184 research outputs found

    Perfect Graphs

    Get PDF
    This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on important classes of perfect graphs for which there are fast and efficient recognition and optimization algorithms. The classes of graphs we discuss in this chapter are chordal, comparability, interval, perfectly orderable, weakly chordal, perfectly contractile, and chi-bound graphs. For each of these classes, when appropriate, we discuss the complexity of the recognition algorithm and algorithms for finding a minimum coloring, and a largest clique in the graph and its complement

    Perfectly contractile graphs and quadratic toric rings

    Full text link
    Perfect graphs form one of the distinguished classes of finite simple graphs. In 2006, Chudnovsky, Robertson, Saymour and Thomas proved that a graph is perfect if and only if it has no odd holes and no odd antiholes as induced subgraphs, which was conjectured by Berge. We consider the class A{\mathcal A} of graphs that have no odd holes, no antiholes and no odd stretchers as induced subgraphs. In particular, every graph belonging to A{\mathcal A} is perfect. Everett and Reed conjectured that a graph belongs to A{\mathcal A} if and only if it is perfectly contractile. In the present paper, we discuss graphs belonging to A{\mathcal A} from a viewpoint of commutative algebra. In fact, we conjecture that a perfect graph GG belongs to A{\mathcal A} if and only if the toric ideal of the stable set polytope of GG is generated by quadratic binomials. Especially, we show that this conjecture is true for Meyniel graphs, perfectly orderable graphs, and clique separable graphs, which are perfectly contractile graphs.Comment: 10 page

    Quasi-Brittle Graphs, a New Class of Perfectly Orderable Graphs

    Get PDF
    A graph G is quasi-brittle if every induced subgraph H of G contains a vertex which is incident to no edge extending symmetrically to a chordless path with three edges in either Hor its complement H¯. The quasi-brittle graphs turn out to be a natural generalization of the well-known class of brittle graphs. We propose to show that the quasi-brittle graphs are perfectly orderable in the sense of Chvátal: there exists a linear order \u3c on their set of vertices such that no induced path with vertices a, b, c, d and edges ab, bc, cd has a \u3c b and d \u3c c

    Recognition of some perfectly orderable graph classes

    Get PDF
    AbstractThis paper presents new algorithms for recognizing several classes of perfectly orderable graphs. Bipolarizable and P4-simplicial graphs are recognized in O(n3.376) time, improving the previous bounds of O(n4) and O(n5), respectively. Brittle and semi-simplicial graphs are recognized in O(n3) time using a randomized algorithm, and O(n3log2n) time if a deterministic algorithm is required. The best previous time bound for recognizing these classes of graphs is O(m2). Welsh–Powell opposition graphs are recognized in O(n3) time, improving the previous bound of O(n4). HHP-free graphs and maxibrittle graphs are recognized in O(mn) and O(n3.376) time, respectively

    A note on perfect orders

    Get PDF
    AbstractPerfectly orderable graphs were introduced by Chvátal in 1984. Since then, several classes of perfectly orderable graphs have been identified. In this paper, we establish three new results on perfectly orderable graphs. First, we prove that every graph with Dilworth number at most three has a simplical vertex, in the graph or in its complement. Second, weprovide a characterization of graphs G with this property: each maximal vertex ofG is simplical in the complement of G. Finally, we introduce the notion of a locally perfect order and show that every arborescence-comparability graph admits a locally perfect order

    Induced subgraphs of graphs with large chromatic number. XI. Orientations

    Full text link
    Fix an oriented graph H, and let G be a graph with bounded clique number and very large chromatic number. If we somehow orient its edges, must there be an induced subdigraph isomorphic to H? Kierstead and Rodl raised this question for two specific kinds of digraph H: the three-edge path, with the first and last edges both directed towards the interior; and stars (with many edges directed out and many directed in). Aboulker et al subsequently conjectured that the answer is affirmative in both cases. We give affirmative answers to both questions

    Weak Bipolarizable Graphs

    Get PDF
    We characterize a new class of perfectly orderable graphs and give a polynomial-time recognition algorithm, together with linear-time optimization algorithms for this class of graphs
    corecore