11,385 research outputs found

    Sobolev gradients and image interpolation

    Full text link
    We present here a new image inpainting algorithm based on the Sobolev gradient method in conjunction with the Navier-Stokes model. The original model of Bertalmio et al is reformulated as a variational principle based on the minimization of a well chosen functional by a steepest descent method. This provides an alternative of the direct solving of a high-order partial differential equation and, consequently, allows to avoid complicated numerical schemes (min-mod limiters or anisotropic diffusion). We theoretically analyze our algorithm in an infinite dimensional setting using an evolution equation and obtain global existence and uniqueness results as well as the existence of an ω\omega-limit. Using a finite difference implementation, we demonstrate using various examples that the Sobolev gradient flow, due to its smoothing and preconditioning properties, is an effective tool for use in the image inpainting problem

    Constrained optimization in classes of analytic functions with prescribed pointwise values

    Get PDF
    We consider an overdetermined problem for Laplace equation on a disk with partial boundary data where additional pointwise data inside the disk have to be taken into account. After reformulation, this ill-posed problem reduces to a bounded extremal problem of best norm-constrained approximation of partial L2 boundary data by traces of holomorphic functions which satisfy given pointwise interpolation conditions. The problem of best norm-constrained approximation of a given L2 function on a subset of the circle by the trace of a H2 function has been considered in [Baratchart \& Leblond, 1998]. In the present work, we extend such a formulation to the case where the additional interpolation conditions are imposed. We also obtain some new results that can be applied to the original problem: we carry out stability analysis and propose a novel method of evaluation of the approximation and blow-up rates of the solution in terms of a Lagrange parameter leading to a highly-efficient computational algorithm for solving the problem

    Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces

    Get PDF
    The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established

    Six myths of polynomial interpolation and quadrature

    Get PDF
    • …
    corecore