3,149 research outputs found

    Entropy-based parametric estimation of spike train statistics

    Full text link
    We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this context, but as a conditional probability : "Reading out the code" consists of inferring such a probability. This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman and collaborators. A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is proposed yielding fast convergent implementations. It is also made explicit how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the parametric estimation. This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare different models, thus answering comparative questions about the neural code such as : "are correlations (or time synchrony or a given set of spike patterns, ..) significant with respect to rate coding only ?" A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are also discussed.Comment: 37 pages, 8 figures, submitte

    False discovery rate regression: an application to neural synchrony detection in primary visual cortex

    Full text link
    Many approaches for multiple testing begin with the assumption that all tests in a given study should be combined into a global false-discovery-rate analysis. But this may be inappropriate for many of today's large-scale screening problems, where auxiliary information about each test is often available, and where a combined analysis can lead to poorly calibrated error rates within different subsets of the experiment. To address this issue, we introduce an approach called false-discovery-rate regression that directly uses this auxiliary information to inform the outcome of each test. The method can be motivated by a two-groups model in which covariates are allowed to influence the local false discovery rate, or equivalently, the posterior probability that a given observation is a signal. This poses many subtle issues at the interface between inference and computation, and we investigate several variations of the overall approach. Simulation evidence suggests that: (1) when covariate effects are present, FDR regression improves power for a fixed false-discovery rate; and (2) when covariate effects are absent, the method is robust, in the sense that it does not lead to inflated error rates. We apply the method to neural recordings from primary visual cortex. The goal is to detect pairs of neurons that exhibit fine-time-scale interactions, in the sense that they fire together more often than expected due to chance. Our method detects roughly 50% more synchronous pairs versus a standard FDR-controlling analysis. The companion R package FDRreg implements all methods described in the paper

    Bayesian spike inference from calcium imaging data

    Full text link
    We present efficient Bayesian methods for extracting neuronal spiking information from calcium imaging data. The goal of our methods is to sample from the posterior distribution of spike trains and model parameters (baseline concentration, spike amplitude etc) given noisy calcium imaging data. We present discrete time algorithms where we sample the existence of a spike at each time bin using Gibbs methods, as well as continuous time algorithms where we sample over the number of spikes and their locations at an arbitrary resolution using Metropolis-Hastings methods for point processes. We provide Rao-Blackwellized extensions that (i) marginalize over several model parameters and (ii) provide smooth estimates of the marginal spike posterior distribution in continuous time. Our methods serve as complements to standard point estimates and allow for quantification of uncertainty in estimating the underlying spike train and model parameters

    Spatio-temporal spike trains analysis for large scale networks using maximum entropy principle and Monte-Carlo method

    Full text link
    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In a first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have been focusing on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In a second part, we present a new method based on Monte-Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles.Comment: 41 pages, 10 figure

    Spike train statistics and Gibbs distributions

    Get PDF
    This paper is based on a lecture given in the LACONEU summer school, Valparaiso, January 2012. We introduce Gibbs distribution in a general setting, including non stationary dynamics, and present then three examples of such Gibbs distributions, in the context of neural networks spike train statistics: (i) Maximum entropy model with spatio-temporal constraints; (ii) Generalized Linear Models; (iii) Conductance based Inte- grate and Fire model with chemical synapses and gap junctions.Comment: 23 pages, submitte

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept
    corecore