57 research outputs found

    Modified Preconditioned GAOR Methods for Systems of Linear Equations

    Get PDF
    Three kinds of preconditioners are proposed to accelerate the generalized AOR (GAOR) method for the linear system from the generalized least squares problem. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned generalized AOR (PGAOR) methods is better than that of the original GAOR methods. Finally, some numerical results are reported to confirm the validity of the proposed methods

    Systems of Neutrosophic Linear Equations

    Get PDF

    A variant of the AOR method for augmented systems

    Get PDF
    First published in Mathematics of Computation in 2012, published by the American Mathematical Society

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm

    A fast algorithm to solve systems of nonlinear equations

    Full text link
    [EN] A new HSS-based algorithm for solving systems of nonlinear equations is presented and its semilocal convergence is proved. Spectral properties of the new method are investigated. Performance profile for the new scheme is computed and compared with HSS algorithm. Besides, by a numerical example in which a two-dimensional nonlinear convection diffusion equation is solved, we compare the new method and the Newton-HSS method. Numerical results show that the new scheme solves the problem faster than the NewtonHSS scheme in terms of CPU -time and number of iterations. Moreover, the application of the new method is found to be fast, reliable, flexible, accurate, and has small CPU time.This research was partially supported by Ministerio de Economia y Competitividad, Spain under grants MTM2014-52016-C2-2-P and Generalitat Valenciana, Spain PROMETEO/2016/089.Amiri, A.; Cordero Barbero, A.; Darvishi, M.; Torregrosa Sánchez, JR. (2019). A fast algorithm to solve systems of nonlinear equations. Journal of Computational and Applied Mathematics. 354:242-258. https://doi.org/10.1016/j.cam.2018.03.048S24225835
    • …
    corecore