19,081 research outputs found

    Garbled Elections

    Get PDF
    Majority rules are frequently used to decide whether or not a public good should be provided, but will typically fail to achieve an efficient provision. We provide a worst-case analysis of the majority rule with an optimally chosen majority threshold, assuming that voters have independent private valuations and are exante symmetric (provision cost shares are included in the valuations). We show that if the population is large it can happen that the optimal majority rule is essentially no better than a random provision of the public good. But the optimal majority rule is worst-case asymptotically efficient in the large-population limit if (i) the voters’ expected valuation is bounded away from 0, and (ii) an absolute bound for valuations is known

    Asymptotic Bayes-optimality under sparsity of some multiple testing procedures

    Full text link
    Within a Bayesian decision theoretic framework we investigate some asymptotic optimality properties of a large class of multiple testing rules. A parametric setup is considered, in which observations come from a normal scale mixture model and the total loss is assumed to be the sum of losses for individual tests. Our model can be used for testing point null hypotheses, as well as to distinguish large signals from a multitude of very small effects. A rule is defined to be asymptotically Bayes optimal under sparsity (ABOS), if within our chosen asymptotic framework the ratio of its Bayes risk and that of the Bayes oracle (a rule which minimizes the Bayes risk) converges to one. Our main interest is in the asymptotic scheme where the proportion p of "true" alternatives converges to zero. We fully characterize the class of fixed threshold multiple testing rules which are ABOS, and hence derive conditions for the asymptotic optimality of rules controlling the Bayesian False Discovery Rate (BFDR). We finally provide conditions under which the popular Benjamini-Hochberg (BH) and Bonferroni procedures are ABOS and show that for a wide class of sparsity levels, the threshold of the former can be approximated by a nonrandom threshold.Comment: Published in at http://dx.doi.org/10.1214/10-AOS869 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Weighted False Discovery Rate Control in Large-Scale Multiple Testing

    Get PDF
    The use of weights provides an effective strategy to incorporate prior domain knowledge in large-scale inference. This paper studies weighted multiple testing in a decision-theoretic framework. We develop oracle and data-driven procedures that aim to maximize the expected number of true positives subject to a constraint on the weighted false discovery rate. The asymptotic validity and optimality of the proposed methods are established. The results demonstrate that incorporating informative domain knowledge enhances the interpretability of results and precision of inference. Simulation studies show that the proposed method controls the error rate at the nominal level, and the gain in power over existing methods is substantial in many settings. An application to genome-wide association study is discussed.Comment: Revise

    A Linear Programming Approach to Sequential Hypothesis Testing

    Full text link
    Under some mild Markov assumptions it is shown that the problem of designing optimal sequential tests for two simple hypotheses can be formulated as a linear program. The result is derived by investigating the Lagrangian dual of the sequential testing problem, which is an unconstrained optimal stopping problem, depending on two unknown Lagrangian multipliers. It is shown that the derivative of the optimal cost function with respect to these multipliers coincides with the error probabilities of the corresponding sequential test. This property is used to formulate an optimization problem that is jointly linear in the cost function and the Lagrangian multipliers and an be solved for both with off-the-shelf algorithms. To illustrate the procedure, optimal sequential tests for Gaussian random sequences with different dependency structures are derived, including the Gaussian AR(1) process.Comment: 25 pages, 4 figures, accepted for publication in Sequential Analysi

    A comparative study of nonparametric methods for pattern recognition

    Get PDF
    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal

    Adaptive Threshold Sampling and Estimation

    Full text link
    Sampling is a fundamental problem in both computer science and statistics. A number of issues arise when designing a method based on sampling. These include statistical considerations such as constructing a good sampling design and ensuring there are good, tractable estimators for the quantities of interest as well as computational considerations such as designing fast algorithms for streaming data and ensuring the sample fits within memory constraints. Unfortunately, existing sampling methods are only able to address all of these issues in limited scenarios. We develop a framework that can be used to address these issues in a broad range of scenarios. In particular, it addresses the problem of drawing and using samples under some memory budget constraint. This problem can be challenging since the memory budget forces samples to be drawn non-independently and consequently, makes computation of resulting estimators difficult. At the core of the framework is the notion of a data adaptive thresholding scheme where the threshold effectively allows one to treat the non-independent sample as if it were drawn independently. We provide sufficient conditions for a thresholding scheme to allow this and provide ways to build and compose such schemes. Furthermore, we provide fast algorithms to efficiently sample under these thresholding schemes
    corecore