minimum volume covering ellipsoid centered at the origin
containing the lifted points 4 # u &�
 J� &��!OC
�&,+,+,+:&�" .

B. The Conditional Gradient Method for Solving RD

Interior-point methods and other second-order methods ex-
hibit computational superiority in a number of settings in
convex optimization. However, the work per iteration is nec-
essarily large, which suggests that one might use a first-order
method such as the conditional gradient method [2] in the
early solution stages. Khachiyan [6] analyzed the theoretical
complexity of a first-order method for the solution of the
minimum volume covering ellipsoid problem via formulation
RD. Upon careful examination, the algorithm in [6] can be
interpreted as a version of the conditional gradient method
applied to this problem. Here we re-state this algorithm in our
notation and interpretation. Let B \ - l $ ] denote the standard
simplex in � - , namely B \ - l $ ] � O*B$�L.L� - , �	� S%& �  � O
�K , and let -

4�� J � O 2 (M�M(  (0��  (  �  � 3 +
Then problem RD can be cast as | ��� ��.0/(
 � � Y � < > ����� - 4�� J .It is straightforward to derive the partial derivatives of the
objective function of RD:13254 /06�7 898;: <;=?>�@0A 4 /068 / 2 8CBED ,2GFIH A 4 /06 ; � ' D 2F 2KJ�L 8 F J = = = J�M =

Let z� . B \ - l $ ] be the current iterate value. At each
iteration of the conditional gradient method, we compute the
gradient N=4 z� J � O 4�N*$�4 z� J &,+,+,+,&IN�-�4 z� J�J of the objective function
of RD and solve the subproblem | ��� ��.0/(
 � � Y � N=4 z� J� � , whose
optimal solution is given by the d th unit vector � c . � - whered�O �$O � | ��� u N u 4 z� J . The method then requires the solution of
the line-search problem:^����QPSR?T � b Y�U"VXW� b Y \ � ]ji k F H S�TVUSZ \�\ $ l � ]E[� � ��A Y ]k F H S�TVU�\ \ $ l � ] Z \ [� ] � � \�n Y$^] N n qY $ Q ] 9
Khachiyan [6] cleverly observed that this line-search problem

has a closed form solution, namely 	UO`_ Y \ [� ]Vl \  � $ ]\  � $ ] \ _ Y \ [� ]Vl $ ] (see
[6] for details). This leads to the following algorithm:
Algorithm CONDITIONAL GRADIENT

Step 0: Initialization. Choose an initial values of 4�� x J
satisfying � x ��S%& �  � x O*
 . Set � � � x .
Step 1: Solve subproblem. Compute N u 4�� J O
? # u 
 D - 4�� J l $ � # u
 � &�� O 
�&,+,+,+:&�" . Set d ��$O � | ��� u N u 4�� J .
Step 2: Step-size Computation and Step. 	 �_ Y \ � ]Vl \  � $ ]\  � $ ] \ _ Y \ � ]Vl $ ] . � � 4�
0E 	 J �o5 	�� c . Go to Step 1.

The computational effort at each iteration of the conditional
gradient method is dominated by the gradient computation,
which is "046�	5�
 J ) operations to form and factorize

-
4�� J

and another "046�F57
 J ) operations to then compute N=4�� J .



V. ACTIVE SET STRATEGIES

It is easy to see from the optimality conditions (5)-(9)
at � O S that the minimum volume covering ellipsoid is
determined only by points # u located on its boundary. The
following well known result of John [5] states that the number
of such boundary points is not too large:

Remark 8: [5] The minimum volume covering ellipsoid is
determined by a subset of at most  P � 7( ) points.
This motivates the design of active-set strategies for solving
MVCE $ wherein we try to make an intelligent guess of active
points # u at each iteration and we discard presumably inactive
points from time to time. Let � denote the set of points that
must be covered, namely � � O B'# $'&,+,+,+:&(#*-{K , and consider
the following active-set method:
GENERIC ACTIVE SET METHOD

Step 0: Initialization. Define some initial active set of
points ��x � O B�# u Y &(# u P &,+,+,+,&(# u�� K for which ��x satisfies
Assumption 1. Define an initial starting point � xx . 1 � S .
Step 1: Solve MVCE $ for the set of points ��� . Use
Algorithm DRN with starting point � �x . Let 4 z� � & :�� & 9�� J
be the output returned.
Step 2: Check Feasibility. If �:# c E 9�� � =	� I 
�5 � $
for � .
����	� , stop. Return 4��N& :5& 9 J � O 4 z���*& :�� & 9�� J .
Otherwise go to Step 3
Step 3: Update Active Set. Update the active set to ��� � $ .
Determine a new starting point � � � $x . 1 � 1{57
 . Go to
Step 1.

In order to implement the above framework, we need to
address the following specific questions: how to determine the
initial active set ��x and the initial starting point � xx , how to
update the active set from iteration to iteration, and how to
choose the starting point � �x for all subsequent iterations.

A. Initial Active Set

One naı̈ve approach is to randomly choose �����M5Z
 points
that satisfy Assumption 1. Not surprisingly, this method is
inefficient in practice. Also, linear programming could be used
to test and permanently eliminate all points # u that lie in the
convex hull of ���0B'# u K . This also is inefficient.

We concentrated on developing heuristics for determining
which points # u are “far away” from the “center” of the
data. We developed two main active set initialization schemes
which we call Sample Covariance Initialization (SCI) and
Conditional Gradient Initialization (CGI), both of which we
now describe.

1) Sample Covariance Initialization (SCI): Following (12),
the matrix

 l ) 4r� J is proportional to the sample covari-

ance matrix $\ - l $ ] I (8(  E@? A A q ? q- K of the data points
#%$'&,+,+,+,&(#*- . The inverse of the sample covariance matrix can
serve as a reasonable initial guess of the shape matrix of
the covering ellipsoid and its induced norm �>.v� = \ A ] where: 4r� J � O  ) 4r� J can serve as a natural initial distance metric
to determine which points are far from the sample meanz#F� O $- (8� . Following this idea, we define the initial active set
to contain "mx points whose distances from the sample mean

� u � O �:# u E z# � = \ A ] are the largest. In order to determine the
cardinality of the initial set " x , we need to trade off small size
(for faster computation) against quality of information (which
improves for larger " x ). We found that " x�� O | � >"B�� $ 9 ; &�"	K
worked well in practice. The computational burden of the SCI
scheme is 3546" � ) J operations.

2) Conditional Gradient Initialization (CGI): The strategy
in the conditional gradient initialization scheme is to run
the conditional gradient algorithm for a small number of
iterations starting at the barycenter � O $- � of B \ - l $ ] . At
each iteration, we record the point # c whose index d gave
rise to the maximum partial derivative N c 4�� J at that iteration,
see Step 1 of the algorithm in Section IV-B. We accumulate
these points to form the initial active set � x . Although this
method tended to produce initial active sets that were superior
to those produced by the SCI scheme, the computational effort
of this method is much greater than for SCI. Each conditional
gradient step needs 3546" � ) J operations (which is the same
as the entire SCI scheme), and running the method for � steps
then is 354��6" � ) J operations. To satisfy Assumption 1, we need
to have at least �{5)
 affinely independent points in the initial
active set to have a full dimensional ellipsoid, and so we must
set �M�/��5C
 . Because of this, we chose � O �;5*
 as the
number conditional gradient steps to run.

We compare the computational performance of SCI versus
CGI in Section VI.

B. Determining � �x
We first discuss the issue of determining � xx . If the initial

active set ��x is chosen via SCI, we set 4�� xx J u proportional
to the distance

� u � O��:# u E z# � = \ A ] for �5.���x , normalizing
so that �  4�� xx J O  ) . If the initial active set is chosen via
CGI, we set 4�� xx J u proportional to the output values � u of the
conditional gradient algorithm for � .�� x , normalizing so that�  4�� xx J O  ) .

We now discuss how � �x is determined for 16�'
 . At the end
of the previous active set step, algorithm DRN has computedz��� for the active set ��� . If the active set has just been expanded
so that �	� � $5O��	���<[�� , we set � � � $x to be a combination

	 � z���S � 5T4�
�E 	 J � S z� � , where the indices are partitioned

here into �	� and [�� and z� u O �:# u E�9�� � =	� . We found that
	EO S%+ � � worked well in practice. Then we normalize so that�  4�� � � $x J O  ) .

If the active set has just been shrunk, we simply
re-normalize z��� so that the remaining indices satisfy�u .�� � � Y 4�� � � $x J u O  ) .

C. Updating the Active Set

1) Expanding the Active Set: Suppose that the current
active set is �	� and that we have just run algorithm DRN
on this set, obtaining 4 z��� & :��*& 9�� J as output. We consider
expanding the active set to ��� � $ O��	���b[�� for some
set [�� . When we expand the active set, we choose points
# u! .��	� whose distances from the current center 9"� are largest,
using the current ellipsoidal norm to define the distances:



� u � O4�:# u E 9���� =	� . We would like to add a reasonable number
of points to the active set whose distances

� u
satisfy

� u � 

(otherwise # u would remain inactive in the current active set),
and are large. Intuitively we want the points added to the active
set to be spread around the current ellipsoid

<�=	�$? A �
. This is

handled in our code as follows: after sorting points according
to the

� u
’s and considering only points # u with

� u �'
 , if there
are fewer than Q�S such points we simply include all of them
in [�� . Otherwise, the first point to be added to [�� is the
point # u with the largest

� u
. After that, we examine points one

by one in descending order of
� u

, and we add # c to [�� if� u . � � 4 # c E 9�� J  :��*4 # u E 9�� J � S . In this way, the points
that wind up in [�� will tend to make larger angles with other
points in [�� (measured with respect to the matrix : � ).

2) Shrinking the Active Set: There are several ways to
delete points from the current active set with the guarantee
that they will not enter the active set again, for example, using
linear programming or the inscribed Löwner-John ellipsoid.
However these approaches are either too expensive or not
efficient enough. We used the following simple heuristic to
delete points: when the cardinality of the active set first
reaches 
�S�S%&�
 � S%& ��S�S%&,+,+,+�& we delete all points # u whose
current distance from the current center (using the current
ellipsoidal norm) satisfies

� u ��S%+ ������� .

VI. COMPUTATIONAL RESULTS

In order to perform computational tests, we generated data
sets of varying dimension � and number of points " . The data
sets were generated using independent random multinomial
Gaussian distribution or several Gaussian distributions, in
order to mimic the data points from one or more clusters as
might be encountered in practice. All computation was done in
MATLAB 6.5.0.180913a Release 13 on a Pentium IV 1.5GHz
PC with 1G RAM, running LINUX.

A. Small and Medium-Size Problems

Table I shows computational results for the solution of
the minimum volume covering ellipsoid problem on small-
and medium-sized problems, namely

� I � I ��S and��S I " I � S�S ). We tested three different algorithms: (i)
solution via the DRN algorithm described in Section III, (ii)
solution via formulation RD solved using a modified version
of SDPT3 (modified to handle the parameterized family of
barrier functions in (2) with � absent from the first term), and
(iii) solution via formulation MVCE ) using the same modified
version of SDPT3. In Table I and elsewhere we refer to these
three approaches simply as DRN, RD-SDPT3, and MVCE ) -
SDPT3. All three methods were run on the full problems, i.e.,
without any active-set methodology. The starting point used
for the DRN algorithm was as described in Subsection III-C.
We tried a variety of different ways to choose starting points
for algorithms RD-SDPT3 and MVCE ) -SDPT3, but ultimately
found no obvious advantage over the default starting point
methodology built into SDPT3. All feasibility and relative
duality gap tolerances were set to � O*
�S l�� . The “Iterations”
columns in Table I show the geometric mean of the number

TABLE I

PERFORMANCE OF ALGORITHMS DRN, RD-SDPT3, AND

MVCE � -SDPT3, ON SMALL AND MEDIUM-SIZED PROBLEM INSTANCES

OF THE MINIMUM VOLUME COVERING ELLIPSOID PROBLEM. (EACH

NUMBER OF ITERATIONS OR SOLUTION TIME IS THE GEOMETRIC MEAN OF

10 PROBLEMS.)

Algorithm

DRN RD-SDPT3 MVCE
P

-SDPT3
Dimensions Solution Time Solution Time Solution TimeO � Iterations (seconds) Iterations (seconds) Iterations (seconds)

4 20 9.980 0.0248 17.073 0.7524 12.406 1.072
4 60 11.167 0.0797 18.841 1.171 12.727 2.932
10 200 13.752 1.370 24.038 4.157 13.483 108.340
10 500 15.758 18.381 25.338 15.520 15.468 1960.957
20 500 14.378 17.065 29.114 24.396 OUT OF MEMORY

of IPM/Newton iterations for each method over 10 problem
cases while the “Solution Time” columns show the geometric
means of solution times of these 
�S problems.

The first observation from Table I is that MVCE ) -SDPT3
has vastly inferior solution times to DRN and to RD-SDPT3.
This is almost surely due to the very large Schur-complement
matrix ( "046� 5 
 J � "046� 5 
 J ) that must be formed and
factorized to solve MVCE ) via SDPT3.

The second observation from Table I is that DRN needs to
take roughly one half as many Newton steps as RD-SDPT3.
Examining the output of SDPT3 in greater detail in order to
assess the reasons for this, we found that particularly in the
first 
�S iterations, RD-SDPT3 routinely had slow convergence
to primal and/or dual feasibility. (In interior-point codes such
as SDPT3, slow convergence to feasibility is indicated by step-
sizes that are much less than 
 .) However, in the last few
iterations of RD-SDPT3, the iterates of RD-SDPT3 converged
as quickly as for DRN. This probably means that SDPT3 is not
as capable of capitalizing on good starting point information,
but it also could mean that the directions produced by DRN
are somehow better. Of course, the performance of RD-SDPT3
could potentially improve if a more successful starting point
methodology is found, but so far such a methodology has
eluded us even after testing of several different approaches.

The computational effort per iteration for DRN is dominated
by factorizing and solving an "j� " matrix, whereas for
RD-SDPT3 it is dominated by factorizing and solving an�
 P � 7( �"�) � � �  P � 7( �"�) � matrix. When -

 P � � $) we might
expect DRN to dominate RD-SDPT3 due its superior choice
of direction. However, when -

 P ��� $) we might expect RD-
SDPT3 to dominate DRN.

B. Solving Large Problems using DRN and Active-Set Strate-
gies

The computational results in Subsection VI-A are for small-
to medium-size problems; for larger-sized problems, an active-
set strategy is necessary to achieve good computational per-
formance. Recall from Remark 8 that the minimum-volume
ellipsoid is determined by at most  P � 7( ) points. Furthermore,
our computational experience indicates that the number of
points that determine the minimum-volume ellipsoid tends
to be closer to  P� in practice. This suggests that the DRN
algorithm should be used to solve the active-set subproblems



TABLE II

SUMMARY PERFORMANCE OF DRN ALGORITHM WITH AN ACTIVE-SET

STRATEGY USING SCI INITIALIZATION SCHEME ON LARGE PROBLEM

INSTANCES OF THE MINIMUM VOLUME COVERING ELLIPSOID PROBLEM,

FOR RANDOM SAMPLES OF F�� PROBLEMS.

SCI
Final Initialization Total Solution

Dimensions Active Time Time

 - Iterations Set (seconds) (seconds)

10 10,000 9.18 42.59 0.04 0.97
20 1,000 6.51 82.76 0.01 1.28
20 10,000 10.69 117.65 0.08 3.79
20 20,000 12.44 110.67 0.15 4.53
20 30,000 12.85 121.41 0.22 5.45
30 10,000 13.65 198.53 0.13 12.55
30 20,000 14.98 204.49 0.24 16.07
30 30,000 15.98 200.93 0.36 17.64

at each major iteration, since its performance is superior to
RD-SDPT3 when

- �
 P I $� � $) , where " � is the number of

points in the active set at iteration 1 .
Table II summarizes the computational performance of the

DRN algorithm coupled with the active-set strategy described
in Section V, for dimensions � and " in the ranges 
�S I � I
Q�S and 
�&(S�S�S I " I Q�S%&(S�S�S , over samples of 
�S randomly
generated problems. The average performance measures in
Table II are computed using the geometric mean of the 
�S ran-
domly generated problems. The table presents results using the
initialization scheme SCI which was described in Subsections
V-A.1. The “Iterations” column reports the number of outer
iterations, that is, the number of different subproblems solved,
and the “Final Active Set” column reports the number of points
present in the last active set subproblem. (Note: the active set
is the current working set of points, as opposed to the set of
points that lie on the boundary of the optimal ellipsoid, which
we call the set of “binding points.” Clearly the final active set
is a superset of the set of binding points.) The “Initialization
Time” columns report the time taken by the algorithm to
initialize the active set using the SCI initialization scheme.
The “Total Solution Time” columns report the total time to
solve the problems. As before, all subproblems were solved
to a feasibility tolerance and a relative duality gap tolerance
of � O�
�S l�� . Notice that the Final Active Set numbers are
different for the two initialization schemes. This reflects the
fact that the two initialization schemes start with different
active sets, and hence terminate with different active sets as
well.

The Total Solution Times reported in Table II for the largest
problems ( � O Q�S , " O Q�S%&(S�S�S ) clearly indicate that the DRN
algorithm coupled with a suitable active-set strategy solves
these problems to a high degree of accuracy ( � $ O � ) OC
�S l�� )
in well under 30 seconds on a personal computer.

VII. CONCLUDING REMARKS

Algorithms and associated software for conic formulations
of convex optimization problems that use primal-dual interior-
point methods are intended for general convex problems pre-
sented in such conic format. While these algorithms generally

perform well in practice, they are not designed to be able to
consider any special structure of certain classes of problems,
such as the minimum volume covering ellipsoid problem.
Herein, we have presented the DRN algorithm for solving
the minimum covering ellipsoid problem, which is itself an
interior-point type algorithm, and which is designed around
the optimality conditions of the problem augmented with a
logarithmic barrier term, although it does not quite fall into
the existing interior point algorithm theoretical framework of
self-concordant functions. We have shown that this algorithm
performs very well for problems of moderate size. When the
number of points to be covered is large, we show how the
DRN algorithm can be used with an active-set strategy (where
the active-set strategy is also designed specifically for the
minimum volume covering ellipsoid problem), and we report
computational results on large problems which validate the
efficiency of these approaches.

From a practical point of view, most applications of the
minimum volume ellipsoid are based on the ideal situation in
which there are no outliers in the data. To make the minimum
volume ellipsoid problem more amenable in the presence of
outliers, it is necessary to explore problem formulations that
allow points that lie outside of the ellipsoid, such as in the
following problem formulation which penalizes such points:\

MVCEP ]_^@` H acb d b � l F H S�TVU # ��� A q �
s.t.

\ #on�p l g ] q \ #on�p l g ]vs $ � � p ? u k $ ? 9 9 9 ? -��� x#�wyx ?
in which � is a user-specified penalizing coefficient. Formu-

lation (MVCEP) could also be solved by a slight modification
of the DRN algorithm, with the active-set strategy if need be.
This formulation has the potential of identifying outliers in the
data, which has been an important focus in data mining, see
[8]. However, from the point of view of determining a “robust”
minimum volume ellipsoid, MVCEP still has the drawback
that the shape of the optimal ellipsoid is potentially determined
in part by points that lie outside of the optimal ellipsoid. Future
work in this area could include developing formulations and
solution methods for this problem that include non-convex
penalizing terms such as � � -u k $ sign 4
	 u J .
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