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WEAK BIPOLARIZABLE GRAPHS 

Stephan OLARIU 
Department of Computer Science, Old Dominion University, Norfolk, VA 23508, U.S.A. 

We characterize a new class of perfectly orderable graphs 
recognitron algorithm, together with linear-time optimization 
graphs. 

1. Introduction 

A linear order 
Chcatal [3] ii 110 
a<b and d<c, 
orderable. 

and give a polynomial-time 
algorithms for this class of 

c on the set of vertices of a graph G is pe#ect in the sense of 
induced path with vertices a, b, c, d and edges ab, bc, cd has 

Graphs which admit a perfect order are termed perfectly 

Recognizing perfectly orderable graphs in polynomial time seems to be a 
difficult problem. Quite naturally, this motivated the study of particular classes of 
perfectly orderable graphs. Such classes have been studied by Golumbic, Monma 
and Trotter [7], Chvgtal, Hoang, Mahadev, and de Werra [4], Hoang and 
Khouzam [9], and Preissmann, de Werra and Mahadev [12]. 

Recently, Hertz and de Werra [S] proposed to call a graph G bipolarizable if G 
admits a linear order c on the set V of its vertices such that b c a and c cd 
whenever {a, b, c, d} induces a path in G with edges ab, bc, cd. 

They characterize bipolarizable graphs by forbidden subgraphs and prove that 
both bipolarizable graphs and their complements are perfectly orderable. 

In this paper we first define and characterize the class of weak bipolarizable 
graphs which properly contain the class of bipolarir.able graphs. This charac- 
terization can be exploited to obtain a polynomial-tiaz recognition algorithm for 
weak bipolarizable graphs. Finally, given a weak bipolarizable graph G, we show 
how an algorithm of Rose, Tarjan and Lueker [13] can be used to obtain 
efficiently a linear order on the vertices of G. As soon as this is done, an 
algorithm of Chvgtal, Hoang, %hadev and de Werra [4] can be used to optimize 
weak bipolarizable graphs in linear time. 

Given a graph G, we shall let c denote the complement of G; if x is a vertex in 
G, then N&X) stands for the set of all the vertices in G which are adjacent to X; 
N;(X) denotes the set of all the vertices in G which are adjacent to x in c 
(whenever possible, we shall write simply N(x) and N’(x)). We shall let GH stand 
for the subgraph of G induced by H; C,(P,) will stand for an induced chordless 

cycle (path) with k vertices. 

0012-365X/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland) 
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Fig. 1. 

Fig. 2. 

A graph G is called triangulated if every cycle of length greater than three in G 
has a chord. Dirac [5] proved that every triangulated graph contains a simplicial 
vertex: this is a vertex w such that N(w) is a clique. 

A proper subset H (IHI 2 2) of vertices of G will be referred to as 
homogeneous if every vertex outside H is either adjacent to all the vertices in H 
or to none of them. 

A graph G will be called a weak bipolarizable graph if G has no induced 
subgraph isomorphic to C, (k 3 5), & or to one of the graphs F1, F2 in Fig. 1. 

Since every forbidden subgraph of a weak bipolarizable graph is also a 
forbidden subgraph of a bipolarizable graph it follows that every bipolarizable 
graph is also weak bipolarizable. In addition, note that the graph in Fig. 2 is a 
weak bipolarizable graph but not a bipolarizable graph. 

Therefore, the class of weak bipolarizable graphs properly contains the class of 
bipolarizable graphs. As it turns out, the class of weak bipolarizable graphs also 
contains all triangulated graphs, all Welsh-Powell opposition graphs (see Olariu 
[lo]), all superbrittle graphs (see Preissmann, de Werra, and Mahadev [12]) and 
all superfragile graphs (see Preissmann, de Werra, and Mahadev j12]). 

2. The results 

The following theorem provides a characterization of the class of weak 
bipolarizable graphs. 
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‘I%eorem 1. For a graph C the following three statements are equivalent: 
(i) G is a weak bipolarizable graph 

(ii) Every induced subgraph H of G is triangulated, or H contains a 
homogeneous set which induces a connected subgraph of c 

(iii) Every induced subgraph H of G is triangulated or H contains a homo- 
geneous set. 

Proof. To prove the implication (i)+ (ii), consider a graph G = (V, E) that 
satisfies (i). Assuming the implication (i)+ (ii) true for graphs with fewer vertices 
than G, we only need prove that G itself satisfies (ii). 

If G contains a homogeneous set with the property mentioned in (ii), then we 
are done. We shall assume, therefore, that G contains no such homogeneous set. 
We want to show that, with this assumption, G is triangulated. 

For this purpose, we only need show that G has no induced C,. 
Suppose not; now some vertices X, y, z, t induce a C4 with edges xy, yz, zt, 

tx E E. Consider the component F of the subgraph of G induced by N(y) n N(t), 
containing x and z. By assumption, F is not a homogeneous set, and thus there 
exists a vertex u in V - F, adjacent to some but not all vertices in F. By 
connectedness of F in G, we find non-adjacent vertices x’, z’ in F such that 
ux’EEanduz’$E. 

Trivially, u is not in N(y j n Al(t), and hence u is adjacent to at most one of y, 
t. If u is adjacent to precisely one of y, t then {u, x’, y, z’, t} induces a &, a 
contradiction. 

Now u is adjacent to neither y nor t. Write N(x’) n N(Y) = U0 U Ul in such a 
way that 

every vertex in U, is adjacent to u, and 

no vertex in UO is adjacent to u. 

By the above argument, y and t belong to U0 and thus 1 &I 2 2. Observe that 
every vertex in U, is adjacent to every vertex in UO, for otherwise {u, p, q, x’, z’} 
induces a &, for any non-adjacent vertices p in U0 and q in 0,. 

Consider the connected component H of the subgraph of G induced by U, that 
contains the vertices y and t. 

Since H is not homogeneous, there must exist a vertex r~ in V - H adjacent to 
some but not all vertices in H. Trivially, v is not in (x’, z’, u} U U,-, U U,. By 
connectedness of f-l in G, we find non-adjacent vertices y’, t’ in H such that 
vy’ E E, vt’ $ E. Now v is adjacent to at most one of the vertices X’ and z’. If v is 
adjacent to precisely one of them, then {v, x’, z’, y’, t’} induces a &, a 
contradiction, Thus, v is adjacent to neither x’ nor z’. By definition of U& u is 
adjacent to neither y’ nor t’. 

However, this implies that {u, v, x’, y’, z’, t’} induces either an F2 or an El, 

depending on whether or not uv E E. 
‘fiis proves that G is triangulated, as claimed. 
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The implication (ii)+ (iii) is trivial. To prove (iii) ---, (i) we only need observe 
that if a graph G does not satisfy (i), then (iii) fails. 

This completes the proof of the theorem. Cl 

Consider a graph G1 and a graph C, containing at least two vertices, and let v 
be an arbitrary vertex in C,. 

It is customary to say that a graph G arises from Gi and GZ by substitution if G 
is obtained as follows: 

(8) delete the vertex v from G1, and 
(**) join each vertex in G2 by an edge to every neighbour of r~ in G1. 
If G arises by substitution from graphs G1 and G2, then we shall say that G is 

substitution-composite. It is a simple observation that a graph G is substitution- 
composite if and only if G contains a homogeneous set. Now the equivalence 
(ij @(iii) in Theorem 1 can be rephrased as follows. 

CoroUaq la. A graph G is weak bipolarizable if and only if every induced 
subgraph of G is either triangulated or substitution-composite. 

Let Y be the class of graphs defined as follows: 
(111) if G is triangulated, then G is in Y. 
(~2) if G’ is obtained from a graph G1 in Y and a triangulated graph G2 by 

substitution, then G’ is in Y. 

Theorem 2. Y is precbely the class of weak bipolarizable graphs. 

Proof. To begin, we claim that 

every graph in Y is weak bipolarizable. (1) 

For this purpose, let G be an arbitrary in Y. Assuming (1) to be true for all 
graphs with fewer vertices than G, we only need prove that G itself is weak 
bipolarizable. This, however, follows immediately from the observation that G is 
either triangulated or it contains a homogeneous set. Now Theorem 1 guarantees 
that G is weak bipolarizable. 

Conversely, we claim that 

every weak bipolarizable graph is in Y. \ 
(29 

Let G be a weak bipolarizable graph. Assume that (2) holds for all graphs with 
fewer vertices than G. If G is triangulated, then G is in Y by (ql). Now we may 
assume that G is not triangulated. Theorem 1 guarantees that G contains a 
homogeneous set. Let H be a minimal homogeneous set in G (here, minimal is 
meant with respect to set in+-’ luLIion, not cardinality). By Theorem 1, H must be 
triangulated. By the induction hypothesis, the graph induced by (V - H) U {h} is 
in Y, for any choice of F, in H. Hence, by (~2)) G itself is in Y, as claimed. 0 
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We shall refer 
substitution-prime. 
observation, whose , 

to a graph G which contains no homogeneous set as 
For later reference we shall make the following simple 
justification is immediate. 

Observation 1. If a graph G with a homogeneous set 
substitution-prime subgraph F, then either every vertex of 
and H have at most one vertex in common. 

H contains am induced 
F belongs to H or eke F 

Let C be a class of 
substitution-prime. 

Theorem 3. l’f G arises by 
in C. 

graphs such that all forbidden graphs for C are 

substitution from graphs G1 and Gz in X9 then G is also 

Proof. Suppose not; now G must contain an induced subgraph F isomorphic to a 
forbidden graph for the class C. By assumption, F is an induced subgraph of 
neither Gi (i = 1,2). 

By Observation 1, F has precisely one vertex in common with G2. However, 

this implies that G1 has an induced subgraph isomorphic to F, a 
contradiction. Cl 

Theorem 1 and Theorem 3 provide the basis for a polynomial-time recognition 
algorithm for weak bipolarizable graphs. In addition, we shall rely on algorithms 
to recognize triangulated graphs (see, for example, Rose, Tarjan and Leuker 
[ 13]), as well as polynomial time algorithms to detect bne presence of a 
homogeneous set in a graph (see Spinrad [ll]). 

The following two-step algorithm recognizes weak bipolarizable graphs. 

Algorithm Recognize(G); 
{Input: A graph G = (V, E). 
Output: ‘Yes’ if G is weak bipolarizable; ‘No’ otherwise.} 

Step 1. Call Check(G) 
Step 2. Return(‘Yes’); stop. 

Procedure Check(G); 
be@ 

if G is not triangulated then 
if G is not substitution-composite then begin 

return( ‘No’); 
stop 
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else begin 

{now G contains a homogeneous set H; let H’ stand for the set of all the 
remaining vertices in G. } 

Check(GH); 
pick an arbitrary vertex h in H; 

Check(G{,,,& 
end 

end; {Check} 

The correctness of this algorithm follows directly from Theorem 1 and 
Theorem 2. Furthermore, its running time is clearly bounded by 0(n3): to see 
this, note that Check is invoked O(n) times for a graph G with n vertices. Each 
invocation of Check runs in 0(n2) time since the recognition of triangulated 
graphs [13] and the detection of a homogeceous set [I I] are both performed in 

O(n’) time. 
Given a P4 with vertices CL, 6, c, d and edges ab, bc, cd, the vertices Q and Ct are 

called endpoints and the vertices b, c are called midpoints of the P4. 
We shall say that a vertex x in a graph G is semi-simpkial if x is midpoint of no 

P4 in G. Trivially, every simplicial vertex is also semi-simplicial, but not 
conversely. 

A linear order < on the vertex-set V of G is said to be a (semi-)peeect 
(zlimination if the corresponding ordering x1, x2, . . . , x, of the vertices of G with 
xi < Xj iff i <i satisfies 

Xj is a (semi-)simplicial vertex in G~X;,Xi+,P.._,X~~ for every i. (3) 

It is immediate that every graph G with a semi-perfect elimination is brittle in 
the sense of Chv6tal [2]: every induced subgraph H of G contains a vertex which 
is either midpoint or endpoint of no P4 in H. Furthermore, it is an easy 
observation that every brittle graph is also perfectly orderable. 

Hertz and De Werra [S] demonstrated that bipolarizable graphs are brittle; we 
extend their result by showing that weak bipolarizable graphs are also brittle. 
Actually, we also exhibit a linear-time (and thus optimal) algorithm that finds a 
perfect order for any weak bipolarizable graph. The details are spelled out in 
Theorem 4. 

Rose, Tarjan and Lueker [13] proposed a linear-time search technique which is 
referred to as Lexicographic Breadth-First Search (LBFS, for short). They prove 
that a graph G is triangulated if, and only if, any ordering of the vertices of G 
produced by LBFS is a perfect elimination. 

We shall use their algorithm to obtain a perfect order on the set of vertices of a 
weak bipolarizable graph. To make our exposition self-contained, we give the 
details of LBFS. 
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procedure LBFS(G); 
{Input: the adjacency list of G; 
Output: an ordering CJ of the vertices of G} 

hegin 
for every vertex w in V do label(w) ~8; 
for i +pt downto 1 do begin 

pick an unnumbered vertex v with the largest label; 
a(v) *i; {assign to v number i} 
for each unnumbered w E N(v) do 

add i to label (w) . 

end 
end; 

Note that we can think of the output of LBFS as a linear order c on V by 
setting 

u < v whenever a(u) c a(v). 

It is immediate (see Golumbic [6]) that every linear order produced by LBFS 
satisfies the following property. 
(P) a < b, b CC, ac E E, and bc $ E imply the existence of a vertex b’ with 
bb’EE, ab’$Eandc<b’. 

We are now in a position to state our next result. 

Theorem 4. If G is a weak bipolarizable graph, then every ordering of the vertices 
of G produced by LBFS is a semi-perfect elimination. 

Our proof of Theorem 4 uses the following result of an independent interest. 

Proposition 1. Let G be a graph with no induced P5, Ck (k 2 5) and no F2, and let 
< be a linear order on the vertex-set of G satisfying the property (P). Then for 
every vertices a, b, c, d with 

a<b,b<c,a<d,ab,ac,bdEE,bc,ad$E, 

we have cd E E. 

(4) 

Proof of Proposition 1. Write G = (V, E), and let < be a linear order on V 
satisfying the hypothesis of Proposition 1. If < is a semi-perfect elimination, then 
the conclusion follows trivially. 

We may, therefore, assume that c is not a semi-perfect elimination. If the 
statement is false then we shall let a stand for the last vertex in the linear order C 

for which there are vertices b, c, d with cd $ E satisfying (4). Next, we let c stand 
for the largest vertex in N(a) for which there exist vertices b and d with cd $ E 
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satisfying (4). Further, with a and c chosen as before, let b stand for the largest 
vertex in < for which there is a vertex d, cd $ E, such that (4) is satisfied. Finally, 
with a, b, c chosen as above, we let d be the largest vertex in the linear order < 
for which (4) is satisfied. 

For the proof of Proposition 1 we shall need the following intermediate results 
which we present as facts. 

Fact 1. c-d. 

Proof of Fact 1. Suppose not; apply property (P) to the vertices a, 6, c: we find a 
vertex b’ (which we choose as large as possible) with ab’ $ E, bb’ E E and c < b’. 

We must have cb’ E E, or else b’ could play the role of d, contrary to our 
assumption. Note that b ‘d $ E, for otherwise {a, b, c, b ‘, d} induces a &. 

Apply property (P) to the vertices a, d, c. We find a vertex d’ with ad’ $ E, 
dd’ E E and c < d’. We note that cd’ $ E, for otherwise {Q, b, c, d, d’} induces a 
C, or a &. 

If bd’ E E, then d’ can play the role of d. Thus bd’ $ E. 
Clearly, b’d’ E E, or else {b, b’, d, d’} induces a P4, with b contradicting our 

choice of a. But now, {a, b, c, b ‘, d, d’} induces an F2. 0 

Fact 2. b and c have no common neighbour w with a < w and aw $ E. 

Proof of Fact 2. Let w be a common neighbour of b and c with a c w and aw $ E. 
We shall let w be as large as possible. Trivially, dw $ E (else {a, b, c, d, w} 
induces a &); Fact 1 implies b c d; furthermore, 

dew (5) 
[Otherwise, either b or w contradicts our choice of a.] 

Apply property (P) to the vertices 6, d, w: by (5), we find a vertex d’ with 
bd’$E, ddkEand wed’. 

Now (5) implies that 

dcd’. (6) 
Note that cd’ $ E, for otherwise {a, 6, c, d, d' } induces a & or a C,. Next, 

wd’ E E, or else {b, w, d, d’} induces a 8, and so, by (5) and (6) combined, b 
contradicts our choice of Q. Further, ad’ E E for otherwise {a, 6, c, d, d’, w} 
induces an Fz. 

Apply property (P) to the vertices a, c, d’: by (6), we find a vertex c’ with 
UC’ $ E, cc’ E E and d’ CC’. Clearly, dc’ $ E, else {a, 6, c, c’, d} would induce a 
C, or a &. By the maximality of w, bc’ $ E. 

Note that c’d’ $ E, else {a, b, c, c’, d, d’} induces an F2. But now, with the 
assignment d +c’, b +c, c Cd’, (4) is still satisfied, contradicting our initial 
choice of c. 

This completes the proof of Fact 2. 0 
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Write x E B wheneve; there exists a path 

b=w(),w1,...,w,=x (GO) 

joining 6 and X, with 

Wi-1~ Wi and au+ $ E, (1 pi SS). 

Similarly, write y E C whenever there exists a path 

c = v(), v,, . . . , vt =y (tbo) 

joining c and y, with 

Vi-1 <Vi and avi $ E, (lsic t). (8) 

We note that Fact 1 implies that B # (6). Furthermore, it is easy to see that we 
can apply property (P) to the vertices b, c, d; we obtain a vertex x: adjacent to c 
but not to a, and such that d < X. By Fact 1, c c d and so c <x. This shows that 
c # {c}. 

Let 6’, c’ stand for the largest vertex in < which belongs to B, C, respectively. 
By the definition of B, we find a chordless path 

b=bo,bl,...,bp=b’ 

in B, joining b and 6’, with the b,‘s satisfying (7) in place of the wi’s. 
Similarly, the definition of C guarantees the existence of a chordless path 

c = co, Cl, . . . , cq = c’ 

in C, joining c and c ‘, with the Ci’S satisfying (8) in the place of the vi’s_ 
For further reference, we note that 

cbi$E, (Osisp). (9 
[To justify (9), let i stand for the smallest subscript for which Cbi E E. Since 
bc $ E, we have i 2 1; by Fact 2, we have i 3 2. But now, {a, C, 60, bl, . . . , bi} 
induces a C, with k 3 51. 

ByFactl,ccdEB, andso 

ccb’ (10) 

Now for the following Fact 3, symmetry allows us to assume that 

6’ cc’. (11) 

Fact3. BnC#8. 

Proof of Fact 3. Clearly, we may assume that no edge in G has one endpoint in B 
and the other in C, for otherwise we are done. 

Let i be the subscript for which Ci-1 < b’ < ci (such a subscript must exist by 

virtue of (10) and (11) combined). 
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Property (P) applied to the vertices q-l, b’, ci guarantees the existence of a 

vertex b” with b’b” E E, Ci_lb” $ E and ci c b”. We must have ~6” E E, else we 
contradict the maximality of b’. 

The shortest path joining 6’ and b with all the internal vertices in B, together 
with (a, 6, b”} determines a chordless cycle r. By assumption, rcontains at most 
four vertices. 

Next, note that 

cob’ E E 

[If not, then C#‘E E, or else b” contradicts our choice of c. But now, 

{a, co, cl, b”} U r induces a & or an &] 
Since cob” E E and ci-1 b” $ E, it follows that co and ci-1 are distinct vertices. 

Let j be the first positive subscript such that cjb” $ E (such a subscript must exist 
since Ci-1 6' $ E). Note that c~+~ b’ E E, for otherwise cj-1 contradicts our choice 

of the vertex c. 
But now, (~7~ cj-1, cj, Cj+l’ b’} induces a p’, with z = a or z = cj_2. This 

completes the proof of Fact 3. Cl 

Let w be the first vertex in the linear order < which belongs to B n C. By the 
definition of B, there exists a chordless path QB in B joining w and b satisfying 
(7); similarly the definition of C implies the existence of a chordless path Qc in C 
joining w and c, and satisfying (8). 

By our choice of the vertex w, Q, n Qc: = cw). By Fact 2, w is adjacent to at 
most one of the vertices b and c, and thus G must contain a chordless cycle of 
length at least fiv : induced by {a, !J, c} together with QB U Qc. 

With tb;-, *he “roof of Proposition 1 is complete. 0 

Proof of Theorem 4. Write G = (V, E). If the statement is false, then some 
linear order < on V produced by LBFS is not a semi-perfect elimination. We 
shall let a stand for the last vertex in the linear order c which contradicts (3). 
Write x E A whenever a <x. 

Let c be the largest vertex in N(a) n A for which there exist a vertex b in 
N(U) n A with bc $ E, and a vertex in N’(a) n A which is adjacent to precisely 
one of the vertices b and c. Our choice implies, trivially, that b < c. 

Since every ordering produced by LBFS satisfies property (P), Proposition 1 
guarantees that every vertex w in N(h) n N’(a) n A is adjacent to c. 

Therefore by our choice of a, we find a vertex d in A with cd E A and ad, 
bd $ E. We shall let d be as large as possible.. 

Property (P) applied to vertices a, b, c guarantees the existence of a vertex b’ 
such that ~6’ $ E, bb’ E E and CC 6’. By Proposition 1, we must have b’c E E. 
Obviously, b’d $ E, or else {a, 6, b’, c, d} would induce a &. 

We claim that 

dcb’. (12) 
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[To prove (12), assume b’ cd, and apply property (P) to the vertices c, b’, d; 
there exists a vertex b” with cb”$ E, b’b” E E and d < b”. Proposition 1 
guarantees that b”d E E. By Proposition 1, again, we must have bb” $ E. Clearly, 
ab” E E, else {a, b, b’, b’, c, d) induces an F2. But now, 6’ contradicts our choice 

of c.] 
Next, we claim that 

b cd. (13) 
[To justify (13), assume d < b, and apply property (P) to the vertices a, d, 6. We 
find a vertex d’ with ad’ $ E, dd’ E E and b < d’. Note that bd’ $ E, for otherwise 
{a, 6, c, d, d’} induces a p’ or a C,. Our choice of d guarantees that cd’ $ E. 
Further, b’d’ E E, or else d contradicts our choice of a. But now, 
(a, b, b’, c, d, d’} induces an F2.] 

By virtue of (12) and (13) combined, we can apply property (P) to the vertices 
b, d, b’. We find a vertex d’ with dd’ E E, bd’ $ E and b’ cd’. Note that since 
c < d’, we must have d’ # c. Clearly, ad’ $ E, for otherwise d’ contradicts our 
choice of c. Furthermore, cd’ $ E, or else d’ contradicts our choice of d. 

Now b’d’ ‘z E, for otherwise either c or d contradicts our choice of a. 
It follows that {a, b, b’, c, d, d’} induces an F2, a contradiction. 
With this the proof of Theorem 4 is complete. Cl 

Arote. The proof of Theorem 4 does not use the forbidden graph F,, and thus 
Theorem 4 provides a new proof of the main result of Hoang and Khouzam [9]. 
This result also characterizes the graphs for which the LBFS gives a semi-perfect 
elimination. 

In the remainder of this paper we shall point out how Theorem 4 can be used 
to find linear-time solutions for tl_ 2 four classical optimization problems for weak 
bipolarizable graphs, namely: 

l find a minimum colouring of G (a col~uring of the vertices of G using the 
smallest number of colours), 

0 find a largest clique (standing for a set of pairwise adjacent vertices) in G, 
l find a largest stable set (standing for a set of pairwise non-adjacent vertices) 

in G, and 
l find a minimum clique cover of G (a partition of the vertices of G into the 

smallest number of cliques). 
To solve all these problems in linear time, we shall rely on the following result. 

Proposition 2 (ChvBtal, Hoang, Mahadev, and de Werra [4]). Given any graph 
G = (V, E), along with a perfect order on G, one can find in time O(lVl + IE]) a 
minimum colouring of G and a largest clique in G. Given any graph G, along with 
a perfect order on its complement G, one can find in time O(l VI + IEI) a minimum 
clique cover and a largest stable set in G. 

Furthermore, we shall need the following easy observations. 
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Observation 2. If < is a semi-perfect elimination of a graph G, then the linear 
order C’ defined by 

x<‘y if,andonlyify<x 

is a perfect order on G. 

[To see this, consider vertices a, 6, c, d with ab, bc, cd E E, and such that a <’ b 
and d <’ c. This implies that b < a and c < d, and so either b or c contradicts the 
assumption that < is a semi-perfect elimination.] 

Observation 3* If < is a semi-perfect elimination on graph G, then < is a perfect 
order on the complement G of G. 

[Let 4, b, c, d be vertices of G with ab, bc, cd $ E, and such that a < b and d CC. 
But now, either a or d contradicts the assumption that < is a semi-perfect 
elimination, depending on whether or not a < d.] 

Let S be a weak bipolarizable graph. The following algorithm will produce a 
minimum colouring, a largest clique, a largest stable set and a maximum clique 
cover for G. 
step 1. Let < be the linear order produced by LBFS with G as input. 
step 2. Call Colour(G, C); 
step 3. Call Max-Clique@, c); 
step 4. Let <’ be obtained by reversing <; 
step 5. Call Colour(G, c ‘); 
Step 6. Call Max-Clique(G, c’). 

Here, Colour and Max-Clique are algorithms which, given a graph G along 
with a perfect order on G return a minimum colouring of G, and a largest clique 
in (3, respectively. Their existence, as well as their running time, is guaranteed by 
Proposition 2. In addition LBFS takes linear-time to return an ordering of the 
vertices of an arbitrary graph. Theorem 4 guarantees that, with a weak 
bipolarizable graph G as input, LBFS will return a semi-perfect elimination. 
Hence the above algorithm correctly solves the four optimization problems in 
linear time. 
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