18 research outputs found

    The Axiom of Choice in Cartesian Bicategories

    Get PDF
    We argue that cartesian bicategories, often used as a general categorical algebra of relations, are also a natural setting for the study of the axiom of choice (AC). In this setting, AC manifests itself as an inequation asserting that every total relation contains a map. The generality of cartesian bicategories allows us to separate this formulation from other set-theoretically equivalent properties, for instance that epimorphisms split. Moreover, via a classification result, we show that cartesian bicategories satisfying choice tend to be those that arise from bicategories of spans

    String diagram rewrite theory II: rewriting with symmetric monoidal structure

    Get PDF
    Symmetric monoidal theories (SMTs) generalise algebraic theories in a way that make them suitable to express resource-sensitive systems, in which variables cannot be copied or discarded at will. In SMTs, traditional tree-like terms are replaced by string diagrams, topological entities that can be intuitively thought of as diagrams of wires and boxes. Recently, string diagrams have become increasingly popular as a graphical syntax to reason about computational models across diverse fields, including programming language semantics, circuit theory, quantum mechanics, linguistics, and control theory. In applications, it is often convenient to implement the equations appearing in SMTs as rewriting rules. This poses the challenge of extending the traditional theory of term rewriting, which has been developed for algebraic theories, to string diagrams. In this paper, we develop a mathematical theory of string diagram rewriting for SMTs. Our approach exploits the correspondence between string diagram rewriting and double pushout (DPO) rewriting of certain graphs, introduced in the first paper of this series. Such a correspondence is only sound when the SMT includes a Frobenius algebra structure. In the present work, we show how an analogous correspondence may be established for arbitrary SMTs, once an appropriate notion of DPO rewriting (which we call convex) is identified. As proof of concept, we use our approach to show termination of two SMTs of interest: Frobenius semi-algebras and bialgebras

    String diagram rewrite theory II: Rewriting with symmetric monoidal structure

    Get PDF
    Symmetric monoidal theories (SMTs) generalise algebraic theories in a way that make them suitable to express resource-sensitive systems, in which variables cannot be copied or discarded at will. In SMTs, traditional tree-like terms are replaced by string diagrams, topological entities that can be intuitively thought of as diagrams of wires and boxes. Recently, string diagrams have become increasingly popular as a graphical syntax to reason about computational models across diverse fields, including programming language semantics, circuit theory, quantum mechanics, linguistics, and control theory. In applications, it is often convenient to implement the equations appearing in SMTs as rewriting rules. This poses the challenge of extending the traditional theory of term rewriting, which has been developed for algebraic theories, to string diagrams. In this paper, we develop a mathematical theory of string diagram rewriting for SMTs. Our approach exploits the correspondence between string diagram rewriting and double pushout (DPO) rewriting of certain graphs, introduced in the first paper of this series. Such a correspondence is only sound when the SMT includes a Frobenius algebra structure. In the present work, we show how an analogous correspondence may be established for arbitrary SMTs, once an appropriate notion of DPO rewriting (which we call convex) is identified. As proof of concept, we use our approach to show termination of two SMTs of interest: Frobenius semi-algebras and bialgebras

    Rewriting in Free Hypegraph Categories

    Get PDF
    We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing. In this work we give a combinatorial characterisation of arrows of a free hypergraph category as cospans of labelled hypergraphs and establish a precise correspondence between rewriting modulo Frobenius structure on the one hand and double-pushout rewriting of hypergraphs on the other. This interpretation allows to use results on hypergraphs to ensure decidability of confluence for rewriting in a free hypergraph category. Our results generalise previous approaches where only categories generated by a single object (props) were considered

    Diagrammatic Algebra: from Linear to Concurrent Systems

    Get PDF
    We introduce the resource calculus, a string diagrammatic language for concurrent systems. Significantly, it uses the same syntax and operational semantics as the signal flow calculus — an algebraic formalism for signal flow graphs, which is a combinatorial model of computation of interest in control theory. Indeed, our approach stems from the simple but fruitful observation that, by replacing real numbers (modelling signals) with natural numbers (modelling resources) in the operational semantics, concurrent behaviour patterns emerge. The resource calculus is canonical: we equip it and its stateful extension with equational theories that characterise the underlying space of definable behaviours—a convex algebraic universe of additive relations— via isomorphisms of categories. Finally, we demonstrate that our calculus is sufficiently expressive to capture behaviour definable by classical Petri net

    Modeling and Reasoning with Multisets and Multirelations in Alloy

    Get PDF
    Multisets and multirelations arise naturally in modeling; however, most modeling languages either have limited or completely lack support for multisets and multirelations. Alloy, for instance, is a lightweight relational modeling language which provides automatic analysis of models. In Alloy, ordinary sets and relations are the only first-class language semantic constructs; therefore to work with multisets and multirelations, modelers need to invent ad-hoc ways to encode these multiconcepts or rely on a third-party library that provides their implementations, assuming there is such one. In fact, such a library has been missing for Alloy, and implementing a fully functional multiconcepts library is challenging, especially when it is required to encode an algebra of operations over multiconcepts. This thesis presents two sound and practical mathematical formalizations of multiconcepts, namely, index-based and multiplicity-based, which encode multisets and multirelations using only basic concepts such as ordinary sets, total functions and natural numbers. We implement two generic multiconcepts libraries in Alloy based on the corresponding formalizations. Each library has a carefully designed interface and can be seamlessly integrated into existing relational models. We also perform an empirical evaluation on both implementations; the result shows multiplicity-based encoding is more scalable in terms of performance; thus, it is more preferable in practice
    corecore