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A bsrract 

Olariu, S., Quasi-brittle graphs. a new class of perfectly orderable graphs, Discrete Mathemat- 
ics 113 (1992) 143-1.53. 

A graph G is quasi-brittle if every induced subgraph H of G contains a vertex which is incident 
to no edge extending symmetrically to a chordless path with three edges in either H or its 
complement 8. The quasi-britiie graphs turn out to be a natural generalization of the 
well-known class of brittle graphs. We propose to show that the quasi-brittle graphs are 
perfectly orderable in the sense of Chvatal: there exists a linear order < on their set of vertices 
such that no induced path with vertices a, b. c, d and edges ab. bc, cd has a < b and d < c. 

1. Introduction 

A linear o:der < on the set of vertices of a graph G is perfect in the sense of 
Chvatai ]4] if no induced path with vertices a, b, c, d and edges ab, bc, cd has 
a<bandd<c. 

Graphs which admit a perfect order are termed perfectly orderable. Chvatal [4] 
proved that if a graph G admits a perfect order, then an optimal coloring of G is 
obtained by using the greedy heuristic ‘always use the smallest possible color’. 

To this day, the structure of perfectly orderable graphs is not well understood. 
In particular, it is now known [IO] that the recognition of perfectly orderable 
graphs is an NP-completP problem. Quite naturally, this motivated the study of 
particular classes of perfectly orderable graphs. 

As a first step in this direction, Chvatal [3] suggested the study of brittle graphs 
which we are about to define. For this purpose, however, we need to define a few 
new terms. 
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It is customary to let P’, stand for the chordless path with k vertices. To simplify 
our notation, a P4 with vertices a, b, c, d and edges ab, bc, cd will be denoted by 
&cd. In this context, we shall refer to a, d as endpoints and to b, c as midpoints 
of the P4; the edges ab and cd are termed wings of the P4 abed. An edge ab of a 
graph G is a symmetric wing if there exist vertices c, d, p, q such that both abed 
and bapq are &s in G. In the presence of a linear order < on G, a P4 abed is 
called an obstruction if a <b and d < c. (In this notation, a graph is perfectly 
orderyble if there exists an obstruction-free linear order on the vertices of G.) 

Call a graph G brittle if every induced subgraph H of G contains a vertex which 
is either endpoint of midpoint of no P4 in H. 

It is an easy observation that brittle graphs are closed under complementation, 
and that they are perfectly orderable. Furthermore, they generalize triangulated 
graphs (i.e. graphs such that every cycle of length greater than three has a chord), 
and are recognizable in polynomial time Khouzam [9]. 

Several classes of brittle graphs were studied by Preissmann, de Werra, and 
Mahadev [X2], Hoang [6], Hoang and Khouzam [7], Hertz and de Werra [5], 
Jamison and Olariu [8], and Olariu [ 111, among others. 

The purpose of this work is to present a natural generalization of the class of 
brittle graphs, and to show that this new class of graphs is perfectly orderable. 
More precisely, a vertex w of a graph G is said to be special if w is incident with 
no symmetric wing in G and G. 

A graph G is said to be quasi-brittle if every induced subgraph H of G contains 
a special vertex. it is easy to see that every brittle graph is quasi-brittle: if some 
vertex z is endpoint of no P! in G, or midpoint of no P’ in G, then z must be 
special. Fig. 1 features a graph that is quasi-brittle but not brittle. Hence the class 
of quasi-brittle graphs strictly contains the class of brittle graphs. 

In addition. it turns out that the quasi-brittle graphs are perfectly orderable and 
can be recognized in polynomial time. 

2. The main result 

All the graphs in this work are finite, with no loops or multiple edges. In 
addition to standard graph-theoretical terminology compatible with Berge [ 11, we 
use some new terms that we are about to define. 

Let G = (V, E) be an arbitrary graph. For a vertex x of G, we let N&X) denote 
the set of all the vertices of G which are adjacent to X: we assume adjacency to be 
non-reflexive, and so x $ N,;(X); we let N&(x) stand for the set of vertices 
adjacent to x in the complement G of G. (The notation will be shortened to N(x) 
and N’(x) when the underlying graph is understood and no confusion is possible.) 
A proper subset H (i H( 2 2) of vertices of (3 will be referred to as homogeneous if 
every vertex outside H is either adjacent to all the vertices in H or to none of 
them. 

We are now in a position to state our main result. 
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Fig. 1. 

Theorem 1. Every quasi-brittle graph is perfectly orderable. 

Proof of Theorem 1. Let G = (V, E) be a quasi-brittle graph. Assuming the 
statement true for all quasi-brittle graphs with fewer vertices than G, we need 
only prove that G itself is perfectly orderable. 

For this purpose, we shall find it convenient to rely on a number of 
intermediate results that we present as facts. 

Fact 1. If G contains a homogeneous set, then G is perfectly orderable. 

Proof of Fact 1. Let H be a homogeneous set in G, and let h stand for an 
arbitrary vertex in H. By the induction hypothesis, we find a perfect order 

Ja,<&z<r+.~%ih,H, 

on the vertices of H. Similarly, there exists a perfect order 

~~<~2<“‘<h=~j<...<x~~~_~~~+~ 

on the vertices of G - (H - h). 
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But now, it is easy to see that 

A-, <x, < - - - <x. ,-l-=h,<” .‘<h,H,<x~+I<‘-‘<X,V,-,H,+I 

is a perfect order on G, as c’laimed. Cl 

Fact 1 allows us to assume that G contains no homogeneous set. 
Next, we note that 

every special vertex in G is both midpoint of some P4 in G 
and endpoint of some f4 in G. (1) 

[To justify (I), consider a vertex x that is endpoint of no P4 in G, and let 

z, <zz< - - . < z,~,-~ be a perfect order on G -xx. It is easy to see that 
x<z,<zz+. - < z,,+, is a perfect order on G. Similarly, if x is midpoint of no 
P4 in G, then the linear order zl < zz < . m . < z,,+_, <x is a pertect order on G.] 

Let w be a special vertex in G and let F,, Fz, . . . , 4 (k 2 1) stand for the 
connected components of the subgraph of G induced by N(w). We may assume 
without loss of generality that 

Fact 2. Let x be an arbitrary vertex in N(w). If wx extends to a P4 wxpq in G, then 

the cormonent l$ containing x satisfies 6 = (x >. 

Proof of Fact 2. Clearly, p, q E N’(w). We claim that 

wypq is a P4, for every choice of the vertex y in 5. (3) 

[Let y be an arbitrary vertex in 4. To begin, assume that xy $ E; note that if 
yp $ E then, in c’, both wpyx and pwqx are P4s contradicting that w is special. 
Thus yp E E. Similarly, if yq E E then, in G, the edge wx is symmetric wing, a 
contradiction. Next, if xy E E, then the conclusion follows by an easy inductive 
argubzent on the length of the shortest path in < joining x and y.] 

Tc complete the proof of Fact 2, we need only show that 

If I&I a 2, then 4 is a homogeneous set. 

[Suppose not; now some vel<ex u in V - 1F;I’ is adjacent to some, but not all the 
vertices in 6. Clearly, u belongs to N’(w). By the connectedness of I;I’ in c, we 
find vertices z, z’ in e with uz’, zz’ $ E and uz E E. But now, the edge z’w 
extends to a P’, namely Z’WZU. By (3), wz’ also extends to a P4, contradicting 
that w is special.] 

With this, the proof of Fact 2 is complete. 0 

Fact 2 can be rephrased as follows. 

Corollary 2a. If l&la 2 for all i = 1,2, . . . , k, then w is endpoint of Izo P4 in G. 
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Note that (1) and (2), together with Corollary 2a imply the existence of a 
subscript i. (2 s i,) 9 k) such that 

]I$1 > 2 if, and only if, i 2 ;,,. 

Next, we enumerate the connected components of the subgraph of G induced 
by N’(w) as 

H,,H, ,..., H,,, (mal) 

such that 

lH,l f IHJ s . . . c IH,,J. 

Fact 3. Let x’ be an arbitrary vertex in N’(w). If wx’ extends to a P4 in c, then the 
component Hi of N’(w) containing x’ satisfies Hj = ix’>. 

The proof of Fact 3 mirrors that of Fact 2 and is, therefore, omitted. 
An equivalent way of stating Fact 3 goes as follows. 

Corollary 3a. If 1 Hi] 2 2 for all j = I, 2, . . . , m, then w is mid’;,oint of no P4 in G. 

[By Fact 3, w is endpoint of no P4 in G. Since every P4 is self-complementary, w 
is midpoint of no P4 in G.] 

Note that (l), (4)2 together with Corollary 3a, imply the existence of a subscript 
i. (2sj,,am) such that 

IHjl > 2 if, and only if, i 3j,,. 

To simplify the :lotation, we write 

i,,- I iv 1 

A = ,Li fi and A’ = U Ifi. 
j=l 

Now the definition of A and A’ imply that 

every vertex in A is adjacent to all the remaining vertices in N(M*) (5) 

and 

every vertex in A’ is non-adjacent to all the remaining vertices in N’(w). (6) 

Fact 4. Let i, j be arbitrary subscripts such that if, =S i s k and j. f j S m. Then, 
either every vertex in 4 is adjacent to all the vertices in Hj or no vertex in l$ is 

adjacent to a vertex in Hi. 

Proof of Fact 4. Since, by assumption, Hj is not homogeneous, some vertex y in 
V - Hi is adjacent to some, but not ah the vertices in Hj. By the connectedness of 
Hi, we find adjacent vertices h, h’ in H; such that yh E E and yh $ E. Trivially, 

Y E N(w). 
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We claim that y E A. [If y E FP for some p 2 i,,, then wy extends to a Pa, namely 
w_yhh’, contradicting Fact 2.1 

Next, if for some subscript i (i. d i s k), E contains vertices that are adjacent to 
all the vertices in Hi along with vertices which are adjacent to none of the vertices 
in Hj then by the connectedness of E we find vertices z, z’ in e with zz’ $ E, such 
that zld E E, and z’u $ E for all vertices u in Hi. 

In particular, zh, zh’ E E, and z’h, z’h’ #E; but now, in G, whz’z and hwh’y 

are both &s, contradicting that w is a special vertex. 
Tnis completes the proof of Fact 4. 0 

Since by the induction hypothesis G - w is perfect!v orderable, we let < stand 
for an arbitrary perfect order on G - w. A component 1;1: with (i. d i s k) is 
referred to as impure if there exist vertices u, u’ in fi and a vertex d in A’ such 
that tu E E, uu’, tu’ $ E, and t < u. A component E (i. =S i s k) that is not impure 

is called pure. 

Trivially, we can write N(w) = A U P U I with P and I standing for the set of all 
pure and impure components 4, respectively. 

Let <’ be the linear order on G - w defined as follows: 
l x<‘y wheneverxEAUPU(N’(w)-A’) andyEIU_4’; 
l x<‘ywheneverx<yandx,yEAUPU(N’(w)-A’), orx,yELIUA’. 
To complete the proof of Theorem 1, we use the following result that we shall 

prove later. 

Theorem 2. < ’ is LZ perfect order on G - w. 

We propose to show that <’ extends naturally to a perfect order on G. To see 
this, note that the definition of <’ guarantees that we can enumerate the vertices 
of G - w as 

z, <‘z,<‘- - - <‘Z,<‘Z,,I <’ ’ - - <‘z,v,-1 

in such a way that 

z,EA’UI forj=r+l,..., IVl-1. 

We claim that the linear order on G defined by 

z, <‘z*<‘* * - <‘z,<‘w<‘z,+* <’ * - - “z,v,_, 

1s a perfect order. 
Consider an obstruction xIxzx3x4 in G with xl <‘x2 and x4 <’ z,. Now Theorem 

2 together with the symmetry of the P4 allows us to assume that w coincide with 
x1 or with x2. 

However, in case w =x1, by the definition of <‘, x2 must belong to I and, by 
(6), x3 and x4 rnw belong to N’(w) - A’, contradicting Fact 4; in case w =x2, (5) 
together with x4i’x 3 implies that xl, x3 E 6 E P and so, by Fact 4, x4 E A’, 

contradicting that XIX~X~X~ is an obstruction. 0 



Proof of Theorem 2. We shall inherit the notation and the entire context of the 
proof of Theorem 1. If <’ fails to be a perfect order on C - w, then we find an 
obstruction abed with a <’ 6 and d <’ c. 

Fact 5. a $ N(w). 

Proof of Fact 5. To begin, we claim that 

There is no PA xypq in G - w with x E A and y E (N(w) -A) UA’. (7) 

[Suppose this is not the case; if y belongs to N(w) -A then, by virtue of (5) and 
(6) combined, p, q belong to N’(w). But now, y is adjacent top and non-adjacent 
to q, contradicting Fact 4. Similarly, if y belongs to A’, then by (5) and (6) lead to 
an immediate contradiction.] 

It is easy to see that a $A. ]Otherwise, by (5), c, d E N’(w); by (6), 
c, d E (N’(w) -A’). Now, if b belongs to N(w) then, by Fact 4, b belongs to A; if 
b belongs to N’(w) - A’ by (6). In both cases abed is an obstruction in <.I 

Next, we claim that 

If an edge xy with x E 6 (i,, sisk) and y~Au(N’(w)-A’) 

extends to a P4 xyzt in G - w, then either z, t E Hj for some j 3 jo, 
or else z E/$ and SEA’. (8) 

[First, if y E N’(w) -A’, then by Fact 4 together with the definition of the 4’s 
(j=l, 2,. . . , k), it follows that z E 6 and t E A’. Next, if y E A then either z E /$ 
and, by Fact 4, t EA’, or else z E N’(w) -A’ and, by Fact 4, (5), and (6) 
combined t E N’(w) - A’, as claimed.] 

We note that, by virtue ot (8), 

a Q P. 

[Suppose a E 4 c P. If d E N(w) then since d is not adjacent to a, we have d E F;-. 

Since there is no ob+--- 3L1 uction in <, we can set without loss of generality that 
c $ E. Since a is not adjacent to c, c E N’(w) and by Fact 4, c E A’. Now by (6), 
b E N(w) and, since b is not adjacent to d, b E 1;1’. We obtain a contradiction 
either of the fact that < has no obstruction or that fi is pure. If d E N’(w) then we 
consider two cases. If c E N(w) then c E -F;- and by Fact 4, d E A’ and so abed is not 
an obstruction in <‘. If c E N’(w) then since c and d are adjacent, we have that c 
and d belong to some Hj c N’(w) -A’. Now F,j Fact 4 and (6) combined, we 

have that 6 E A or b E H,, a contradiction to the fact that c has no obstruction.] 
Finally, to complete the proof of Fact 5, we need show that the assumption that 

a belongs to I leads to a contradiction. To see this, note that by the definition of 
<’ together with the fact that a <’ b, it must be that 6 E I U A’. By (6), at least 
two of the vertices a, b, c belong to some component 6 z I. Since cd E E and 
bd $ E, d cannot belong to A U P U (N’(w) -A’). But now, abed is an obstruc- 
tion in <. This is the desired contradiction and the proof of Fact 5 is 
complete. 0 
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Observe that Fact 5 guarantees, by symmetry, that 

d $ N(w). (9) 

Fact 6. One of the vertices a, d belongs to N’(w) - A’ and the other one to A’. 

Proof of Fact 6. By (9) and Fact 5 combined, it follows that a, d E N’(w). 
We claim that 

at least one of the vertices a and d does not belong to A’. ( 10) 
[To justify (lo), note that if both a, d belong to A’ then, the definition of <’ 
together with the assumption that a <‘b and d <‘c imply that b, c E I, and so 
abed must be an obstruction in <, a contradiction.] 

Next, we claim that 

at least one of the vertices a, d does not belong N’(w) -A’. 

Our justification of (11) rehes on the following simple observation. 

(11) 

Observation 1. Let j be a subscript such that 4 c I, and let x be a vertex in 
N’(w) - A’ adjacent to some vertex in 4. Then, for a suitably chosen vertex y in 
e,xy~Eandx<y. 

[By Fact 4, x is adjacent to all the vertices in 4. Since I;;- is impure, we find a 
vertex t in A’ and non-adjacent vertices u, u’ in 4 such that tu E E’, tu’ $ E, and 
t < u. Now the conclusion follows from the P4 tuxu ‘.I 

TG justify (ll), assume that both a, d belong to N’(w) -A’. By (6), it follows 
that neither of b, c belongs to A’. 

Note, further, that the assumption that a C’ b and d <’ c together with the I”act 
that abed is not an obstruction in <. guarantees that 

at least one of the vertices b, c belongs to 1. 

Symmetry allows us to assume that b E l$ E I. 
Now Observation 1 guarantees the existence of a vertex b’ in I$ such that 

ab’ E E and a < 6’. Since ab E E and ac $ E, Fact 4 guarantees that c $4, and so 
we must have b ‘c E E. 

By virtue of Fact 4, again, db’ $ E implying that ab’cd is a P4 in G - w. 
Observe that c must belong to I: otherwise, the definition of <’ would imply that 
d <c and ab’cd would be an obstruction in <. Hence, we find a subscript k 
distinct from j such that c E Fk c I. By Observation 1, we find a vertex c’ in Fk 
with dc’ E E and d c c’. 

Trivially, b’c’ E E and, by Fact 4, ac’ $ E. Consequently, ab’c’d is an 
obstruction in <, a contradiction. Thus, (11) must hold true. 

Finally, we note that the conclusion of Fact 6 follows directly from (IO) and 
(ll), combined. q 
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Symmetry, together with Fact 6 allow us to assume that a E N’(w) -A’ and 

deA’. 

We claim that b, c e I, and d < c. [To see this, note that since d E A’, the 
definition of <’ implies that c E I and, consequently, d < c. Since abed cannot be 
an obstruction in <, we must have b < a, and so b E I U A’. Now the conclusion 
follows directly from (6).] 

Consequently, we find distinct subscripts i, i (i, j 2 if,) such that b E I;I: c I and 
c E I$ c I. 

Since e is impure, the set T of all the vertices t of A’ for which there exist 
non-adjacent vertices u, u’ in e such that fu E E, tu’ $ E, and l< u is non-empty. 

Let t be an arbitrary vertex in T. Observe that tuau’ is a P4 in G - w. Since < is 
perfect, it follows that 

a<u’. (12) 

We claim that 

du’ E E. (13) 

[Otherwise, since cu’ E E, au’cd would be an obstruction in <.] 
Further, note that by (13), the vertices t and d are distinct, having distinct 

neighbourhoods; since c was an arbitrary vertex in T, it follows that 

d is distinct from all the vertices in T. (14) 

Next, we note that 

du E E. (1% 

[If du $ E, then since t < u and d < c, we must have tc E E, or else tucd would be 
an obstruction in <. The P4 au’ct implies that c < l; the P4 dcua implies that 
u <a; the P4 uau’d implies that u’ < d. However, now {a, u’, d, c, t, u} induces a 
directed cycle in <, a contradiction.] 

Note that by (15) we have 

d<iA’. (16) 

[For otherwise, tudu’ would be an obstruction in <.] 
Consider the shortest path 

w u’ = Z(), Zl, . . . , zp =b (pal) 

in 6 joining u’ and b. Let r stand for the least subscript for which dz, $ E: since 
db $ E, such a subscript must exist. We note that since d < c, the P4 az,cd implies 
that 

~,<a. (17) 

Furthermore, r 3 2, for otherwise by (16) and (17), z,az,,d would be an 
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obstruction in <. Note that 

Z,_l -=I d. 

[Else, LI could play the role of t, contradicting (14).] 
By v!r,ue of (18), we have 

Z r-2 < z,. 

[Otherwise, z,__,~z~_~z~ would be an obstruction in <.I 
By (19) it must be the case that 

[Else {a, z,,, z,} would induce a directed cycle in <.] 
We claim that 

(18) 

(19) 

Z* < Zi+ ?r foralli=O,l,..., r-2. (20) 

[To see that this is the case, note that r 3 3 guarantees that Zi+rzi+3zizi+~ is a Pa 
foralli=0,1,2 ,..., r- 3. By (19), z,_? < z,. Now the conclusion follows by a 

trivial inductive argument _] 
But now, we have reached a contradiction: by (12), (16), (17), (18), and (20) 

combined, either (zo, z2, - . . , z,-~, d} or {z,,, z,, . . . , z,, a} induces a directed 
cycle in <, depending on whether or not r is odd. With this, the proof of 
Theorem 2 is complete. Cl 

Firally, we note that a set {x, y, z, tj induces a Pj in a subgraph H of G only if 
it induces a Pj in G itself; in addition a graph G = (V, E) has at most 0( 1 VI”) 
distinct P,s. Consequently, recognizing membership in the class of quasi-brittle 
graphs can be done in polynomial time in the size of the graph. 
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