6,013 research outputs found

    Quantum authentication with key recycling

    Get PDF
    We show that a family of quantum authentication protocols introduced in [Barnum et al., FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the secret key if the message is successfully authenticated, and recycle part of the key if tampering is detected. We give a full security proof that constructs the secure channel given only insecure noisy channels and a shared secret key. We also prove that the number of recycled key bits is optimal for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits. Previous works recycled less key and only gave partial security proofs, since they did not consider all possible distinguishers (environments) that may be used to distinguish the real setting from the ideal secure quantum channel and secret key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and secret key resource have been slightly redefined; also added a proof in the appendix for quantum authentication without key recycling that has better parameters and only requires weak purity testing code

    On the efficiency of revocation in RSA-based anonymous systems

    Get PDF
    © 2016 IEEEThe problem of revocation in anonymous authentication systems is subtle and has motivated a lot of work. One of the preferable solutions consists in maintaining either a whitelist L-W of non-revoked users or a blacklist L-B of revoked users, and then requiring users to additionally prove, when authenticating themselves, that they are in L-W (membership proof) or that they are not in L-B (non-membership proof). Of course, these additional proofs must not break the anonymity properties of the system, so they must be zero-knowledge proofs, revealing nothing about the identity of the users. In this paper, we focus on the RSA-based setting, and we consider the case of non-membership proofs to blacklists L = L-B. The existing solutions for this setting rely on the use of universal dynamic accumulators; the underlying zero-knowledge proofs are bit complicated, and thus their efficiency; although being independent from the size of the blacklist L, seems to be improvable. Peng and Bao already tried to propose simpler and more efficient zero-knowledge proofs for this setting, but we prove in this paper that their protocol is not secure. We fix the problem by designing a new protocol, and formally proving its security properties. We then compare the efficiency of the new zero-knowledge non-membership protocol with that of the protocol, when they are integrated with anonymous authentication systems based on RSA (notably, the IBM product Idemix for anonymous credentials). We discuss for which values of the size k of the blacklist L, one protocol is preferable to the other one, and we propose different ways to combine and implement the two protocols.Postprint (author's final draft

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Quantifying pervasive authentication: the case of the Hancke-Kuhn protocol

    Full text link
    As mobile devices pervade physical space, the familiar authentication patterns are becoming insufficient: besides entity authentication, many applications require, e.g., location authentication. Many interesting protocols have been proposed and implemented to provide such strengthened forms of authentication, but there are very few proofs that such protocols satisfy the required security properties. The logical formalisms, devised for reasoning about security protocols on standard computer networks, turn out to be difficult to adapt for reasoning about hybrid protocols, used in pervasive and heterogenous networks. We refine the Dolev-Yao-style algebraic method for protocol analysis by a probabilistic model of guessing, needed to analyze protocols that mix weak cryptography with physical properties of nonstandard communication channels. Applying this model, we provide a precise security proof for a proximity authentication protocol, due to Hancke and Kuhn, that uses a subtle form of probabilistic reasoning to achieve its goals.Comment: 31 pages, 2 figures; short version of this paper appeared in the Proceedings of MFPS 201

    Verifying security protocols by knowledge analysis

    Get PDF
    This paper describes a new interactive method to analyse knowledge of participants involved in security protocols and further to verify the correctness of the protocols. The method can detect attacks and flaws involving interleaving sessions besides normal attacks. The implementation of the method in a generic theorem proving environment, namely Isabelle, makes the verification of protocols mechanical and efficient; it can verify a medium-sized security protocol in less than ten seconds. As an example, the paper finds the flaw in the Needham-Schroeder public key authentication protocol and proves the secure properties and guarantees of the protocol with Lowe's fix to show the effectiveness of this method

    Cryptographic security of quantum key distribution

    Full text link
    This work is intended as an introduction to cryptographic security and a motivation for the widely used Quantum Key Distribution (QKD) security definition. We review the notion of security necessary for a protocol to be usable in a larger cryptographic context, i.e., for it to remain secure when composed with other secure protocols. We then derive the corresponding security criterion for QKD. We provide several examples of QKD composed in sequence and parallel with different cryptographic schemes to illustrate how the error of a composed protocol is the sum of the errors of the individual protocols. We also discuss the operational interpretations of the distance metric used to quantify these errors.Comment: 31+23 pages. 28 figures. Comments and questions welcom

    Formal Computational Unlinkability Proofs of RFID Protocols

    Full text link
    We set up a framework for the formal proofs of RFID protocols in the computational model. We rely on the so-called computationally complete symbolic attacker model. Our contributions are: i) To design (and prove sound) axioms reflecting the properties of hash functions (Collision-Resistance, PRF); ii) To formalize computational unlinkability in the model; iii) To illustrate the method, providing the first formal proofs of unlinkability of RFID protocols, in the computational model
    • …
    corecore