1,858 research outputs found

    Continuous and Random Vapnik-Chervonenkis Classes

    Full text link
    We show that if TT is a dependent theory then so is its Keisler randomisation TRT^R. In order to do this we generalise the notion of a Vapnik-Chervonenkis class to families of [0,1][0,1]-valued functions (a \emph{continuous} Vapnik-Chervonenkis class), and we characterise families of functions having this property via the growth rate of the mean width of an associated family of convex compacts

    Bounding Embeddings of VC Classes into Maximum Classes

    Full text link
    One of the earliest conjectures in computational learning theory-the Sample Compression conjecture-asserts that concept classes (equivalently set systems) admit compression schemes of size linear in their VC dimension. To-date this statement is known to be true for maximum classes---those that possess maximum cardinality for their VC dimension. The most promising approach to positively resolving the conjecture is by embedding general VC classes into maximum classes without super-linear increase to their VC dimensions, as such embeddings would extend the known compression schemes to all VC classes. We show that maximum classes can be characterised by a local-connectivity property of the graph obtained by viewing the class as a cubical complex. This geometric characterisation of maximum VC classes is applied to prove a negative embedding result which demonstrates VC-d classes that cannot be embedded in any maximum class of VC dimension lower than 2d. On the other hand, we show that every VC-d class C embeds in a VC-(d+D) maximum class where D is the deficiency of C, i.e., the difference between the cardinalities of a maximum VC-d class and of C. For VC-2 classes in binary n-cubes for 4 <= n <= 6, we give best possible results on embedding into maximum classes. For some special classes of Boolean functions, relationships with maximum classes are investigated. Finally we give a general recursive procedure for embedding VC-d classes into VC-(d+k) maximum classes for smallest k.Comment: 22 pages, 2 figure

    An equivalence result for VC classes of sets

    Get PDF
    Let R and θ be infinite sets and let A # R × θ. We show that the class of projections of A onto R is a Vapnik–Chervonenkis (VC) class of sets if and only if the class of projections of A onto θ is a VC class. We illustrate the result in the context of semiparametric estimation of a transformation model. In this application, the VC property is hard to establish for the projection class of interest but easy to establish for the other projection class

    Fast DD-classification of functional data

    Full text link
    A fast nonparametric procedure for classifying functional data is introduced. It consists of a two-step transformation of the original data plus a classifier operating on a low-dimensional hypercube. The functional data are first mapped into a finite-dimensional location-slope space and then transformed by a multivariate depth function into the DDDD-plot, which is a subset of the unit hypercube. This transformation yields a new notion of depth for functional data. Three alternative depth functions are employed for this, as well as two rules for the final classification on [0,1]q[0,1]^q. The resulting classifier has to be cross-validated over a small range of parameters only, which is restricted by a Vapnik-Cervonenkis bound. The entire methodology does not involve smoothing techniques, is completely nonparametric and allows to achieve Bayes optimality under standard distributional settings. It is robust, efficiently computable, and has been implemented in an R environment. Applicability of the new approach is demonstrated by simulations as well as a benchmark study

    Fast rates in statistical and online learning

    Get PDF
    The speed with which a learning algorithm converges as it is presented with more data is a central problem in machine learning --- a fast rate of convergence means less data is needed for the same level of performance. The pursuit of fast rates in online and statistical learning has led to the discovery of many conditions in learning theory under which fast learning is possible. We show that most of these conditions are special cases of a single, unifying condition, that comes in two forms: the central condition for 'proper' learning algorithms that always output a hypothesis in the given model, and stochastic mixability for online algorithms that may make predictions outside of the model. We show that under surprisingly weak assumptions both conditions are, in a certain sense, equivalent. The central condition has a re-interpretation in terms of convexity of a set of pseudoprobabilities, linking it to density estimation under misspecification. For bounded losses, we show how the central condition enables a direct proof of fast rates and we prove its equivalence to the Bernstein condition, itself a generalization of the Tsybakov margin condition, both of which have played a central role in obtaining fast rates in statistical learning. Yet, while the Bernstein condition is two-sided, the central condition is one-sided, making it more suitable to deal with unbounded losses. In its stochastic mixability form, our condition generalizes both a stochastic exp-concavity condition identified by Juditsky, Rigollet and Tsybakov and Vovk's notion of mixability. Our unifying conditions thus provide a substantial step towards a characterization of fast rates in statistical learning, similar to how classical mixability characterizes constant regret in the sequential prediction with expert advice setting.Comment: 69 pages, 3 figure
    • …
    corecore