131,049 research outputs found

    The Fundamental Concepts of Classical Equilibrium Statistical Mechanics

    Full text link
    A critical examination of some basic conceptual issues in classical statistical mechanics is attempted, with a view to understanding the origins, structure and statuts of that discipline. Due attention is given to the interplay between physical and mathematical aspects, particularly regarding the role of probability theory. The focus is on the equilibrium case, which is currently better understood, serving also as a prelude for a further discussion of non-equilibrium statistical mechanics.Comment: 33 pages, overview, conceptual discussio

    Generalised Decision Level Ensemble Method for Classifying Multi-media Data

    Get PDF
    In recent decades, multimedia data have been commonly generated and used in various domains, such as in healthcare and social media due to their ability of capturing rich information. But as they are unstructured and separated, how to fuse and integrate multimedia datasets and then learn from them eectively have been a main challenge to machine learning. We present a novel generalised decision level ensemble method (GDLEM) that combines the multimedia datasets at decision level. After extracting features from each of multimedia datasets separately, the method trains models independently on each media dataset and then employs a generalised selection function to choose the appropriate models to construct a heterogeneous ensemble. The selection function is dened as a weighted combination of two criteria: the accuracy of individual models and the diversity among the models. The framework is tested on multimedia data and compared with other heterogeneous ensembles. The results show that the GDLEM is more exible and eective

    Thermodynamic Limit in Statistical Physics

    Full text link
    The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by N. N. Bogoliubov, who developed a general formalism for establishing of the limiting distribution functions in the form of formal series in powers of the density. In that study he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.Comment: 28 pages, Refs.180. arXiv admin note: text overlap with arXiv:1011.2981, arXiv:0812.0943 by other author
    • …
    corecore