6,418 research outputs found

    Functional relations for elliptic polylogarithms

    Get PDF
    Numerous examples of functional relations for multiple polylogarithms are known. For elliptic polylogarithms, however, tools for the exploration of functional relations are available, but only very few relations are identified. Starting from an approach of Zagier and Gangl, which in turn is based on considerations about an elliptic version of the Bloch group, we explore functional relations between elliptic polylogarithms and link them to the relations which can be derived using the elliptic symbol formalism. The elliptic symbol formalism in turn allows for an alternative proof of the validity of the elliptic Bloch relation. While the five-term identity is the prime example of a functional identity for multiple polylogarithms and implies many dilogarithm identities, the situation in the elliptic setup is more involved: there is no simple elliptic analogue, but rather a whole class of elliptic identities

    Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms

    Full text link
    A unified treatment is given of low-weight modular forms on \Gamma_0(N), N=2,3,4, that have Eisenstein series representations. For each N, certain weight-1 forms are shown to satisfy a coupled system of nonlinear differential equations, which yields a single nonlinear third-order equation, called a generalized Chazy equation. As byproducts, a table of divisor function and theta identities is generated by means of q-expansions, and a transformation law under \Gamma_0(4) for the second complete elliptic integral is derived. More generally, it is shown how Picard-Fuchs equations of triangle subgroups of PSL(2,R) which are hypergeometric equations, yield systems of nonlinear equations for weight-1 forms, and generalized Chazy equations. Each triangle group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic
    • …
    corecore