133 research outputs found

    The set of super-stable marriages forms a distributive lattice

    Get PDF
    Relaxing the total orders of the preference lists of an instance of the stable marriage problem to arbitrary posets, we show after adjusting the notion of stability to the new problem that the set of stable marriages still forms a distributive lattice

    Integer programming methods for special college admissions problems

    Get PDF
    We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and also for other ones

    Manilulation via endowments in university-admission problem

    Get PDF
    We consider a two-sided many-to-one matching model where universities offer scholarships to students. We show that every stable matching rule is manipulable by a university via destroying endowments under a fairly wide class of scholarship rules. Furthermore, we show that the set of Nash equilibria of the destruction game and the set of stable matchings may be disjoint.University-admission problem, Endowments, Manipulation

    Stable Marriage with Ties and Bounded Length Preference Lists

    Get PDF
    We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard and not approximable within some d > 1, even if each woman's list is of length at most 4

    The hospitals/residents problem with ties

    Get PDF
    The hospitals/residents problem is an extensively-studied many-one stable matching problem. Here, we consider the hospitals/residents problem where ties are allowed in the preference lists. In this extended setting, a number of natural definitions for a stable matching arise. We present the first linear-time algorithm for the problem under the strongest of these criteria, so-called super-stability . Our new results have applications to large-scale matching schemes, such as the National Resident Matching Program in the US, and similar schemes elsewhere

    Fictitious students creation incentives in school choice problems

    Get PDF
    We address the question of whether schools can manipulate the student-optimal stable mechanism by creating fictitious students in school choice problems. To this end, we introduce two different manipulation concepts, where one of them is stronger. We first demonstrate that the student-optimal stable mechanism is not even weakly fictitious student-proof under general priority structures. Then, we investigate the same question under acyclic priority structures. We prove that, while the student-optimal stable mechanism is not strongly fictitious student-proof even under the acyclicity condition, weak fictitious student-proofness is achieved under acyclicity. This paper, hence, shows a way to avoid the welfare detrimental fictitious students creation (in the weak sense) in terms of priority structures

    The Hospitals/Residents Problem with Couples: complexity and integer programming models

    Get PDF
    The Hospitals / Residents problem with Couples (hrc) is a generalisation of the classical Hospitals / Residents problem (hr) that is important in practical applications because it models the case where couples submit joint preference lists over pairs of (typically geographically close) hospitals. In this paper we give a new NP-completeness result for the problem of deciding whether a stable matching exists, in highly restricted instances of hrc, and also an inapproximability bound for finding a matching with the minimum number of blocking pairs in equally restricted instances of hrc. Further, we present a full description of the first Integer Programming model for finding a maximum cardinality stable matching in an instance of hrc and we describe empirical results when this model applied to randomly generated instances of hrc

    An 8/5 approximation algorithm for a hard variant of stable marriage

    Get PDF
    When ties and incomplete preference lists are permitted in the Stable Marriage problem, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe a polynomial-time 8/5-approximation algorithm for a variant in which ties are on one side only and at the end of the preference lists. This variant is motivated by important applications in large scale centralized matching schemes

    Popular matchings in the marriage and roommates problems

    Get PDF
    Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M′ with the property that more applicants prefer their allocation in M′ to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases

    Stable marriage with ties and bounded length preference lists

    Get PDF
    We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard (even if each women's list is of length at most 3) and not approximable within some δ>1 (even if each woman's list is of length at most 4)
    corecore