7,547 research outputs found

    The effect of perturbations of linear operators on their polar decomposition

    Full text link
    The effect of matrix perturbations on the polar decomposition has been studied by several authors and various results are known. However, for operators between infinite-dimensional spaces the problem has not been considered so far. Here, we prove in particular that the partial isometry in the polar decomposition of an operator is stable under perturbations, given that kernel and range of original and perturbed operator satisfy a certain condition. In the matrix case, this condition is weaker than the usually imposed equal-rank condition. It includes the case of semi-Fredholm operators with agreeing nullities and deficiencies, respectively. In addition, we prove a similar perturbation result where the ranges or the kernels of the two operators are assumed to be sufficiently close to each other in the gap metric.Comment: 13 page

    Structured backward errors for eigenvalues of linear port-Hamiltonian descriptor systems

    Full text link
    When computing the eigenstructure of matrix pencils associated with the passivity analysis of perturbed port-Hamiltonian descriptor system using a structured generalized eigenvalue method, one should make sure that the computed spectrum satisfies the symmetries that corresponds to this structure and the underlying physical system. We perform a backward error analysis and show that for matrix pencils associated with port-Hamiltonian descriptor systems and a given computed eigenstructure with the correct symmetry structure there always exists a nearby port-Hamiltonian descriptor system with exactly that eigenstructure. We also derive bounds for how near this system is and show that the stability radius of the system plays a role in that bound

    Angles Between Infinite Dimensional Subspaces with Applications to the Rayleigh-Ritz and Alternating Projectors Methods

    Get PDF
    We define angles from-to and between infinite dimensional subspaces of a Hilbert space, inspired by the work of E. J. Hannan, 1961/1962 for general canonical correlations of stochastic processes. The spectral theory of selfadjoint operators is used to investigate the properties of the angles, e.g., to establish connections between the angles corresponding to orthogonal complements. The classical gaps and angles of Dixmier and Friedrichs are characterized in terms of the angles. We introduce principal invariant subspaces and prove that they are connected by an isometry that appears in the polar decomposition of the product of corresponding orthogonal projectors. Point angles are defined by analogy with the point operator spectrum. We bound the Hausdorff distance between the sets of the squared cosines of the angles corresponding to the original subspaces and their perturbations. We show that the squared cosines of the angles from one subspace to another can be interpreted as Ritz values in the Rayleigh-Ritz method, where the former subspace serves as a trial subspace and the orthogonal projector of the latter subspace serves as an operator in the Rayleigh-Ritz method. The Hausdorff distance between the Ritz values, corresponding to different trial subspaces, is shown to be bounded by a constant times the gap between the trial subspaces. We prove a similar eigenvalue perturbation bound that involves the gap squared. Finally, we consider the classical alternating projectors method and propose its ultimate acceleration, using the conjugate gradient approach. The corresponding convergence rate estimate is obtained in terms of the angles. We illustrate a possible acceleration for the domain decomposition method with a small overlap for the 1D diffusion equation.Comment: 22 pages. Accepted to Journal of Functional Analysi

    Representation Theorems for Indefinite Quadratic Forms Revisited

    Full text link
    The first and second representation theorems for sign-indefinite, not necessarily semi-bounded quadratic forms are revisited. New straightforward proofs of these theorems are given. A number of necessary and sufficient conditions ensuring the second representation theorem to hold is proved. A new simple and explicit example of a self-adjoint operator for which the second representation theorem does not hold is also provided.Comment: This work is supported in part by the Deutsche Forschungsgemeinschaf

    Eigenvalue estimates for non-selfadjoint Dirac operators on the real line

    Get PDF
    We show that the non-embedded eigenvalues of the Dirac operator on the real line with non-Hermitian potential VV lie in the disjoint union of two disks in the right and left half plane, respectively, provided that the L1normL^1-norm of VV is bounded from above by the speed of light times the reduced Planck constant. An analogous result for the Schr\"odinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on VV implies the absence of nonreal eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials

    Dipoles in Graphene Have Infinitely Many Bound States

    Get PDF
    We show that in graphene charge distributions with non-vanishing dipole moment have infinitely many bound states. The corresponding eigenvalues accumulate at the edges of the gap faster than any power
    corecore