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A VARIANT OF THE AOR METHOD 
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ABSTRACT.  In this paper we present a variant of the Accelerated 
Overrelaxation  iterative method (AOR), denoted by modified AOR-like 
method (MAOR-like method) for solving the augmented systems, i.e. the 
AOR-like method with three real parameters , r and . For special values 
of r,  and   we get the MSOR-like method, the AOR-like method and 
the SOR-like method. An equation relating the involved parameters and the 
eigenvalues of the iteration matrix of the MAOR-like method is obtained. 
Furthermore, some convergence conditions for the MAOR-like method are 
derived. This paper generalizes the main results of Li, Li, Nie, and Evans 
2004 and Shao, Li, and Li (2007). Numerical examples are presented to 
show that, for a suitable choice of the involved parameters, the MAOR-like 
method is superior when compared to the above iterative methods and to the 
SSOR-like method presented by Zheng, Wang, and Wu (2009). 
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l.   INTRODUCTION AND PRELIMINARIES 

 
Many applications such as fluid dynamics, optimization and constrained or 

generalized least squares problems, image processing, linear elasticity and mixed Finite 
Element Method for elliptic equations [1–3], [6] and [15] lead us to a linear system of 
equations of the form: 

 (1.1)                                 
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where A mmR , is a symmetric and positive definite (SPD) matrix, nmRB ,  is a matrix 
which has a full column rank, i.e., rank(B) = n, 0 nnR ,  and obviously m ≥ n, the vectors 

mRpx , and the vectors nRqy , , TB denotes the transpose of the matrix B. 
In this paper, the approximation to the solution of the linear system of equations (1.1), 

which, under the above conditions, has a unique solution, will be obtained. The iterative 
methods are normally used to obtain an approximation of the solution of (1.1) because of 
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storage requirements and since these methods will not change the structure of the original 
matrix and therefore preserve sparsity. The well-known Accelerated Overrelaxation 
iterative (AOR) method introduced by Hadjidimos in 5 can be used  if the matrix A of 
the system (1.1) is nonsingular, many authors have improved the convergence of the 
AOR method, for instance, 12] and [13. Recently, several authors [7-11] and [14] have 
been generalizing the Successive Overrelaxation iterative (SOR) method for the system 
(1.1). 

The most practical and important generalization of the SOR method is the SOR-like 
method given by Golub et al. [4]. The splitting related to the SOR-like method is 
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where Q nnR ,  being the preconditioning matrix and the SOR-like method is defined by 
the normal SOR procedure: 

(1.3a)  
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with            

(1.3b)           
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The corresponding AOR-like method [11], denoted in that paper, as generalized 

AOR (GAOR) is defined as follows: 

(1.4)    
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where  and r are real numbers. 

In this paper, the AOR-like method is modified where an extra parameter   is 
introduced. Let us consider the following splitting: 
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where Q is a nonsingular and symmetric matrix and 1  .  

If we denote  

 (1.6)                 
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then a variant of the AOR-like method, denoted by the modified AOR-like method with 
three parameters can be defined as  
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(1.7)    
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The above modified AOR-like (MAOR-like) method involves three parameters , r 
and , and one preconditioning matrix Q. If the parameter  = 0, i.e.  = 1, then the 
MAOR-like method becomes the AOR-like method; in addition, if  = r then we have the 
SOR-like method given by Golub et al. [4]. 

Furthermore, we will establish some convergence conditions for the MAOR-like 
method, which generalizes those presented in [11] and [14]. 

From (1.6), we have 

(1.8)                        )( 11 rLD  = 







 QrrB

A
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,  

where A is a SPD matrix and the matrix Q is nonsingular, therefore we have  

0)det()det()1()det( 11  QArrLD n      

if and only if  

 (1.9)                       1 r  0   or, equivalently,    r  1. 

The analysis of the convergence of the MAOR-like method is presented in Sections 2 
and 3. Based on a functional equation involving the parameters , r and ,  and the 

eigenvalues of the MAOR-like iteration matrix and those of the matrix BABQ T 11  , 
we will also obtain the convergence region for this iterative method in Section 3. Then in 
order to compare the performance of the MAOR-like method to the other methods, 
numerical experiments have been carried out and the results are summarized in Section 4. 
The results obtained show that with a suitable choice of the parameters , r and   the 
MAOR-like method is computationally competitive in comparison with the iterative 
methods presented earlier in this section. 

Recently, Zheng et al. [17] have proposed the SSOR-like method to approximate the 
solution of (1.1), where different choices of the matrix Q were considered. One of the 
numerical examples they have presented was the Stokes problem. A comparison between 
the results obtained with the MAOR-like method and those obtained with SSOR-like 
method of [17], for this problem, is given in Section 4. The numerical results show that 
the MAOR-like method is more efficient than the SSOR-like method of [17]. 

The SSOR-like method, for the splitting (1.2), is given by  

 (1.10)  
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where  
 UDLDL    )1()( 1  

U  LDUD    )1()( 1 , 

 with the matrices D, L and U defined in (1.3b). 
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2. SOME RESULTS AND THE BASIC FUNCTIONAL EQUATION 

 
Let  ,,rL be the iteration matrix of the MAOR-like method. From (1.8) we can write  
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but, as 1  , we have 

 ,,rL = 
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or equivalently, 
 

 (2.1)   ,,rL = 
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where  and r satisfy (1.9).  
Note that if  = 0, then 
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Therefore the MAOR-like method diverges no matter what values the parameters  and r  
take. Thus, in what follows, we will assume that the parameter  is different from zero, 
with  and r satisfying (1.9).  

In order to get the functional equation let  be an eigenvalue of  ,,rL and TTT vu ),(  

be the corresponding eigenvector, then we have  
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From (2.1), we can write (2.2) as 
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which is equivalent to  

 (2.3)               
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From (2.3) we get the following result: 
 
Lemma 2.1. If  is an eigenvalue of  ,,rL , then   1. 

Proof. The proof is similar to the one given in [11].                                
     
Lemma 2.2. If r = 1, then  = 1   is an eigenvalue of  ,,rL  with multiplicity of m. If r 

 1, then  = 1   is an eigenvalue of  ,,rL  if and only if nm  ; in this case the 

multiplicity of   is m-n. 
 

Proof.  If  = 1   is an eigenvalue of  ,,rL , then there exists a nonzero vector TTT vu ),(  

so that they satisfy the system (2.2).  Therefore, from (2.3) and since   0 we have  
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Since the matrix B has a full column rank, then the above system is equivalent to 
0v    and   (1 – r) uBQ T1 0 . 

As TB is a matrix of order n×m and rank( TB ) = n, we will consider the following cases: 

(i)      If r =1 we have uBQr T1)1(   0  true for any vector mRu . 

Therefore  1  is an eigenvalue of  ,,rL  of multiplicity m. 

(ii)      If r  1 and nm  , we have 0v   and 01  uBQ T . Thus,  = 1 is an 

eigenvalue of  ,,rL  with multiplicity of m-n, as the linear system 0uBT   has 

m-n linearly independent solutions.  
(iii)      If r  1 and nm  , then 01  uBQ T  has only a null solution. Therefore,  = 

1 is not an eigenvalue of  ,,rL and we get the required result. 

               
Remarks. (1) If we let  = r, in Lemma 2.1 and Lemma 2.2, then we obtain  
              Lemma 1 and Lemma 2 of  [14], respectively. 
 

(2) If  =0, then Lemma 2.1 and Lemma 2.2 become Lemma 1 and  Lemma 2 of  
[11], respectively. 

(3) If  and  TTT vu ),(   are the eigenvalue and eigenvector of   ,,rL , respectively, and 

if   1 , then  v  0. 
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Theorem 2.1. Let  ,,rL be the iteration matrix of the MAOR-like method, with the 

parameters r and   satisfying (1.9) and    0 then: 
(1)   = 1    is an eigenvalue of  ,,rL  if nm  . 

(2) For any eigenvalue   ( 1   ) of  ,,rL   there is an eigenvalue   of 

     BABQ T 11  , so that  ,  , r  and   satisfy the following functional equation: 
 

(2.5)                       )()1)(1)(1( rrr       
                        

(3) For any eigenvalue   of BABQ T 11  , if   is different from 1 and 
     from 1, and if ,  , r  and   satisfy equation (2.5), then   is an eigenvalue of 

    ,,rL . 

 
Proof.  From Lemma 2.2 we obtain conclusion 1. 

In order to prove the equality (2.5), let us consider the eigenvalue  (1 ) of  ,,rL  

and the corresponding eigenvector TTT vu ),( , which  satisfy  (2.3), the first equality of 
(2.3) can be written as  

(2.6)  BvAu 1

1








. 

   Hence, we can rewrite the second equality of (2.3) as 
 

(2.7)       BvABQrrvr T 112 )()1)(1)(1(   . 

Since  1, 1 (by Lemma 2.1), 0v  (from remark 3. after Lemma 2.2) and 
01  r  (eq. (1.9)) , then 02   rr . Thus, there is an eigenvalue   of 

BABQ T 11   so that  ,  , and   satisfy equation (2.5). Therefore, the proof of the 
second part is concluded. 
 

For  the  last  part  of  the  theorem ,  let   , v  ( 0 )  be an eigenvalue and eigenvector 

of the matrix BABQ T 11   respectively, therefore we have   vBvABQ T   11 . 

By the conditions of the theorem, equation (2.7) holds, since  ≠ 0, as BABQ T 11  is a 
non singular matrix. Also, from equation (2.6), we can rewrite equation (2.7) as follows: 
   uBQrrvr T1)()1)(1(   . 
Thus, the system (2.3) holds, which is equivalent to the system (2.2). Therefore,   is an 
eigenvalue of  ,,rL , as the associated eigenvector TTT vu ),(  is nonnull, resulting in part (3) 

of the theorem.                     
 
Corollary 2.1. Let  ,,L be the iteration matrix of the MSOR-like method, then: 

(1)   1  is an eigenvalue of  ,,L  if nm  . 

(2) For any eigenvalue  (  1 ) of  ,,L   there is an eigenvalue   of 

BABQ T 11  , so that  ,   and   satisfy the following functional equation:  
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(2.8)   (1  )(1 )(1)   2.                            

(3) For any eigenvalue   of BABQ T 11  , if   is different from 1  and from 1, 

and if   , and   satisfy equation (2.8), then   is an eigenvalue of  ,,L . 

 
Corollary 2.2. Let )( ,,  wrL  be the spectral radius of the MAOR-like iteration matrix 

 ,,rL and m >n, then we have  

.|1|)( ,,   rL  
 

Corollary 2.3. Let  0,,rL  be the iteration matrix of the GAOR (AOR-like) method, 

defined in (1.4) , then: 
 (1)   1  is an eigenvalue of 0,,rL  if nm  . 

(2)  For any eigenvalue  (  1 ) of 0,,rL  there is an eigenvalue   of  

     BABQ T 11  , so that  ,   and   satisfy the following functional 
      equation:  

(2.9)   (1  )(1 )  (r   r) .                            

(3) For any eigenvalue   of BABQ T 11  , if   is different from 1  and from 1, 

and if   and   satisfy equation (2.9), then   is an eigenvalue of 0,,rL . 
 

Remarks.  (1)  Corollary 2.1 coincides with Theorem 1 of [14]. 
(2) From Corollary 2.2, we get the necessary condition for the convergence of the 

MAOR-like method when m > n, which is: “ If the MAOR-like method converges, 
then   

(2.10)                                                     20   .” 
(3) The relationship between the eigenvalues of the iteration matrices  ,,rL and those 

of    BABQ T 11  , obtained in Theorem 2.1, allow us to analyze the 
convergence of the MAOR-like method and to obtain its convergence regions. 

(4) Corollary 2.3 coincides with Theorem 1 of [11]. 

(5) As equation (2.5) is a real quadratic equation, in the next section, we will use a 
result from Young [16] in order to obtain a necessary and sufficient convergence 
conditions for the MAOR-like method. Therefore, we have: 

 

Lemma 2.3 (Young [16]). Both roots of the real quadratic equation 02  cb , are 
less than one in modulus if and only if  |c| < 1 and  |b| < 1+c. 
 

 

3. CONVERGENCE ANALYSIS 
 

In the sequel, we assume that   and   are eigenvalues of the matrices  ,,rL  and  

BABQ T 11  , respectively, and m > n. In order to analyze the convergence of the 

MAOR-like method we have to consider that the parameter   (0, 2) which agrees with 
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the second remark after Corollary 2.3. Thus, whether 1   is an eigenvalue of  ,,rL or 

not, the convergence property of the MAOR-like method will not be affected. Therefore, 
the MAOR-like method converges if and only if the spectral radius of  ,,rL  is less than 

one for any eigenvalue , or equivalently, the modulus of any solution  of equation (2.5) 
is less than one. Rewrite equation (2.5) as 
(3.1)                                            02  cb ,                                                  

where  
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Then, we have the following result: 

Theorem 3.1. Assume that the parameter  satisfies (2.10). If the nonsingular matrix Q  

is chosen such that all the eigenvalues of the matrix BABQ T 11  are real and positive, 
then the MAOR-like method converges if and only if  
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where max is the largest eigenvalue of the matrix BABQ T 11  . 

 

Proof. Let S be the set of all eigenvalues   of the matrix BABQ T 11  . The 
coefficients of the quadratic equation (3.1) are obviously real, then, from Theorem 2.1 
and Lemma 2.3, we can conclude that the MAOR-like method converges if and only if  
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Since 0  for any S  and we have proved that 01  r , hence, the third and 
forth inequalities of (3.5) are equivalent to the last inequality of  (3.3), as 
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Therefore, we proved that the MAOR-like method converges if and only if (3.3) holds.            
              

If we let  = r in Theorem 3.1, we obtain the following result: 
 
Corollary 3.1. Assume that the parameter   satisfies (2.10). If the nonsingular matrix 

Q is chosen so that all the eigenvalues of the matrix BABQ T 11   are real and positive, 
then the MSOR-like method converges if and only if  

(3.6)    01     and   )2(2
)(1

max
2








,   

where max  is the largest eigenvalue of the matrix BABQ T 11  . 

 
On the other hand, if we let 0  in Theorem 3.1, we obtain the following result: 
 

Corollary 3.2. Assume that the parameter  satisfies (2.10). If the nonsingular matrix Q  

is chosen so that all the eigenvalues of the matrix BABQ T 11   are real and positive, 
then the AOR-like method converges if and only if  
(3.7)    0)(1 max   r   and   max)2(  r < )2(2  , 

where max  is the largest eigenvalue of the matrix BABQ T 11  . 

 
Remarks. (1)  Corollary 3.1 coincides with Theorem 2 of [14]. 

(2)  Corollary 3.2 coincides with Theorem 2 of [11]. 
 
Theorem 3.2. Assume that the parameter  satisfies (2.10) and 0 . If the nonsingular 

matrix Q is such that all the eigenvalues of the matrix BABQ T 11  are real and 
positive, then the MAOR-like method converges if and only if  

(3.8)         01  r ,     1 r  (  r)max  0    and   
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r ,   

where max is the largest eigenvalue of the matrix BABQ T 11  . 

 
Proof.  From the last inequality of (3.3) we have 

max(2r  )  2(2 )(1 r)  

or 
(2max  4  2)r  2  4  2max  

 

or, equivalently, 
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Hence, the required result is obtained.                   
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4. NUMERICAL RESULTS AND DISCUSSION 
 

We now describe some numerical experiments which were carried out in order to 
analyse the behaviour of the MAOR-like method for different values of the parameters, 
 and r and also to compare this iterative method with the MSOR-like method [14], the 
AOR-like method [11] and the SOR-like method [4]. The computational study was done 
for two problems used in literature.  

The first example, analyzed in Subsection 4.1, has been chosen from [14]. Here, we 
consider the linear system of equations (1.1) with the matrix Q and the stopping criterion, 
used in the computations, chosen according to [14]. For the second example, we consider 
the Stokes problem; this problem was discussed in [17]. A comparison of the MAOR-like 
method with the SSOR-like method of [17] and also with the other methods presented 
earlier is made. The stopping criterion and the different choices of the matrix Q were 
chosen according to [17]. 

The numerical experiments have been performed using Matlab 7.9, on Core 2 Duo, 
2.26 GHZ (4GM RAM), laptop (MacBook Pro) with the Macintosh system. The methods 
have been compared in terms of the error, number of iterations and CPU time (in 
seconds).  
 
4.1. First example. Let us consider the linear system of equations (1.1), given in [6], 
where the matrices A and B are defined as follows:  
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The vectors p and q are chosen so that the components of the vectors x and y of (1.1) 

have values equal to 1.  In [4], different choices for the preconditioning matrix Q were 
considered. However, in order to compare the MAOR-like method with the MSOR-like, 
AOR-like and SOR-like methods, presented in [14], [11] and  [4], respectively, we have 

chosen the preconditioning matrix BBQ T  and the stopping criterion, i.e., 

1e ,10
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 is the kth iterate for each iterative method. The “optimum” values for the parameters of 
the MAOR-like, AOR-like, MSOR-like and SOR-like methods were obtained by running 
the program for different values of the parameters and choosing those which give the 
minimum number of iterations.  
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In order to analyse the performance of the MAOR-like method and to compare the 
method to the other methods described in Section 1, numerical experiments were carried 
out. Different values of the parameter   in the interval [0, 2] were considered using steps 
of length 0.1, for each value of  we consider a range of values for the two parameters  
and r in the intervals (0, 2) and [0, 2], respectively, with steps of length 0.1. The values 
used in the experiments for m and n of (4.1) were m=50 and n=40. The graphs of the 
number of iterations for a selected values of  and the above range of values of  and r 
are shown Figures 1 to 6. The evolution of the number of iterations (iter) for different 
values of the parameters  and r can be seen in these figures. To simplify the 
visualization of the results, we reduced the maximum number of iterations from 5000 to 
1000. The gray region shows the values of  and r (for the fixed  ) which are not inside 
the convergence region, i.e., the values of ,  and r which do not satisfy (3.3). In each 
figure, we have also indicated the values of the parameters for which the minimum 
number of iterations (minIT) has been reached. 

 

 
FIGURE 1. α = 0.6, r = 1.5,   = 1.0, 
minIT = 64. 

 
FIGURE 2. α = 0.7, r = 1.3,   = 1.0, 
minIT = 54. 

 

 
FIGURE 3. α = 1.0, r = 0.9,   = 1.6, 
minIT = 32. 

 
FIGURE 4. α = 1.2, r = 0.8,   = 0.9, 
minIT = 18. 

        
 



 12  

 
FIGURE 5. α = 1.4, r = 0.7,   = 0.7, 
minIT = 23. 

 
FIGURE 6. α = 1.6, r = 0.6,   = 0.7, 
minIT = 28. 

 

From these figures we can conclude that the minimum number of iterations is 
obtained when the parameters ,  and r are near the boundary of the convergence region. 
In some cases, we can see that the number of iterations increases when  and r are very 
near the boundary of the convergence region. We would like to point out that we only 
present here some cases with a big step. However, when we shorten it, later, this fact will 
be more clarified. 

Figures 7 and 8 shows the graphs of the number of iterations for  = 0 (AOR-like 
method) and  = 0.5 (MAOR-like method), respectively, and for m = 50 and n = 40.  

In both figures we have drawn a line which corresponds to the number of iterations 
when  = r. These lines correspond to the results obtained with the SOR-like method 
(Figure 7) and MSOR-like method (Figure 8), respectively. 

 

 
FIGURE 7. α = 0, r = 0.1,   = 1.9,  
minIT = 314 (AOR-like). 
α = 0, r = 1.8,   = 1.8, minIT = 341 
(SOR-like). 

 
  FIGURE 8. α = 0.5, r = 1.8,   = 0.8,  
  minIT =  84 (MAOR-like). 
  α = 0.5, r = 1.5,   = 1.5, minIT = 101 
  (MSOR-like). 

 

These figures reinforce the conclusions we have obtained before. In addition, we can 
see that the number of iterations for  = 0 is significantly higher than for other values of 
. It can be noted that the number of iterations increases when  and r are close to the 
boundary of the convergence region. 
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The results for the SOR-like ( = r and  = 0) and MSOR-like ( = r and  ≠ 0, in 
this case  = 0.5) methods can be seen more clearly in Figure 9. Here, we use a solid line 
and a dashed line to represent the number of iterations obtained with the SOR-like and 
the MSOR-like methods, respectively. The gray region has the same meaning as in the 
previous figures. 

From this figure we emphasize the superiority of the MSOR-like method over the 
SOR-like method. Furthermore, we can conclude that the minimum number of iterations 
is obtained near the boundary of the convergence region.  

A much more detailed analysis, using steps of length 0.01 to generate values of the 
parameters   [0, 2],   (0, 2) and r  [0, 2], was carried out, the obtained results 
shows that the methods are quite sensitive to small changes in the values of the 
parameters when they are near the boundary of the convergence region. To clarify this 
conclusion we present Figures 10 and 11 which show the number of iterations when the 
two parameters  and r are near the optimal regions for   = 0 and  = 0.5, respectively. 

 
 

 
FIGURE 9. Number of iterations when  =0 (right) and  =0.5 (left). 

 

 
α = 0, r = 1.70,   = 1.84, minIT = 333 (AOR-like) 
α = 0, r = 1.82,   = 1.82, minIT = 337 (SOR-like) 

                  FIGURE 10. Number of iterations when  = 0 and , r are near the  
      optimal regions. 
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α = 0.5, r = 1.57,   =1.41, minIT =   93 (MAOR-like) 

  α = 0.5, r = 1.51,   =1.51, minIT = 100 (MSOR-like) 
           FIGURE 11. Number of iterations when  = 0.5 and , r are near the  

     optimal regions. 
 

In these figures we can see that the number of iterations increases suddenly when   
and r take values near the boundary of the convergence region and this boundary appears 
at the back of the hill. In order to visualize this situation more clearly we show the results 
of the SOR-like method ( = 0) and the MSOR-like method ( = 0.5) in Figures 12 and 
13, respectively. 

 

 

           FIGURE 12. Number of iterations when  =0 and  = r are near the optimal 
           region.  
 

 
           FIGURE 13. Number of iterations when  =0.5 and  = r is near the optimal 
           region.  
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The same behaviour can be noticed for the SOR-like method in the graphs obtained 
by Golub et al. [4] for the spectral radius.  

The obtained results for the SOR-like and AOR-like methods are summarized in 
Table 1 and the results for the MSOR-like and MAOR-like methods are summarized in 
Table 2. The two tables show the minimum number of iterations and computational time 
required for different values of m and n using the stopping criterion suggested in [14], i.e., 
e1 < 10-6 and number of iterations < 5000.  

From the results obtained and recorded in Tables 1 and 2, we can conclude that the 
MSOR-like method and MAOR-like method are both superior to the SOR-like method 
and AOR-like method in terms of number of iterations and computational time. It can 
also be noted that the restriction  = r, for the SOR-like method and the MSOR-like 
method, slightly increases the number of iterations in comparison to the versions without 
this restriction, i.e., the AOR-like method and the MAOR-like method. However, this 
augmentation is less than 10% for the SOR-like method and 33% for the MSOR-like 
method and decreases when the size of the problem increases. 

 
TABLE 1. CPU time, iterations number and values of the parameters for the  
SOR-like and AOR-like methods 
 

Method m n  r  minIT CPU(s) e1 

SOR-
like 

50 40 0 1.8201 1.8201 337 0.0537 9.8E-7 
200 150 0 1.9533 1.9533 1201 0.3158 9.9E-7 
400 300 0 1.9759 1.9759 2357 2.7729 9.9E-7 

AOR-
like 

50 40 0 0.0000 1.9522 304 0.0403 9.9E-7 
200 150 0 0.0000 1.9885 1170 0.2631 9.9E-7 
400 300 0 0.0000 1.9935 2326 2.1419 9.9E-7 

 

 

TABLE 2. CPU time, iterations number and values of the parameters  
for the MSOR-like and MAOR-like methods 

 

Method m n  r  minIT CPU(s) e1 

MSOR-
like 

50 40 1.2 0.8 0.8 20 0.0114 9.9E-7 
200 150 1.00 0.9890 0.9890 21 0.0670 8.3E-7 
400 300 1.00 0.9945 0.9945 21 0.4014 8.5E-7 

MAOR-
like 

50 40 1.12 0.86 0.92 15 0.0089 9.2E-7 
200 150 1.1 0.9 1.0 16 0.0609 8.2E-7 
400 300 1.0 0.9945 0.9945 21 0.4014 8.5E-7 

 

 

TABLE 3. CPU time, iterations number and values of the parameters for the 
MSOR-like and MAOR-like methods when  = 1.0 

 

 m n  r  minIT CPU (s) e1 

MSOR-
like 

50 40 1.00 0.9545 0.9545 24 0.0159 6.9E-7 
200 150 1.00 0.9890 0.9890 21 0.0670 8.3E-7 
400 300 1.00 0.9945 0.9945 21 0.4014 8.5E-7 

MAOR-
like 

50 40 1.00 0.9530 0.9980 23 0.0168 9.9E-7 
200 150 1.00 0.99 0.90 21 0.0718 8.9E-7 
400 300 1.00 0.9945 0.99 21 0.4080 8.4E-7 
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Finally, from Table 2, the optimum values of the parameter  are close to 1 and 
when the size of the problem is large then the optimum value of  is equal to 1 for both 
MSOR-like and MAOR-like methods. In Table 3 we present the results for the two 
methods using  = 1. It can be noted from the results obtained that the number of 
iterations recorded when   = 1 are very close to those presented in Table 2. Hence, we 
can use this value as a reference value for . 
 
 

4.2. Second example. We consider Stokes problem presented in [17] for the SSOR-like 
method. Hence, we will find u and p, such that: 

 

 

with  =(0,1)(0,1)ℝ2,  is the component wise Laplace operator,   the boundary of 
 , u is the vector-valued function representing the velocity and p is the scalar function 
representing the pressure. 

According to [17], after a suitable discretization, we get the linear system of 
equations 

 (4.3) 
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where  f and g are chosen so that the exact solution of the augmented linear system (4.3) 
is 
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The matrices A and B of (4.3) are defined as follows: 
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discretization mesh size and  the Kronecker product of two matrices. 
For a stopping criterion, and in order to compare our results with those presented in 

[17], we will use the norm of relative error vectors defined as 
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Furthermore, we consider three different choices for the preconditioning matrix Q 
according to [17]. 

Case I: Q = (BT B) = - (BT B)/100, 
Case II: Q = BT((diag(A)-1))B = BT(-h2(diag(A)-1))B, 
Case III: Q =  I = - I. 

We let m = 2 2q and n = 2q , the criterion to obtain a suitable approximation of the 

solution was 2e   10 7 or IT ≥ 50000 and the initial vector we have used was 

  0
)0(

)0(












p

u
. 

 
Preliminary results obtained from solving the Stokes problem by the SOR-like and 

AOR-like methods show that these two methods were less efficient than the MSOR-like 
and MAOR-like methods. Therefore, for this problem, we will only present 
computational results for the MSOR-like and MAOR-like methods and we will compare 
them with the results obtained in [17] for the SSOR-like method. 

First, we present the computational results for m = 242 and n = 121. In Table 4 we 
summarize the results presented in [17] which were obtained by applying the SSOR-like 
iterative method to the Stokes problem for the three cases above.  

 
  TABLE 4. Iterations (IT), CPU time and relative error using SSOR-like method 

  m = 242, n = 121 
Method   minIT CPU(s) e2 

SSOR-
like 

Case I 0.6118 100   0.062   9.0318E-8 
Case II 1.0843 203 0.1730 9.5206E-8 
Case III 1.3710 41 0.0310 7.8431E-8 

 
From this table, we can conclude that the preconditioning matrix Q associated to 

Case III provides a big reduction in the number of iterations and the system (4.3) can be 
easily solved. On the other hand, the preconditioning matrix Q associated to Case II 
makes the system more difficult to solve since more iterations are need to obtain the same 
error.  

The numerical results for the MSOR-like and the MAOR-like methods are presented 
in Table 5, the experimental optimum values of the parameters ,  and r are determined 
to approximate the solution of the Stokes problem for a range of values of these 
parameters and choosing those which give the minimum number of iterations (IT), the 
CPU time and the error e2 defined for this example were also recorded. 

 The CPU times, presented in Tables 4 and 5, are not comparable, since the computer 
used to obtain the results presented in Table 4 is different from the computer used to 
obtain the results presented in Table 5. However, if we base our comparison on the 
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number of iterations required to solve the problem, then we can conclude that the MSOR-
like and MAOR-like methods offer significant economies over the SSOR-like method of 
[17]. In comparison a savings of between 30% and 50% was achieved. In addition, as in 
the first example, it can be noted from Table 5 that the MAOR-like method appears to be 
slightly more efficient than the MSOR-like method. 

Furthermore, similar to the results obtained in Table 3 of Subsection 4.1, we let  = 1 
and calculate the experimental optimum values of r and  which gives the minimum 
number of iterations and the corresponding computational time, the results obtained are 
recorded in Table 6 for both the MSOR-like and MAOR-like methods. It can be noted 
that the two methods are still more efficient than the SSOR-like method in terms of the 
number of iterations. 

Next, we present some numerical results for m = 2048 and n = 1024, using the same 
stopping criterion, i.e.,  2e   10 7 or IT ≥ 50000. In Table 7, we summarize the results 
obtained in [17] to approximate the solution of the Stokes problem using the SSOR-like 
method for the three different cases where the preconditioned matrix Q is chosen. 

 
TABLE 5. Iterations (IT), CPU time and relative error for the second  
example, using MSOR-like and MAOR-like methods 

 

m = 242, n = 121 
Method   r  minIT CPU(s) e2 

MSOR-
like 

Case I 1.3963 0.4815 0.4815 63 0.0747 9.5E-8 
Case II 1.5815 0.6173 0.6173 95 0.0880 9.5E-8 
Case III 0.9926 0.7444 0.7444 28 0.0259 7.7E-8 

MAOR-
like 

Case I 1.4889 0.4667 0.4556 57 0.0729 9.9E-8 
Case II 1.5642 0.62346 0.68025 90 0.0838 9.1E-8 
Case III 1.1111 0.7083 0.6667 28 0.0257 7.7E-8 

 
 

TABLE 6. Iterations (IT), CPU time and relative error, for the second  
example, using the MSOR-like and MAOR-like methods 

 

m = 242, n = 121 
Method   r  minIT CPU (s) e2 

MSOR-
like 

Case I 1.00 0.5469 0.5469 80 0.0794 9.3E-8 
Case II 1.00 0.9296 0.9296 182 0.1167 9.1E-8 
Case III 1.00 0.7333 0.7333 29 0.0269 6.7E-8 

MAOR-
like 

Case I 1.00 0.5457 0.5481 80 0.0799 9.4E-8 
Case II 1.00 0.9136 1.3222 156 0.1079 9.8E-8 
Case III 1.00 0.7333 0.7333 29 0.0269 6.7E-8 
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TABLE 7. Iterations (IT), CPU time and relative error, for the second  
example, using the SSOR-like method  

 
 
 
 
 
 

 
 

As expected, the CPU time and the IT value increase with the size of the problem 
solved.  For this reason, we apply the MSOR-like and MAOR-like methods to the same 
problem with m = 2048 and n = 1024, in a similar manner to Table 6, we let  = 1. Then 
we calculate the experimental optimum values of r and , the corresponding minimum 
number of iterations and the computational time. The results obtained are recorded in 
Table 8. 

By comparing the two tables, it can be noted that the two methods are again more 
efficient than the SSOR-like method even with  = 1. 

 
TABLE 8. Iterations (IT), CPU time and relative error, for the second  
example, using MSOR-like and MAOR-like methods  

 

m = 2048, n = 1024 

 

5.   CONCLUDING REMARKS 

In this paper a variant of the Accelerated Overrelaxation (AOR) iterative method, 
denoted by modified AOR-like (MAOR-like) method for solving the augmented systems 
has been presented. The convergence analysis of the method has been done and several 
numerical examples were given. From the obtained results it can be noted that the 
MSOR-like and MAOR-like methods performed very well, with the MAOR-like method 
as the most efficient one.  

The optimum values of the parameters have been obtained computationally, the 
results confirm the theoretical analysis presented in Sections 2 and 3. However, further 
study is needed to determine the theoretical values of these optimum parameters. This 
subject will be a matter of further research. 

 

 

 

  m = 2048, n = 1024 
Method   minIT CPU (s) e2 

SSOR-
like 

Case I 0.6118 678 80.0160 9.8787E-8 
Case II 1.0843 1399 158.187 9.9427E-8 
Case III 1.3710 125 14.3590 9.6815E-8 

Method   r  minIT CPU (s) e2 

MSOR-
like 

Case I 1.00 0.5498 0.5498 582 25.40 9.9E-8 
Case II 1.00 0.9333 0.9333 1182 38.12 9.9E-8 
Case III 1.00 0.7567 0.7567 92 5.80 9.9E-8 

MAOR-
like 

Case I 1.00 0.5663 0.5494 561 25.16 9.9E-8 
Case II 1.00 0.9198 1.3481 984 33.41 9.9E-8 
Case III 1.00 0.75 0.87 81 5.48 9.9E-8 
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