303,185 research outputs found

    On the significance of a recent experiment demonstrating quantum interference in time

    Full text link
    I comment on the interpretation of a recent experiment showing quantum interference in time. It is pointed out that the standard nonrelativistic quantum theory, used by the authors in their analysis, cannot account for the results found, and therefore that this experiment has fundamental importance beyond the technical advances it represents. Some theoretical structures which consider the time as an observable, and thus could, in principle, have the required coherence in time, are discussed briefly, and the application of Floquet theory and the manifestly covariant quantum theory of Stueckelberg are treated in some detail. In particular, the latter is shown to account for the results in a simple and consistent way.Comment: 10 pages, plain TeX. Revision for clarity, reference to other candidate theorie

    Solid-state quantum optics with quantum dots in photonic nanostructures

    Full text link
    Quantum nanophotonics has become a new research frontier where quantum optics is combined with nanophotonics in order to enhance and control the interaction between strongly confined light and quantum emitters. Such progress provides a promising pathway towards quantum-information processing on an all-solid-state platform. Here we review recent progress on experiments with single quantum dots in nanophotonic structures. Embedding the quantum dots in photonic band-gap structures offers a way of controlling spontaneous emission of single photons to a degree that is determined by the local light-matter coupling strength. Introducing defects in photonic crystals implies new functionalities. For instance, efficient and strongly confined cavities can be constructed enabling cavity-quantum-electrodynamics experiments. Furthermore, the speed of light can be tailored in a photonic-crystal waveguide forming the basis for highly efficient single-photon sources where the photons are channeled into the slowly propagating mode of the waveguide. Finally, we will discuss some of the surprises that arise in solid-state implementations of quantum-optics experiments in comparison to their atomic counterparts. In particular, it will be shown that the celebrated point-dipole description of light-matter interaction can break down when quantum dots are coupled to plasmon nanostructures.Comment: Review. 15 pages, 9 figure

    Generalized Quantum Theory: Overview and Latest Developments

    Get PDF
    The main formal structures of Generalized Quantum Theory are summarized. Recent progress has sharpened some of the concepts, in particular the notion of an observable, the action of an observable on states (putting more emphasis on the role of proposition observables), and the concept of generalized entanglement. Furthermore, the active role of the observer in the structure of observables and the partitioning of systems is emphasized.Comment: 14 pages, update in reference
    • …
    corecore