57,894 research outputs found

    Distributed coloring in sparse graphs with fewer colors

    Full text link
    This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequential) quadratic algorithm finding such a coloring. A natural problem is to improve this complexity in the distributed setting. Using the fact that planar graphs contain linearly many vertices of degree at most 6, Goldberg, Plotkin, and Shannon obtained a deterministic distributed algorithm coloring nn-vertex planar graphs with 7 colors in O(log⁥n)O(\log n) rounds. Here, we show how to color planar graphs with 6 colors in \mbox{polylog}(n) rounds. Our algorithm indeed works more generally in the list-coloring setting and for sparse graphs (for such graphs we improve by at least one the number of colors resulting from an efficient algorithm of Barenboim and Elkin, at the expense of a slightly worst complexity). Our bounds on the number of colors turn out to be quite sharp in general. Among other results, we show that no distributed algorithm can color every nn-vertex planar graph with 4 colors in o(n)o(n) rounds.Comment: 16 pages, 4 figures - An extended abstract of this work was presented at PODC'18 (ACM Symposium on Principles of Distributed Computing

    Complexity of C_k-Coloring in Hereditary Classes of Graphs

    Get PDF
    For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs. We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw

    Local Conflict Coloring

    Get PDF
    Locally finding a solution to symmetry-breaking tasks such as vertex-coloring, edge-coloring, maximal matching, maximal independent set, etc., is a long-standing challenge in distributed network computing. More recently, it has also become a challenge in the framework of centralized local computation. We introduce conflict coloring as a general symmetry-breaking task that includes all the aforementioned tasks as specific instantiations --- conflict coloring includes all locally checkable labeling tasks from [Naor\&Stockmeyer, STOC 1993]. Conflict coloring is characterized by two parameters ll and dd, where the former measures the amount of freedom given to the nodes for selecting their colors, and the latter measures the number of constraints which colors of adjacent nodes are subject to.We show that, in the standard LOCAL model for distributed network computing, if l/d \textgreater{} \Delta, then conflict coloring can be solved in O~(Δ)+log⁡∗n\tilde O(\sqrt{\Delta})+\log^*n rounds in nn-node graphs with maximum degree Δ\Delta, where O~\tilde O ignores the polylog factors in Δ\Delta. The dependency in~nn is optimal, as a consequence of the Ω(log⁡∗n)\Omega(\log^*n) lower bound by [Linial, SIAM J. Comp. 1992] for (Δ+1)(\Delta+1)-coloring. An important special case of our result is a significant improvement over the best known algorithm for distributed (Δ+1)(\Delta+1)-coloring due to [Barenboim, PODC 2015], which required O~(Δ3/4)+log⁡∗n\tilde O(\Delta^{3/4})+\log^*n rounds. Improvements for other variants of coloring, including (Δ+1)(\Delta+1)-list-coloring, (2Δ−1)(2\Delta-1)-edge-coloring, TT-coloring, etc., also follow from our general result on conflict coloring. Likewise, in the framework of centralized local computation algorithms (LCAs), our general result yields an LCA which requires a smaller number of probes than the previously best known algorithm for vertex-coloring, and works for a wide range of coloring problems

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications
    • 

    corecore