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Abstract

In this paper, based on a convergence splitting of the matrix A, we present an inner-outer

iteration method for solving the linear system Ax = b. We analyze the overall convergence of this

method without any other restriction on its parameters. Moreover, we give the accelerated inner-

outer iteration method, and discuss how to apply the inner-outer iterations as a preconditioner for

the krylov subspace methods. The inner-outer iteration method can also be used for the solution

of AXB = C. Finally, several numerical examples are given to validate the performance of our

proposed algorithms.
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1. Introduction

Consider the solution of the following linear system

Ax = b, (1.1)

where A ∈ Rn×n is a nonsingular matrix, and x, b ∈ Rn .

The linear system (1.1) plays an important role in scientific and engineering computations.

Many iteration methods have been proposed for solving (1.1) for decades, for example, the Jacobi,

Gauss-Seidel and the Successive Overrelaxation (SOR) methods [1,6,10], etc. Krylov subspace

methods, such as GMRES [7] and CG [5] have been considered as classical iteration methods for

large and sparse linear systems. However, Krylov subspace methods may converge very slowly

or not at all for many cases arising in certain computational mechanics and electronic device

simulation problems. Hence preconditioning techniques [19,20,22,23] have been widely used to

improve the convergent behavior of Krylov subspace methods. For large non-Hermitian positive

definite linear system, the HSS method [2,4,8,11,15] has attracted more attention due to its

promising performance and elegant mathematical properties.

In [3] the authors proposed an effective iteration method for PageRank computation [17,18,21]

by using the inner-outer stationary iterations, which is very simple, and can be implemented and

parallelized in a straightforward fashion, furthermore, this algorithm is an excellent combina-

tion of minimal memory requirements and fast convergence. In this paper, we will consider the
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similar iteration method for the linear system (1.1). Moreover, the same idea can be used as a

preconditioner for a nonstationary iteration method such as GMRES method.

The remainder of this paper is organized as follows: In section 2 we give the inner-outer

iteration method and corresponding algorithm, discuss its convergence in detail. In section 3

we consider the overall convergence of the inner-outer iteration method and give a comparison

result. In section 4 we present the accelerated inner-outer iteration method, and analyze how to

use the inner-outer iteration as a preconditioning technique for nonstationary iteration methods.

In section 5 we apply the inner-outer iteration method for solving the matrix equation AXB = C

and propose the corresponding algorithm. Several numerical examples are given in section 6

to illustrate the effectiveness of our proposed algorithms. Finally, we draw some conclusions in

section 7.

2. The inner-outer iteration method for solving (1.1)

2.1 The inner-outer iteration method

Let A =M−N be a convergent splitting, then we obtain the following linear system equivalent

to (1.1):

(I −R)x = c, (2.1)

where R =M−1N and c =M−1b.

The inner-outer iteration method for solving (2.1) is expressed as follows:

(I − αR)xk+1 = (1− α)Rxk + c, k = 0, 1, 2, · · · (2.2)

with 0 < α < 1. Here we regard (2.2) as the outer iteration. It is difficult to obtain xk+1 directly

from (2.2) since it is equivalent to solving (1.1), then we approximate xk+1 by the following inner

iteration. Let g = (1− α)Rxk + c, and we define the inner linear system as

(I − αR)z = g, (2.3)

then apply the inner iteration

zs+1 = αRzs + g, s = 0, 1, 2, · · · , l − 1, (2.4)

where we take z0 = xk as the initial value and assign zl as the new xk+1. If we have not converged

to the desired solution of (2.1), then we repeat the above procedure, increasing k and using xk as

the new initial value z0.

Assume the parameters η and ε are the tolerances of the inner and outer iterations, respec-

tively, and we use the 2-norm of the residuals of the outer system (2.1) and the inner system (2.3)

as stopping criterions to terminate the iterations. For the outer system (2.1) we have

∥c− (I −R)xk+1∥2 < ε,

and for the inner system (2.3) we apply

∥g − (I − αR)zs+1∥2 < η.

Algorithm 1: The inner-outer iteration method

Input: R, c, α, ε, η
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Output: x

1: x← c

2: z ← Rx

3: while ∥c− x+ z∥2 ≥ ε
4: g ← (1− α)z + c

5: repeat

6: x← g + αz

7: z ← Rx

8: until∥g + αz − x∥ < η

9: end while

10: x← z + c

In this algorithm lines 1 and 2 initialize x = c and z = Rx. g in (2.3) is obtained in line

4. The inner iteration defined in (2.4) is implemented from line 5 to line 8. To terminate the

Algorithm 1, line 3 tests the residual of the outer iteration (2.2), and for the inner iteration, the

stopping criteria is in line 8. The vector (I − αR)zj+1 is given by x − αz, since now x holds

zj+1 and z is computed by Rx in line 7 as well as in line 2. Upon exit from the algorithm, x is

the desired approximation to the exact solution of the Eq.(2.1). In line 10 we execute a single

iteration, since z is already updated and we can use it as well.

Let A = D−L−U , where D is the diagonal of A, −L is the strictly lower triangular part of

A, and −U is the strictly upper triangular part of A, respectively. Then the matrix splitting of

the AOR iteration method [24] for solving (1.1) is

MA =
1

ω
(D − γL), NA =

1

ω
((1− ω)D + (ω − γ)L+ ωU), (2.5)

where ω, γ are two real parameters with ω ̸= 0.

For different ω and γ, we can obtain the corresponding iteration methods:

(1) the Jacobi method: ω = 1, γ = 0.

(2) the Gauss-Seidel method: ω = 1, γ = 1.

(3) the SOR method: ω = γ.

Then we can obtain the inner-outer iteration method based on the AOR splitting (2.5), and for

different ω, γ we can get the corresponding inner-outer iteration methods.

In Example 1 the coefficient matrix A of (1.1) is a nonsingular M− matrix, then we need to

discuss the convergence interval of the AOR iteration for this case, which will contribute to the

choices of the parameters ω and γ. From [25] we can obtain the convergence theorem of the AOR

iteration for a nonsingular M− matrix A.

Theorem 2.1. Let GA =M−1
A NA and J = D−1(L+U) be the AOR iteration matrix and Jacobi

iteration matrix for (1.1), respectively. If A is a nonsingular M− matrix, then

ρ(GA) ≤ |1− ω|+ ωρ(J) < 1

for 0 < ω < 2
1+ρ(J) and 0 ≤ γ ≤ ω.

Proof. This is a special case of Theorem 3.3 [25]. �
In order to improve the convergence behaviors of the iteration methods, many preconditioners

[19,20,22,23] have been proposed for solving the linear system (1.1).

Firstly transforming (1.1) into the following preconditioned form

PAx = Pb, (2.6)
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where P ∈ Rn×n is a preconditioner and nonsingular.

Let PA = Mp − Np be a convergence splitting and Mp is nonsingular, then we have from

(2.6)

(I −Rp)x = c̄, (2.7)

where Rp = M−1
p Np, c̄ = M−1

p Pb. We can use the inner-outer iteration method (Algorithm 1)

to solve (2.7), which is called the preconditioned inner-outer iteration method.

Remark 1. For the inner-outer iteration method we do not consider the case α = 0 or α = 1. If

α = 0, the outer iteration (2.2) would simply lead back to the iteration sequence xk+1 = Rxk + c,

and the inner iteration (2.4) is meaningless. For the case α = 1, the inner iteration (2.4) is also

equivalent to the iteration sequence xk+1 = Rxk + c.

2.2 Convergence analysis of the inner-outer iteration method

In this section, we will discuss the convergence of the inner-outer iteration method. Here we

will analyze the convergence of the iterations (2.2) and (2.4), respectively.

Theorem 2.2 [6]. The iteration sequence xm+1 = Rxm + c converges to the solution of Ax = b

for all starting vectors x0 and for all b if and only if ρ(R) < 1.

The outer iteration (2.2) is associated with the matrix splitting

I −R =M1 −N1, M1 = I − αR, N1 = (1− α)R,

and the corresponding outer iteration matrix is

R1 =M−1
1 N1 = (1− α)(I − αR)−1R. (2.8)

The inner iteration for solving (2.3) has the following matrix splitting

M1 = I − αR =M2 −N2, M2 = I, N2 = αR,

and the inner iteration matrix is

R2 = αR. (2.9)

Theorem 2.3. Given ρ(R) < 1 and 0 < α < 1, then the outer iteration ( 2.2) is convergent,

where ρ(A) denotes the spectral radius of matrix A.

Proof. Let λi be an eigenvalue of R, then |λi| ≤ ρ(R) < 1 from the assumption. Assume that

µi is an eigenvalue of R1 in (2.8), then

µi =
(1− α)λi
1− αλi

. (2.10)

Since |λi| ≤ ρ(R) < 1 and 0 < α < 1, then from (2.10) we have

|µi| =
∣∣∣∣ (1− α)λi1− αλi

∣∣∣∣ ≤ (1− α)|ρ(R)|
1− α|ρ(R)|

=
1− α

|ρ(R)|−1 − α
< 1. (2.11)

From Theorem 2.2 and (2.11) the outer iteration (2.2) is convergent. �
Theorem 2.4. If ρ(R) < 1 and 0 < α < 1, then the inner iteration (2.4) is convergent.

Proof. Let ϕi be an eigenvalue of R2 in (2.9), then

ϕi = αλi, (2.12)
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where λi is an eigenvalue of R. Then from (2.12) we get

|ϕi| = |αλi| ≤ αρ(R) < 1. (2.13)

From Theorem 2.2 and (2.13) we complete the proof. �
Remark 2. Let A = M̄i − N̄i (i = 1, 2) be two convergence splittings. If ρ(M̄−1

1 N̄1) <

ρ(M̄−1
2 N̄2) < 1, then from Theorems 2.3 and 2.4 it is clear that the eigenvalues of the itera-

tion matrices R̄1 and R̄2 based on (M̄1, N̄1) have a smaller upper bound, then the inner-outer

iteration method generated by (M̄1, N̄1) maybe converges faster than that derived from (M̄2, N̄2).

3. The overall convergence of the inner-outer iteration method

In this section, we will give the proof of the overall convergence for the inner-outer iteration

method without considering the parameters ε and η , which shows that the inner-outer iteration

method converges linearly to the exact solution x∗ of the linear system (2.1).

Lemma 3.1 [6]. For all operator norms ρ(R) ≤ ∥R∥. For all R and for all ε > 0 there is an

operator norm ∥R∥⋆ ≤ ρ(R) + ε. The norm ∥ · ∥⋆ depends on both R and ε, where ρ(C) denotes

the spectral radius of the matrix C.

Lemma 3.2 [6]. Let ∥ · ∥ satisfy ∥AB∥ ≤ ∥A∥ · ∥B∥. Then ∥X∥ < 1 implies that I − X is

invertible, (I −X)−1 =
∑∞

i=0X
i, and ∥(I −X)−1∥ ≤ 1

1−∥X∥ .

Firstly we rewrite the inner-outer iteration method as a two-stage iteration framework [17,32]:
xk,0 = xk, x0 = c, xk+1 = xk,mk

,

xk,j+1 = αRxk,j + (1− α)Rxk + c, k = 0, 1, 2, · · · ,

j = 0, 1, 2, · · · ,mk − 1.

(3.1)

Theorem 3.1. Let A = M − N be a convergence splitting and 0 < α < 1, and mk be the

number of the inner iteration steps at the k−th outer iteration. Then the iteration sequence

{xk}∞k=0 generated by (3.1) converges to the exact solution x∗ of (2.1), and faster than the

iteration sequence derived from (2.1) for the same initial value x0.

Proof. From (3.1) it follows that

xk,j+1 =

[
(αR)j+1 + (1− α)

j∑
s=0

(αR)sR

]
xk +

j∑
s=0

(αR)sc.

Then we have

xk+1 = Hkxk + Ekc, k = 0, 1, 2, · · · , (3.2)

where Hk = (αR)mk + (1− α)
∑mk−1

s=0 (αR)sR and Ek =
∑mk−1

s=0 (αR)s.

Since x∗ is the exact solution of (1.1), then from (3.2) we obtain

x∗ = Hkx
∗ + Ekc, k = 0, 1, 2, · · · . (3.3)

Subtracting (3.3) from (3.2), then

xk+1 − x∗ = Hk(xk − x∗) = · · · = HkHk−1 · · ·H0(x0 − x∗), k = 0, 1, 2, · · ·
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and

Hk = (αR)mk + (1− α)
∑mk−1

s=0 (αR)sR

= (αR)mk −
∑mk−1

s=0 (αR)s[(I −R)− (I − αR)]

= (αR)mk + (I − (αR)mk)−
∑mk−1

s=0 (αR)s(I −R)

= I −
∑mk−1

s=0 (αR)s(I −R).

(3.4)

Let λi be an eigenvalue of R, then from(3.4) we have

ϕ
(k)
i = 1− (1− λi)(1− (αλi)

mk)

1− αλi
(3.5)

is an eigenvalue of Hk.

Since 0 < α < 1 and |λi| < 1, then from (3.5) it is clear that∣∣∣ϕ(k)i

∣∣∣ =
∣∣∣1− (1−λi)(1−(αλi)

mk )
1−αλi

∣∣∣
=

∣∣∣∣λi(1−α+αmkλ
mk−1

i −(αλi)
mk )

1−αλi

∣∣∣∣
< |1−α|+|αλi|mk−1|1−λi|α

|1−αλi|

< |1−α|+|αλi|mk−1(1+ρ(R))α
|1−αλi|

= |1−α|
|1−αλi| < 1

(3.6)

as mk →∞. Then ρ(Hk) < 1.

Let ψ = max
k
{ρ(Hk)} < 1 (k = 0, 1, 2, · · · ) and νi be an eigenvalue of HkHk−1 · · ·H0, then

we get

νi = Πk
s=0ϕ

(s)
i = Πk

s=0

(
1− (1− λi)(1− (αλi)

ms)

1− αλi

)
,

so

ρ(HkHk−1 · · ·H0) = max
i
{|νi|} = max

i
{Πk

s=0|ϕ
(s)
i |} ≤ ρ(Hk)ρ(Hk−1) · · · ρ(H0) ≤ ψk+1 < 1.

From Lemma 3.1 there exists an operator norm ∥ · ∥ϱ such that

∥HkHk−1 · · ·H0∥ϱ ≤ ψk+1 + ε

for ∀ε > 0. Then we have

∥xk+1 − x∗∥ϱ ≤ ∥HkHk−1 · · ·H0∥ϱ∥x0 − x∗∥ϱ ≤
(
ψk+1 + ε

)
∥x0 − x∗∥ϱ. (3.7)

So from (3.7) we learn that the iteration sequence (3.1) converges to the exact solution x∗ as

ε→ 0. �
From (3.6) it is clear that∣∣∣(1− αλi)ϕ(k)i

∣∣∣ =
∣∣λi(1− α+ αmkλmk−1

i − (αλi)
mk)

∣∣
= |λi| · |1− α+ α(αλi)

mk−1(1− λi)|

< |λi|(|1− α|+ 2α|αλi|mk−1)

= |λi| · |1− α|

< |λi| · |1− αλi|
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with mk →∞, then |ϕ(k)i | < |λi|, so ρ(Hk) < ρ(R) for k = 0, 1, 2, · · · .
Let {yk}∞k=0 be generated by the iteration sequence yk = Ryk−1 + c from (2.1) with the same

initial value x0, and x0 − x∗ be an eigenvector of R with eigenvalue λi for |λi| = ρ(R), then

∥xk+1 − x∗∥ = ∥HkHk−1 · · ·H0(x0 − x∗)∥

= ∥ϕ(k)i ϕ
(k−1)
i · · ·ϕ(0)i (x0 − x∗)∥

≤ ∥ρ(Hk)ρ(Hk−1) · · · ρ(H0)(x0 − x∗)∥

< ∥ρ(R)ρ(R) · · · ρ(R)(x0 − x∗)∥

= ∥Rk+1(x0 − x∗)∥ = ∥yk+1 − x∗∥,

we complete the proof. �
Remark 3. From Theorem 3.1 we know that the conclusions are also held for an appropriate

mk. For example, let α = 0.3 and ρ(R) = 0.8, then |αλi| ≤ 0.24, if mk = 16, then |αλi|mk−1 =

|αλi|15 ≤ 5.04× 10−10.

4. The accelerated inner-outer iteration method and pre-

condition

4.1 The accelerated inner-outer iteration method

In this section, we combine the Algorithm 1 with other solvers as an acceleration scheme, and

obtain the accelerated inner-outer iteration method. At first we can use the inner-outer iterations,

then switch to other solvers when the inner iterations converge fast.

Algorithm 2: The accelerated inner-outer iteration method

Input: R, c, α, ε, m

Output: x

1:x← c

2: z ← Rx

3: while ∥c− x+ z∥2 ≥ ε
4: g ← (1− α)z + c

5: for i = 1 : κ

6: x← g + αz

7: z ← Rx

8: end

9: If i ≤ κ, x = z + c, z = Rx; return

10: end while

11. x← z + c

In Algorithm 2 we use a for loop to count the number of the inner iterations. In line 9, we

carry out the iteration sequences derived from the splitting A = M −N with the latest x as an

initial value.
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4.2 Preconditioning for nonstationary iteration methods

Let A =M−N be a convergence splitting, then we can use (I−αR)−1M−1 as a preconditioner

for the linear system (1.1). Since the computation of the preconditioner is as difficult to solve

(1.1), then we use the Neumann series approximation of (I − αR)−1M−1 as a preconditioner. If

0 < α < 1 and ρ(R) < 1, then from Lemmas 3.1 and 3.2 we have

(I − αR)−1 =

∞∑
i=0

(αR)i. (4.1)

We can obtain an approximation of (I − αR)−1M−1 by adopting m terms from (4.1):

(I − αR)−1M−1 ≈ (I + αR+ (αR)2 + · · ·+ (αR)m)M−1. (4.2)

Let λi (i = 1, · · ·n) be an eigenvalue of R and A = M − N . If we precondition (1.1) with

(4.2), then we have

Q =
(
I + αR+ (αR)2 + · · ·+ (αR)m

)
M−1A

=
(
I + αR+ (αR)2 + · · ·+ (αR)m

)
M−1(M −N)

=
(
I + αR+ (αR)2 + · · ·+ (αR)m

)
(I −R)

and

λ̃i = (1− λi)(1 + αλi + · · ·+ (αλi)
m), (4.3)

where λ̃i (i = 1, · · ·n) is an eigenvalue of the matrix Q.

In order to show the effectiveness of the preconditioner (4.2) on the krylov subspace methods,

now we will analyze the distribution of the eigenvalues of Q.

From (4.3) we have ∣∣∣λ̃i − 1
∣∣∣ =

∣∣∣ (1−λi)(1−(αλi)
m+1)

1−αλi
− 1

∣∣∣
=

∣∣∣ (αλi)
m+1(λi−1)+λi(α−1)

1−αλi

∣∣∣
< 2(αρ(R))m+1+ρ(R)(1−α)

1−αρ(R) ,

(4.4)

then all the eigenvalues ofQ are scattered in a circle centered at (1,0) with the radius 2(αρ(R))m+1+ρ(R)(1−α)
1−αρ(R) .

Let α = ρ(R), then from (4.4) we get∣∣∣λ̃i − 1
∣∣∣ < 2ρ(R)2m+2 + ρ(R)(1− ρ(R))

1− ρ(R)2
.

If ρ(R) = 0.7 and m = 2, then 2ρ(R)2m+2+ρ(R)(1−ρ(R))
1−ρ(R)2 = 0.8731 .

Remark 4. Let A = M̃i − Ñi (i = 1, 2) be two convergence splittings and ρ(M̃−1
1 Ñ1) <

ρ(M̃−1
2 Ñ2), then from (4.4) we obtain

2(αρ(R̃1))
m+1 + ρ(R̃1)(1− α)
1− αρ(R̃1)

<
2(αρ(R̃2))

m+1 + ρ(R̃2)(1− α)
1− αρ(R̃2)

,

so the preconditioned matrix Q based on (M̃1, Ñ1) may be more effective.
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5. The inner-outer iteration method for the matrix equation AXB = C

Firstly we will review some well-known definitions and lemmas, which can be found in [1,6].

Let X be an m× n matrix, then vec(X) is defined to be a column vector of size m · n made

of the columns of X stacked atop one another from left to right. Let A and B be m×n and p× q
matrices, respectively. Then the Kronecker product A⊗B is the (m · p)× (n · q) matrix

a11 ·B · · · a1n ·B
...

...

am1 ·B · · · amn ·B

 .

Lemma 5.1. Let A, B and X be m ×m, n × n, and m × n matrices, respectively. Then the

following properties hold:

1. vec(AX) = (In ⊗A) · vec(X);

2. vec(XB) = (BT ⊗ Im) · vec(X).

Lemma 5.2. The following relations about Kronecker products hold:

1. Assume that the products A · C and B · D are well defined. Then (A ⊗ B) · (C ⊗ D) =

(A · C)⊗ (B ·D);

2. if A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1;

3. (A⊗B)T = AT ⊗BT .

Lemma 5.3. Let λ(A) and µ(B) be the spectrums of A ∈ Rn×n and B ∈ Rm×m, respectively,

then

λ(A⊗B) = {λiµj : λi ∈ λ(A), µj ∈ µ(B), i = 1, 2, · · · , n; j = 1, 2, · · · ,m}.

In [12] the authors proposed a class of iteration methods for solving the matrix equation

AXB = C. (5.1)

Since the matrix equation (5.1) is very important in matrix theory and applications, hence how to

effectively solve this kind of equation has been under research recently, many iteration methods

[9,13,14,16] have been proposed for solving (5.1) and corresponding matrix equations.

Based on the matrix splittings of the matrix A ro B, we can obtain the corresponding inner-

outer iteration method for solving (5.1). In this section we only consider the inner-outer iteration

method for the matrix splittings of B.

Let BT = M̂ − N̂ be a convergent matrix splitting and A be nonsingular, then we can get

the equivalent form of (5.1) as follows:

X(I − R̂) = Ĉ, (5.2)

where R̂ = N̂T (M̂T )−1, Ĉ = A−1C(M̂T )−1.

The outer iteration for (5.2):

Xk+1(I − βR̂) = (1− β)XkR̂+ Ĉ, k = 0, 1, 2, · · · (5.3)

with 0 < β < 1.

The inner iteration for (5.3):
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Yt+1 = βYtR̂+ Ĝ, t = 0, 1, 2, · · · , p− 1 (5.4)

with Ĝ = (1− β)XkR̂ + Ĉ. Here we take Y0 = Xk as the initial value and assign Yp as the new

Xk+1.

Similar to Algorithm 1, the inner-outer iteration method for (5.1) can be described as follows:

Algorithm 3: The inner-outer iteration method for (5.1)

Input: R̂, Ĉ, β, δ, ζ

Output: X

1:X ← Ĉ

2: Y ← XR̂

3: while ∥Ĉ −X + Y ∥2 ≥ δ
4: Ĝ← (1− β)Y + Ĉ

5: repeat

6: X ← Ĝ+ βY

7: Y ← XR̂

8: until ∥Ĝ+ βY −X∥2 < ζ

9: end while

10: X ← Y + Ĉ

Now we will analyze the convergence of the inner-outer iterations (5.3) and (5.4). By Lemma

5.1 we firstly transform the matrix equation (5.1) into the following form:

(BT ⊗A)x = c̄, (5.5)

where x and c̄ are the forms of vec(X) and vec(C). From the matrix splitting BT = M̂ − N̂ and

Lemma 5.2 , we have

(I − R̄)x = ĉ, (5.6)

where R̄ = M̂−1N̂ ⊗ I and ĉ = (M̂ ⊗A)−1c̄.

The inner-outer iterations for (5.6):

(I − βR̄)xk+1 = (1− β)R̄xk + ĉ, k = 0, 1, 2, · · · (5.7)

ys+1 = βR̄ys + ĝ, s = 0, 1, 2, · · · , p− 1 (5.8)

with ĝ = (1− β)R̄xk + ĉ.

From Theorems 2.3, 2.4 and Lemma 5.3, we can get the following convergent theorems for

(5.7) and (5.8) as well as (5.3) and (5.4), respectively.

Theorem 5.1. Given ρ(M̂−1N̂) < 1 and 0 < β < 1, then the outer iteration (5.7) is convergent.

Proof. Since ρ(M̂−1N̂) < 1, then from Lemma 5.3 we have ρ(R̄) = ρ(M̂−1N̂ ⊗ I) < 1. The

proof is completed similar to that of Theorem 2.3. �
Theorem 5.2. If ρ(M̂−1N̂) < 1 and 0 < β < 1, then the inner iteration (5.8) is convergent.

Proof. From Lemma 5.3 and the assumptions we obtain ρ(R̄) = ρ(M̂−1N̂ ⊗ I) < 1, then we

complete the proof according to Theorem 2.4. �
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Remark 5. If we rewrite the inner-outer iterations (5.7)-(5.8) as a two-stage iteration framework

just like (3.1), we can also get the corresponding conclusions similar to Theorem 3.1.

6. Numerical results

In this section, we perform some numerical examples to illustrate the effectiveness of our

algorithms in this paper. The numerical experiments are performed in Matlab R2010 on an

Intel dual core processor (2.30 GHz, 4GB RAM). We use four iteration parameters to test these

iteration methods, which are iteration step (denoted as IT), computing time in seconds (denoted

as CPU), number of matrix-vectors (denoted as MV), and relative residual (denoted as RES)

defined by ∥rk∥2
∥b∥2 with rk = b − Axk. Three sparse matrices P that we will use in the following

examples are listed in Table 1, where ”Average Nonzeros” means the average number of the

nonzero elements per row. For each matrix we will deal with it by some techniques, then each

matrix P is a column-stochastic matrix. Let A = I − φP , where I is an identity matrix and

0 < φ < 1, then A is a nonsingular M−matrix.

Table 1: Three test matrices for (1.1).

Name Size Nonzeros Average Nonzeros

Minnesota 2,642× 2,642 6,606 2.50

Wb-cs-stanford 9,914×9,914 36,854 3.71

Stanford-Berkeley 683,446×683,446 7,583,376 11.0

Example 1. In this example, we use the AOR method, the inner-outer (IO) method (3.1) and

the accelerated inner-outer (AIO) method (Algorithm 2) based on the AOR splitting (2.5) for

solving (1.1), respectively, where mk = 2 and κ = 2. The test matrix P is Minnesota matrix

(available from http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html) and φ =

0.95, b(i) = 1 (i = 1, · · · , n). All algorithms are terminated once the residual norms are below

10−8.

Numerical results are reported in Tables 2, 3. From Table 2 we find that AIO method

perform better than the AOR and IO methods for different ω, γ in both iteration number and

CPU time, but it needs more MV compared with other two methods except ω = 1.8 and γ = 1.7.

Moreover, all the iteration methods have more efficiency when ω, γ are near 1.5. From Table 3

we also get the similar conclusions for the SOR, IO and AIO methods, where the IO and AIO

methods are derived from the matrix splitting (2.5) with ω = γ.

Example 2. This example is devoted to comparing the iteration number, CPU time and

MV of the IO method for different η and α, and the IO method is based on the Richardson

iteration. The test matrix P is the Stanford-Berkeley matrix of order 683,446 (available from

http://cise.ufl.edu/research/sparse/matrices/SNAP/email-Enron.html) and φ = 0.95, b = (1 −

11



Table 2: Numerical results of the AOR, IO and AIO methods

ω γ ρ(R) Iteration method IT MV CPU RES

The AOR method 114 114 4.7011 8.79× 10−9

1.8 1.7 0.8446 The IO method 32 64 1.5123 8.38× 10−9

The AIO method 23 69 1.2242 4.44× 10−9

The AOR method 56 56 2.4827 7.29× 10−9

1.6 1.5 0.7010 The IO method 30 60 1.5081 7.56× 10−9

The AIO method 23 69 1.2694 7.14× 10−9

The AOR method 70 70 3.0767 8.59× 10−9

1.5 1.4 0.7506 The IO method 40 80 1.8571 6.40× 10−9

The AIO method 30 90 1.5610 7.64× 10−9

The AOR method 136 136 5.5520 9.19× 10−9

1.2 1.1 0.9398 The IO method 76 152 3.5596 9.26× 10−9

The AIO method 57 171 2.9287 8.60× 10−9

The AOR method 244 244 10.256 9.61× 10−9

0.9 0.8 0.9268 The IO method 136 272 6.2308 9.64× 10−9

The AIO method 101 303 5.1983 9.67× 10−9
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Table 3: Numerical results of the SOR, IO and AIO methods

ω γ ρ(R) Iteration method IT MV CPU RES

The SOR method 67 67 2.8872 8.22× 10−9

1.7 1.7 0.7457 The IO method 32 64 1.5238 6.55× 10−9

The AIO method 20 60 1.0836 9.46× 10−9

The SOR method 57 57 2.5109 8.66× 10−9

1.5 1.5 0.6814 The IO method 32 64 1.5286 9.58× 10−9

The AIO method 24 72 1.3163 5.98× 10−9

The SOR method 121 121 5.2262 9.02× 10−9

1.2 1.2 0.8545 The IO method 68 136 3.1752 8.30× 10−9

The AIO method 51 153 2.7113 7.96× 10−9

The SOR method 224 224 9.8298 9.80× 10−9

0.9 0.9 0.9204 The IO method 125 250 5.8433 9.67× 10−9

The AIO method 90 270 4.8832 9.74× 10−9

The SOR method 276 276 11.818 9.49× 10−9

0.8 0.8 0.9350 The IO method 154 308 7.0680 9.26× 10−9

The AIO method 114 342 5.8866 9.72× 10−9
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φ)v/n, where v(i) = 1 (i = 1, · · · , n). All iterations are terminated once the residual norms are

below 10−8.

From the discussion of η in [3,21], a very strict η may take a long time to compute the inner

iteration in Algorithm 1, and just to implement a single outer iteration once a time. Setting

η very loose, however, may make the inner iteration do not sufficiently approximate the exact

solution of (2.4), and this may slow the convergence rate overall.

From Table 4 we find that the IO method may converge faster for a smaller η, but take

more computing time and MV for a given stopping criterion, for example η = 10−6. On the

contrary, for a looser η the IO method has a slower convergence than other four values of η,

such as η = 10−2 or η = 10−3.

In table 5 we perform the IO method with different α and η = 10−4. From Table 5 we

observe that the IO method is not sensitive to the choice of α in CPU time. When α is close to

1, it needs less iteration number, but has more MV at the same time.

Table 4: Numerical results of the IO method for

the Stanford-Berkeley matrix with different η.

α = 0.5 Iter MV CPU RES

η = 10−2 422 422 20.382 9.11× 10−9

η = 10−3 422 422 20.338 9.22× 10−9

η = 10−4 410 440 20.685 9.34× 10−9

η = 10−5 389 516 22.353 9.33× 10−9

η = 10−6 367 663 25.668 9.14× 10−9

Table 5: Numerical results of the IO method for

the Stanford-Berkeley matrix with different α.

η = 10−4 Iter MV CPU RES

α = 0.2 420 431 20.636 9.04× 10−9

α = 0.4 414 438 20.711 9.11× 10−9

α = 0.5 410 440 20.740 9.34× 10−9

α = 0.7 401 445 20.489 9.13× 10−9

α = 0.9 389 445 20.506 9.14× 10−9

Example 3: This example mainly illustrates the effectiveness of the preconditioner (4.2) for
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the linear system (1.1) by using the GMRES method, where we choose m = 2 and φ = 0.99.

The test matrices P are the Minnesota matrix and Wb-cs-stanford matrix which has the order

of 9,914 (available from http://www.cise.ufl.edu/research/sparse/matrices/Gleich/index.html.),

and b(i) = 1 (i = 1, · · · , n). In this example we use three preconditioners, which are the

preconditioner (4.2) based on the Jacobi splitting and the Gauss-Seidel (GS) splitting, and the

ILU preconditioner with no fill-in (ILU(0)), respectively.

Fig.1 shows the distribution of the eigenvalues of the matrix Q for the preconditioners based

on the Jacobi and GS splittings for different α, respectively. we find that the matrix Q for the

preconditioner(GS) has more eigenvalues concentrated around 1, which is more obvious for the

larger α, so the PGMRES method with the preconditioner(GS) is more efficient than the PGM-

RES method with the preconditioner(Jacobi), which is consistent with Remark 4. From Table

6 we learn that the PGMRES method with the three preconditioners all outperforms the GM-

RES method in both IT and CPU time, and the PGMRES(ILU(0)) performs best. From Table

7 we notice that the PGMRES(GS) has the same iteration number as the PGMRES(ILU(0))

for α = 0.8, while the PGMRES(ILU(0)) takes more CPU time than the PGMRES(GS) and

PGMRES(Jacobi) for difficult α, respectively.
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Figure 1: The distribution of eigenvalues for the minnesota matrix

Example 4. In this example A and B are strictly diagonally dominant matrix, A(i, i) =

6, A(i, i+1) = 3, A(i+1, i) = −1, A(i, i+2) = −1 and B(i, i) = 8, B(i, i+1) = −1, B(i+1, i) =
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Table 6: Numerical results for the minnesota matrix

α m Iteration method IT CPU RES

0.2 2 PGMRES(Jacobi) 108 1.3747 8.55× 10−10

PGMRES(GS) 89 1.0794 9.83× 10−10

0.4 2 PGMRES(Jacobi) 91 1.1233 9.35× 10−10

PGMRES(GS) 74 0.8820 8.89× 10−10

0.6 2 PGMRES(Jacobi) 81 0.9832 9.09× 10−10

PGMRES(GS) 62 0.7342 7.91× 10−10

0.8 2 PGMRES(Jacobi) 76 0.9078 8.95× 10−10

PGMRES(GS) 53 0.6140 7.17× 10−10

PGMRES(ILU(0)) 42 0.4689 9.53× 10−10

GMRES 131 1.8129 8.76× 10−10

Table 7: Numerical results for the Wb-cs-stanford matrix

α m Iteration method IT CPU RES

0.2 2 PGMRES(Jacobi) 121 1.7350 9.20× 10−10

PGMRES(GS) 79 1.5441 8.76× 10−10

0.4 2 PGMRES(Jacobi) 96 1.1428 8.99× 10−10

PGMRES(GS) 64 1.0750 9.08× 10−10

0.6 2 PGMRES(Jacobi) 79 0.8412 9.62× 10−10

PGMRES(GS) 53 0.7468 7.06× 10−10

0.8 2 PGMRES(Jacobi) 71 0.6610 9.36× 10−10

PGMRES(GS) 45 0.6469 6.34× 10−10

PGMRES(ILU(0)) 45 1.7448 7.76× 10−10

GMRES 159 2.0648 9.63× 10−10
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−1, B(i, i+ 2) = −1 for i = 1, 2, · · · , n; Cij = 1 for i, j = 1, 2, · · · , n.
We compare the IO method based on the Jacobi splitting with the Jacobi-type method and

the HSS method, respectively, where we apply the IO method similar to (3.1) with β = 0.5

and mk = 2. From Table 8 we find that the IO method is more efficient than the Jacobi-style

method and HSS method in term of iteration number and CPU time, respectively.

Table 8: Numerical results for AXB = C

Jacobi-type method HSS method The IO method (mk = 2)

n IT CPU RES IT CPU RES IT CPU RES

200 97 0.1017 5.42× 10−10 62 0.6162 6.38× 10−10 29 0.0511 5.74× 10−10

500 100 1.6448 5.71× 10−10 65 9.5407 9.24× 10−10 30 1.0152 4.30× 10−10

800 100 6.1598 2.63× 10−10 67 16.021 7.08× 10−10 30 3.7903 5.44× 10−10

1000 101 11.277 2.94× 10−10 67 36.703 4.20× 10−10 30 6.5638 2.39× 10−10

Example 5. In this example A is an M−matrix defined by

A =



10 −1 −2 −1 −3 −1

−3 11 −2 −1 −3 −2

−1 −2 15 −5 −2 −3

−3 −4 −1 14 −2 −2

−3 −5 −1 −3 16 −1

−1 −2 −3 −4 −2 16


,

and b = [1 1 1 1 1 1]T .

We apply the preconditioned IO method for solving (1.1), which is based on the Jacobi

and Gauss-Seidel splittings, respectively. We use the preconditioner (1.4) [23], and let α =

0.8, mk = 2. From Tables 9,10 we find that the preconditioned IO method outperforms other

three iteration methods in term of IT and CPU time. Moreover, the preconditioned IO method

(GS) has more effectiveness than the preconditioned IO method (Jacobi), and performs best

among all the iteration methods in this example.

7. Conclusion

In this paper, we give an inner-outer iteration method for solving the linear system (1.1).

Furthermore, the inner-outer iterations can also be used as a preconditioner for the Krylov
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Table 9: Numerical results of Example 5

Iteration method IT CPU RES

Jacobi method 136 0.000819 8.77× 10−10

Preconditioned Jacobi method 113 0.000682 8.25× 10−10

The IO method (Jacobi) 82 0.000563 9.88× 10−10

The preconditioned IO method (Jacobi) 68 0.000336 9.04× 10−10

Table 10: Numerical results of Example 5

Iteration method IT CPU RES

Gauss-Seidel method 68 0.000337 7.45× 10−10

Preconditioned Gauss-Seidel method 59 0.000247 7.92× 10−10

The IO method (GS) 39 0.000225 8.12× 10−10

The preconditioned IO method (GS) 32 0.000173 7.06× 10−10

subspace method such as GMRES method. We also apply the inner-outer iteration method

for solving the matrix equation AXB = C, which is more efficient than the iteration methods

[12]. Future work may further improve the IO iteration method and construct more effective

algorithms for solving (1.1) and (5.1), respectively.
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