
Modeling and Reasoning with
Multisets and Multirelations in Alloy

by

Peiyuan Sun

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Peiyuan Sun 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144149932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Multisets and multirelations arise naturally in modeling; however, most modeling lan-
guages either have limited or completely lack support for multisets and multirelations.
Alloy, for instance, is a lightweight relational modeling language which provides automatic
analysis of models. In Alloy, ordinary sets and relations are the only first-class language
semantic constructs; therefore to work with multisets and multirelations, modelers need
to invent ad-hoc ways to encode these multiconcepts or rely on a third-party library that
provides their implementations, assuming there is such one. In fact, such a library has been
missing for Alloy, and implementing a fully functional multiconcepts library is challeng-
ing, especially when it is required to encode an algebra of operations over multiconcepts.
This thesis presents two sound and practical mathematical formalizations of multiconcepts,
namely, index-based and multiplicity-based, which encode multisets and multirelations us-
ing only basic concepts such as ordinary sets, total functions and natural numbers. We
implement two generic multiconcepts libraries in Alloy based on the corresponding formal-
izations. Each library has a carefully designed interface and can be seamlessly integrated
into existing relational models. We also perform an empirical evaluation on both im-
plementations; the result shows multiplicity-based encoding is more scalable in terms of
performance; thus, it is more preferable in practice.

iii

Acknowledgements

I would first like to express my gratitude to my supervisor Krzysztof Czarnecki for the
guidance and support throughout my master study.

Furthermore, I would like to thank Zinovy Diskin and Michał Antkiewicz for the col-
laboration and inspiring input on this research topic.

I would also like to thank Grant Weddell and Derek Rayside as the readers of this
thesis, and I am grateful to their valuable comments on this thesis.

Finally, I must express my very profound gratitude to my mother for providing me with
unfailing support and continuous encouragement throughout my years of study. Thank you.

iv

Dedication

This is dedicated to my mother and all the people I love.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 A Running Example . 2

1.1.1 Requirements . 4
1.2 Contributions . 4
1.3 Related Work . 5
1.4 Structure of the Thesis . 6

2 Mathematical Foundation 7
2.1 Multiplicity-based Formalization . 7

2.1.1 Multisets and Operations . 7
2.1.2 Multirelations and Operations . 8

2.2 Index-based Formalization . 10
2.2.1 Multirelations as Spans . 10
2.2.2 Multisets as Families and Operations over Them 14
2.2.3 Mixed Setting: Families/Spans and Ordinary/Multi 15
2.2.4 Composition as Navigation . 16

2.3 Indices vs. Multiplicities . 16

vi

3 Multiconcepts Encoding in Alloy 18
3.1 Overview of Alloy . 18

3.1.1 Sets, Relations and Atoms . 18
3.1.2 Logic and Constraints . 19
3.1.3 Type System and Polymorphism 19
3.1.4 Integer . 20
3.1.5 Command and Scope . 20

3.2 Index-based Multiconcepts Implementation 20
3.2.1 Family and Span . 21
3.2.2 Span Composition . 23
3.2.3 Multiplicity of Elements . 24
3.2.4 Union, Intersection and Merge . 25
3.2.5 Domain and Range Restriction, Inverse 26
3.2.6 Lift and Drop . 26

3.3 Multiplicity-based Multiconcepts Implementation 27
3.3.1 Multiplicity-based Representation 27
3.3.2 Matrix Multiplication as Composition 28
3.3.3 Union, Intersection and Merge . 29
3.3.4 Domain and Range Restriction, Inverse 29
3.3.5 Lift and Drop . 29

4 Evaluation 31
4.1 Demonstration . 31
4.2 Performance . 35
4.3 Application . 38

5 Conclusion and Future Work 42

References 44

vii

APPENDICES 46

A Alloy Index-based Multiconcepts Library 47

B Alloy Numeric-based Multiconcepts Library 51

viii

List of Tables

4.1 Result of modeling two all-ones matrices, time in ms 37
4.2 Result of composition over two all-ones matrices, time in ms 38

ix

List of Figures

1.1 An instance of bundling . 3

2.1 A bundling instance after reification . 11
2.2 Pullback square . 12
2.3 Span composition . 13
2.4 Span isomorphism . 13
2.5 Family and family isomorphism . 14
2.6 Composing family with span . 15

4.1 Visualization of multiplicity-based model 32
4.2 Visualization of index-based model . 32
4.3 Visualization of index-based model with extra configuration 35
4.4 All-ones matrices multiplication when dimension is 3× 3 36
4.5 An instance of system architecture model with lifting 41
4.6 Another instance of system architecture model with lifting 41

x

Chapter 1

Introduction

A multiset (also known as bag) is a collection in which an element can occur multiple times.
A multirelation is a relation in which the same two elements can be related more than once.
We will refer to constructs with multiple occurrences as multiconcepts. Multiconcepts
often appear in modeling (see Sect. 1.1 for a motivating example), and some standard
modeling languages, such as UML and OCL, have partial support for multiconcepts by
allowing multiple occurrences (e.g., nonunique annotated association in UML and the bag
collection type in OCL), but usually lack operations over multiconcepts. In other modeling
languages such as Alloy, only ordinary sets and relations are first-class language constructs,
which means there is no direct way to work with multiconcepts and encoding is required.
Furthermore, in order to effectively model with multiconcepts, one must also encode an
algebra of operations over multiconcepts (like relational algebra for ordinary relations).

As far as we know, a systematic and principled encoding of multiconcepts in Alloy is not
present in literature. This thesis presents two theoretically sound and practically feasible
multiconcept formalizations. One is commonly known as the numeric approach, using
natural numbers to represent multiplicities (number of links between two objects); the other
formalization is under category-theoretical framework of span operations. Although the
framework is well-known in category theory, its accurate presentation in the MDE literature
and application to Alloy is novel. Both formalizations are based on simple mathematical
concepts: sets, relations (more specifically, total functions) and natural numbers, which
can be readily modeled in Alloy. Algebraic operations over multiconcepts are covered
completely in both formalization; however, implementing the entire multirelational algebra
in Alloy as a proper (but conservative) extension of the ordinary relational algebra turns
out to be non-trivial and requires solving numerous specific problems of Alloy encoding
of elementary operations over sets and functions. To ease using our solution in Alloy, we

1

implemented both formalizations as generic libraries allowing users to seamlessly integrate
multirelations into existing models with minimal effort; conservativity then ensures that
the ordinary relation part of the model is not broken.

In a nutshell, our Alloy library implementations cover multisets, multirelations, and
an algebra of operations over them. The encodings are composable, and compatible with
ordinary sets and relations — operations over the latter appear as specializations of their
multiconcept counterparts, which means one can integrate our multiconcept encodings
without breaking the existing model and losing the reasoning ability of Alloy analyzer.

1.1 A Running Example

We start with a simple scenario to motivate the concept of multisets and multirelations in
domain modeling. We will keep using this example in the future chapters:

A manager of a grocery store asks the employees to prepare some bundles for
the coming seasonal sale. A bundle contains several food items, and each item
belongs to a certain product category. The manager imposes two rules on the
content of each bundle:

• Every bundle must contain at least two dairy products;
• Every bundle must contain items from at least two product categories.

To model this scenario, we identify three classes of objects: Bundle, Item, and Category,
and two relations between them, contains : Bundle→ Item and belongsTo : Item→ Category.
A simple instance of this model is shown in Fig. 1.1. In this instance, the relation
contains consists of five links ci shown by arrows. Having two links relating the same
pair (B1,Bread) of elements means that the bundle B1 has two breads; we also say that
the pair (B1,Bread) occurs twice in the relation, and the latter is then called a multirela-
tion. The relation belongsTo is an ordinary relation (a Cantorian set of pairs) consisting
of three links/pairs bi.

In order to check the bundling rules given above, we need to compose the two relations
resulting in a new relation

contains ; belongsTo : Bundle→ Category,

2

Bundle

B1

B2

Item Category

contains belongsTo

c3

c4

b1

b2

b3

c2

c12

c11

Bakery

Dairy

Bread

Butter

Milk

Figure 1.1: An instance of bundling

where we use semi-colon to denote the composition operation. For the instance in Fig. 1.1,
the composition would consist of five composed links shown by dashed blue arrows (e.g.,
c11; b1 and c12; b1). As the bundle B1 has only one composed link to Dairy, it violates the
first rule, while bundle B2 has two Dairy links (c3; b2 and c4; b3), and thus satisfies the first
rule. Also, we can see that the bundle B1 satisfies the second rule (at least two categories),
whereas the bundle B2 violates the rule. A bundle containing one bread, one butter, and
one milk would be a valid instance satisfying both rules.

Now suppose that the bundle B1 has only one bread and hence contains would be an
ordinary relation. Nevertheless, composition contains ;belongsTo of two ordinary relations
could still be a multirelation containing two links from B2 to Diary. Actually, there are
two types of composition of ordinary relations. One is precise and counts each pair of
composable links as a separate composed link as we did above by creating two links c3; b2
and c4; b3, from B2 to Diary. The other one is known as traditional composition of relations
in relational algebra, which only deals with reachability, and links two elements (bundle B2
and Diary in the example) as soon as there is at least one composable pair of links between
those elements, but only retains one link irrespective to the number of paths (from B2 to
Diary). The former composition may result in a multirelation (and we call such composition
multijoin), the latter is always an ordinary relation (and we call it ordinary join). Clearly,
this latter composition loses some information, which may be important to consider, e.g.,
for checking the first rule in our example. In fact, this is a typical situation: computing the
price of a bundle composed from prices of its items price : Item→ Int, or the weight of a
bundle, or other aggregate queries (as they are called in the database literature), requires
multijoin and multirelations. On the other hand, there are situations whereby ordinary

3

join is apt enough. Consider, e.g., checking the second rule in our example when we are
only concerning with reachability.

1.1.1 Requirements

The discussion above leads to the following requirements for an effective multiconcepts
framework in a modeling environment. Modelers should be able to do the following on top
of ordinary sets and relations:

• directly declare a multiset or a multirelation;
• perform operations over multiconcepts, especially composition;
• control whether the result of an operation should be ordinary or multi.

For example, it should be possible to compute the multijoin of an ordinary relation with
a multirelation, or the multijoin of two ordinary relations. Furthermore, the syntax and
semantics of the extended framework should be conservative w.r.t. the ordinary operations
over ordinary objects, so that the modelers could add multiconcepts to their existing models
without having to restructure them.

1.2 Contributions

On the theoretical side, we revisit the common multiset and multirelation theory based
on numerical encoding; in addition, we present another formalization based on category
theory. Both formalizations are general purpose and can be used as blueprints for modeling
languages to implement utility libraries to support multiconcepts.

Another main contribution is our multiplicity-based and index-based multiconcepts li-
braries in Alloy, both of which support multiconcepts declaration and a complete set of
operations over multiconcepts. The multiplicity-based implementation has better perfor-
mance and is preferable to be used in practice. We release our multiconcept libraries
to Alloy community and users can work with multiconcepts by simply importing our li-
braries. Additionally, since our implementations cover algebraic operations over multicon-
cepts, these encoded operations can be used as semantic primitives to design a modeling
language which treats multisets and multirelations as first-class constructs and uses Alloy
as the target language for code generation.

4

1.3 Related Work

There is a large body of work about multisets treated numerically via multiplicities. Bliz-
zard presents a historical survey of the multiset theory [7], and traces back the idea of
multisets as families to [17]. A category-theoretic treatment of multisets and multirela-
tions can be found in, resp., [8] and [15].

Multisets and multirelations have not been researched extensively in the field of mod-
eling languages. We did not found any literature presenting a systematic study on multi-
concepts in Alloy or any other language. The closest related work is a discussion thread
on the website Stack Overflow; the title of the discussion is “Are there multisets in Al-
loy?” [1], asking if there is an explicit notion of bags provided in Alloy or any workaround
that can model multisets. Two answers are given in the thread, each of which attempts to
model multisets using the numerical approach, using a function returning the multiplicity
of a given element. The answers also provide implementations of operations such as union
and intersection on multisets; however, the proposed implementations are flawed, yielding
incorrect results in certain cases. No other operations such as composition are provided in
the discussion.

Multisets and multirelations arise when translating a modeling language which supports
multiconcepts to another language. Anastasakis et al. discuss a model transformation
from UML with OCL constraints to Alloy [2]. In their transformation approach, the bag
collection type in OCL is encoded using the built-in sequence utility module in Alloy.
Even though sequences allow multiple occurrences of the same element in a collection, this
approach is not optimal since by definition bags are unordered collections while sequences
are ordered. Besides, to the best of our knowledge, none of the UML to Alloy translation
approaches in existing literature (including [2] and [14]) covers the nonunique annotation
on associations, which allows declaring multirelations.

Multisets and multirelations are used in various fields. Feijs et al. have developed
a relational approach for software architecture analysis [11] and further generalized the
approach with multirelations [10]. Petri Nets and its variations such as Coloured Petri Nets
use multisets to define the concept plates, one of the components in Petri Nets [13] [16].
Robles et al. model Petri Nets in Alloy[18], using multisets implicitly. Baldan’s thesis [5]
on Petri Nets and graph grammars includes a categorical formalization of multiconcepts,
which is the core concept to define morphisms of Petri nets.

5

1.4 Structure of the Thesis

The rest of the thesis is organized into four chapters. Chapter 2 presents both formaliza-
tions of multiconcepts, starting with the numeric approach followed by the index-based
categorical framework. Chapter 3 briefly introduces Alloy and then demonstrates the im-
plementations of both formalizations in Alloy in detail. Chapter 4 evaluates both Alloy
implementations in terms of usability and performance; a system architecture example is
also presented as an application of multiconcepts. In Chapter 5 we conclude.

Parts of Chapter 2 and Chapter 3 were published as a paper [19] .

6

Chapter 2

Mathematical Foundation

In this chapter we present two different approaches to formalize multisets and multirela-
tions. The first one is based on numeric-valued functions; we will refer to it as multiplicity-
based or numeric. The second is borrowed from category theory and it is based on reifica-
tion of links as indices; we will call the approach index-based. We introduce the two formal
approaches and then discuss their relationships from the formal and modeling perspectives.

2.1 Multiplicity-based Formalization

2.1.1 Multisets and Operations

Representing multisets as numeric-valued function is a common approach. Intuitively, the
approach represents a multiset as a mapping from a set of elements (ground set) to a set
of numbers to carry the information about the multiplicity of each element. The formal
definition is shown as follows.

Definition 1 (Multiset)
A (finite) multiset over a set A is a function m : A→ N (N denotes the set of natural
numbers including zero). Set A is called the ground, and m is the multiplicity function.

As we do not exclude zero multiplicities,m actually defines a multi-subset of the ground.
The set {a∈A : m(a) 6= 0} is called the base of m, and it is an ordinary subset. Thus,
we define a function dropA : MSub(A)→ Sub(A) from multi- to ordinary subsets of A.
Conversely, a (trivial) function liftA : MSub(A)← Sub(A) makes an ordinary subset into a

7

multi-one with all multiplicities equal to 1. Subindex A will be often skipped. Clearly,
drop.liftX = X for any subset X, but lift.dropA 6= A as dropping discards the information
about A (where dot denotes function composition).

Definition 2 (Union and Intersection)
Let m and n be two arbitrary multisets over the same ground set A. There are two union
operations. The first, max-union, is denoted by max(m,n) and defined by max(m,n)(a) =
max(m(a), n(a)). Second, add-union, is denoted by m+n and defined by (m+n)(a) =
m(a) +n(a). There are two intersection operations. The first, min-intersection, is denoted
by min(m,n) and defined by min(m,n)(a) = min(m(a), n(a)). Second, mult-intersection,
is denoted by m×n and defined by (m×n)(a) = m(a)× n(a).

Let us see what these operation mean for ordinary sets lifted to multisets. Suppose we
have two subsets X, Y ⊂ A. It is easy to see that drop(max(liftX, liftY)) = X ∪ Y and
drop(min(liftX, liftY)) = X ∩ Y , which explains the names of the operations.

Now note that liftX + liftY is a representation of the disjoint union X] Y—we will
discuss this in more detail when we introduce our indexed formalism. It is also worth
noting that liftX + liftY is a multi- rather than ordinary set, and class Sub(A) where A is
an ordinary set is not closed under add-unions. The usual disjoint union notation hides
this fact and can be confusing. (Indeed, with a precise categorical formalization of the
disjoint union as the coproduct operation, disjoint union is a diagram of sets and functions
rather than a set.)

Finally, liftX × liftY coincides with min(liftX, liftY) and thus amounts to the same set
X ∩ Y .

2.1.2 Multirelations and Operations

Base on the definition of multisets, a (binary) multirelation is defined as a multiset over a
Cartesian product.

Definition 3 (Multirelation)
A binary multirelation from set A to set B is a function m : A×B → N . Number m(a, b)
is called the multiplicity of pair(a, b). Sets A and B are called the source and, respectively,
the target of m. To stress the different roles of sets A and B, we denote a multirelation by
an arrow m : A→N B.

Similarly to multisets, we have a function dropAB : MRel(A,B)→ Rel(A,B) from the
universe of all multirelations from A to B to the universe of all ordinary relations from A

8

to B. Conversely, any ordinary relation can be trivially seen as a multirelation whose all
multiplicities are equal to 1. We call this operation liftAB : MRel(A,B)← Rel(A,B). Index
A and B will be often skipped.

It is convenient to specify the multiplicity function of a multirelation m : A→N B by
a matrix, whose rows and columns are indexed by elements of sets A and B resp. For
example, in our sales scenario in Sect. 1.1, multirelations contains and belongsTo can be
defined by the following matrices.

contains Bread Butter Milk
B1 2 1 0
B2 0 1 1

belongsTo Bakery Dairy
Bread 1 0
Butter 0 1
Milk 0 1

Clearly, drop(belongsTo) ∼= belongsTo ∼= lift(belongsTo), which is trivially true for any
ordinary relation.

Two multirelations are called (sequentially) composable if the target of the first is the
source of the second. For example, contains and belongsTo are composable.
Definition 4 (Sequential Composition)
Let m : A→N B and n : B →N C be two composable relations. First, for a given a ∈ A,
we define function ma_ : B ← N by setting ma_(b) = m(a, b), and similarly for a given
c ∈ C, we have function n_c : B → N with n_c(b) = n(b, c). Now composed multirelation
m×n : A→N C is defined by the following formula: for any a ∈ A and c ∈ C, (m×n)(a, c) =∑

b∈B ma_(b) · n_c(b).

If multiplicities are specified as matrices, then it is easy to see that the matrix of the
composition is given by matrix multiplication.

In the sales example, if the multirelation result denotes the composition contains;belongsTo,
then by the definition above:

result(B1, Bakery) = 2 · 1 + 1 · 0 + 0 · 0 = 2
result(B1, Dairy) = 2 · 0 + 1 · 1 + 0 · 1 = 1
result(B2, Bakery) = 0 · 1 + 1 · 0 + 1 · 0 = 0
result(B2, Dairy) = 0 · 0 + 1 · 1 + 1 · 1 = 2

It is easy to see that if R1 ⊂ A×B and R2 ⊂ B×C are ordinary relations, then
liftR1×liftR2 is, in general, a multi- rather than an ordinary relation from A to C. However,
dropping multiplicities makes its an ordinary relation known as relational composition.
Thus, the latter is drop(liftR1× liftR2).

9

2.2 Index-based Formalization

This section introduces the index-based formalization. We first introduce the concept of a
span, explaining through the example from Sect. 1.1. Then we introduce the index-based
version of multisets—the notion of a family of elements. We will also define operations
over spans, operations over families, and mixed compositions of spans with families.

2.2.1 Multirelations as Spans

We formalize the mapping contains in Fig. 1.1 by reifying all its constituent links as separate
objects. This gives us a set Contains consisting of five elements ci as shown in Fig. 2.1. The
special nature of these elements (they represent links) is formalized by mapping each of
them to the source and the target elements of the respective link. For example, as element
c1 ∈ Contains reifies link c1 from B1 to Bread in Fig. 1.1, it is linked to B1 by the source
link c1s, and to Bread by the target link c1t.

All source links make a function slegContains : Bundle← Contains called the source leg,
and all target links make a function tlegContains : Contains→ Item called the target leg. The
triple (Contains, slegContains, tlegContains) is called a span with the head set Contains and legs as
above. Similarly, relation belongsTo is formalized by the span with the head set BelongsTo
(see Fig. 2.1).

Definition 5 (Span)
A (finite) span R from a set A to a set B is a triple (headR, slegR, tlegR) with headR being a
set called the head, and slegR : A← headR, tlegR : headR → B, two functions called legs. In
formal diagrams, we will often use a shorter notation (HR, sR, tR) for span’s components.
We denote a span by a stroked arrow R : A9 B, and will often use the same name for
both the span and its head.

If a span represents a total single-valued relation, i.e., a function f : A→ B, its source
leg is a bijection (e.g., the relation belongsTo in Fig. 1.1 is such). As the choice of the
index set is arbitrary, we can take set A to be the head, and its identity idA : A→ A as the
source leg. Then the target leg is the function f itself.

Note also that sets A and B in Def. 5 are actually placeholders (formal parameters) for
sets rather than actual sets. For example, if we want to specify a multirelation R = Spouse
on a set Person1, then we define A = Person, B = Person, headSpouse = marriageContract,

1the same two persons can be multiply related, if, e.g., they got divorced and then re-married again,
and hence may have several marriage contracts

10

Bundle

B1

B2

Category

Contains

Bakery

Dairy

Item

Bread

Butter

Milk

c1

c2

c3

c4

c5

BelongsTo

b1

b2

b3

iResult

r1

r2

r3

r4

r5

slegResult tlegResult

slegContains

tlegContains slegBelongsTo

tlegBelongsTo

slegiResult tlegiResult

Result

c1s

c1t

Figure 2.1: A bundling instance after reification

slegSpouse = spouse1 and tlegSpouse = spouse2, where functions spouse1 and spouse2 map
a contract to the two spouses it binds. Formally, this procedure can be described as
binding formal parameters, A, slegR etc. to actual values Person, spouse1 etc. Nodes and
arrows in diagrams used in all our formal definitions below are formal parameters to be
substituted by actual values (sets for nodes and functions for arrows), when applied in
modeling situations.

Now we proceed to the index-based formalization of sequential composition of relations.
Our discussion of Fig. 1.1 showed that the core process is composition of links. As links
now are reified as elements in the heads of the spans involved, first of all we need to find
composable pairs of links.

It is clear that links ci ∈ Contains and bj ∈ BelongsTo are composable iff the target
of ci is the source of bj, i.e., tlegContains(ci) = slegBelongsTo(bj). If this condition holds, the
two links are composable, and we can create a new link from slegContains(ci)∈Bundle to
tlegBelongsTo(bj)∈Category. Thus, the set of all composable links iResult (where i stands for

11

A1
f1 // Y

P

p1

OO

p2
// A2

f2

OO

Figure 2.2: Pullback square

’inner’, as later we will also build an outer span) is given by the following formula:

iResult =
{
(ci, bj) : tlegContains(ci) = slegBelongsTo(bj)

}
.

This set is equipped with two projection functions selecting, resp., the first or the
second element of pair (ci, bj), and we obtain a span iResult shown in Fig. 2.1 as the
inner span. To finish the composition and obtain the resulting outer span Result, we need
function composition: slegResult = slegiResult; slegContains and tlegResult = tlegiResult; tlegBelongsTo
(see Fig. 2.1). Below we present an abstract formal specification of the procedure.

Selection of the composable links is provided by the operation called (in category theory)
pullback of functions.

Definition 6 (Pullback)
The pullback of two functions with a common target, f1 : A1 → Y and f2 : Y ← A2 is a span
with head P = {(a1, a2) ∈ A1×A2 : f1(a1) = f2(a2)}. The legs of the span are projections
pi : P → Ai with pi(a1, a2) = ai, i = 1, 2. Fig. 2.2 shows the respective pullback square
(note the angle near P denoting such squares). It is easy to check that such a pullback
square is commutative: p1; f1 = p2; f2.

Now we can define span composition.

Definition 7 (Span Composition)
Let R1 : A9 B, R2 : B 9 C be two composable spans. Their (sequential) composition is a
span R1;;R2 = (R, s, t) : A9 C defined as shown in Figure 2.3, where arc arrows (s and t)
denote functions composed from two functions spanned by arcs (we will use this convention
further on). In more detail, we first compute the pullback of functions t1 and s2 to select
all pairs of composable links. Then we build the outer legs by composing p1; s1 and p2; t2.

If span R2 represents a function (total single-valued relation), we can perform span com-
position more effectively by taking R2’s source leg to be the identity, and hence tlegR2=R2.

12

A

R1
t1 //

s1

OO

B

R

p1

OO

p2
//

s

CC

t

66R2

s2

OO

t2
// C

Figure 2.3: Span composition

A HR2

sR2oo

tR2
��

HR1

sR1

OO

tR1

//
b

99

B

Figure 2.4: Span isomorphism

Then we set headR1;;R2=headR1 , slegR1;;R2=slegR1 , and tlegR1;;R2=tlegR1 ;tlegR2 . This span
is isomorphic to any other span representing relation R2 with an arbitrary index set I
bijective to B (because the relation is total and single-valued). For example, as relation
belongsTo in our running example is a function, we can compose Contains and BelongsTo
in this simpler way by identifying b1,2,3 with Bread, Butter and Milk resp. The result will
be isomorphic to the span specified in Fig. 2.1 in the following sense.

Definition 8 (Span Isomorphism)
Two parallel spans R1 : A9 B, R2 : A9 B are isomorphic if there is a bijection be-
tween their heads, b : HR1 → HR2 , such that sR1 = b; sR2 and tR1 = b; tR2 (as shown in
Fig. 2.4). The two commutativity conditions ensure that if a link h∈HR1 is mapped to a
link b(h)∈HR2 , then both links have the same source and target.

Thus, span composition is defined up to span isomorphism. Moreover, the process
of relation indexing by a span is also defined up to isomorphism: we are free in choosing
objects reifying links, but the source and target projection links of these objects are uniquely
determined by the link being reified. In fact, everything in the indexing world is defined

13

A

I

f
@@

b // I ′

f ′
^^

Figure 2.5: Family and family isomorphism

up to natural isomorphisms (bijections between index sets commuting with the respective
functions). In this paper, we take particular representatives of equivalence classes defined
by isomorphism like above, and perform operations over them. General results of category
theory, in which standard operations over sets and functions are redefined via so called
limits (e.g., pullback) and colimits (e.g., merge) up to isomorphism ensure that applying
these operations to different but isomorphic representatives produces isomorphic results
(see, e.g., [6]).

2.2.2 Multisets as Families and Operations over Them

We use the same indexing idea of reifying element occurrences as unique indices to dis-
tinguish the multiple occurrences of the same element. This leads us to the concept of a
family, which we use to represent multisets.

Definition 9 (Families and Family Isomorphism)
Let A be a set (perhaps, infinite). A (finite) family over A is a function f : I → A from a
finite index set I to A. The latter is called the ground set of family f , while the range set
of function f , i.e., set {f(i) : i∈I} ⊂ A, is often called the active domain of f (it is always
finite as set I is such). To avoid confusion, we will use the term ’range set’ rather than
’active domain’. Two families, f : I → A and f ′ : I ′ → A, over the same ground set A are
called isomorphic, and we write f ∼= f ′, if and only if there is a bijection b : I → I ′ such
that b; f ′ = f (as shown in Fig. 2.5).

We can use the operation of family multiunion for building disjoint union of sets (not
surprisingly, as multiunion uses disjoint union of index sets). Given sets A and B, we
form their union U = A∪B with two injections i : A→ U and j : B → U . These injections
can be seen as two families over the same ground set. Summing them gives us a family
u : A]B → U , whose index set is the disjoint union of A and B.

14

I
f // A

P

p1

OO

p2 //

f ;;S

77S

s

OO

t // B

Figure 2.6: Composing family with span

2.2.3 Mixed Setting: Families/Spans and Ordinary/Multi

Connections between ordinary and multi(sub)sets are realized via the following two func-
tions. Given a set A, we have function dropA : MSub(A)→ Sub(A) from multi- to ordinary
subsets of A that ignores indexes and only cares about the range set of a family. Con-
versely, a (trivial) function liftA : MSub(A)← Sub(A) makes an ordinary subset X ⊂ A
into a multiset by taking I = X and f(x) = x for any index x.

Clearly, dropA.liftAX = X for any X ⊂ A, but liftA.dropAf 6= f as dropping dis-
cards the information about family f (where dot denotes function composition). Simi-
larly, we have functions dropAB : MRel(A,B)→ Rel(A,B) from the universe of all multire-
lations from A to B to the universe of all ordinary relations from A to B, and, conversely,
liftAB : MRel(A,B)← Rel(A,B) defined in an obvious way.

It is easy to see that the ordinary union of two ordinary sets X, Y can be presented as
drop(liftX ∪ liftY). Similarly, ordinary composition of two ordinary relations X ⊂ A×B,
Y ⊂ B×C is drop(liftX;; liftY).

In ordinary relational modeling, given a relation R : A9 B, we often need to build the
R-image of a subset X ⊂ A, and the R-preimage of a subset Y ⊂ B. In multi-modeling,
subsets are families and relations are spans, hence, we need the notions of the image and
preimage of family w.r.t. a given span. Remarkably, both notions can be formally defined
via pullbacks as described below.

Definition 10 (Composing a Family with a Span)
Given a family f : I → A and a span S : A9 B, their composition is a family f ;;S : P → B
defined by the diagram in Fig. 2.6 (recall that arc arrows denote functions obtained by
composition of two functions spanned by the arc). This family is also called the S-image
of f .

15

The (inverse) composition of span S : A9 B with a family g : J → B is a family
S;; g : P → A defined by a diagram dual to the one in Fig. 2.6: we begin with pullback of
g and t, which gives us a pair of arrows (q1, q2), and then set S;; g = q1; s. This family is
called the S-preimage of g.

2.2.4 Composition as Navigation

Span composition can be also defined in a navigational style. Given a span R : A9 B,
we can represent it as a function φ : A→ MSub(B) by represeting an element a ∈ A as
a “family” a∗ : {∗} → A with a∗(∗) = a, and defining φ(a) = a∗;;R. This is nothing
but a special case of the general image-operation described in Def. 10. The latter can be
described as a function φM

R : MSub(A)→ MSub(B). Now, if we have spans R1: A9 B and
R2: B 9 C, we represent them as functions φR1 : A→ MSub(B) and φR2 : B → MSub(C),
respectively. Span composition is then represented by the function composition φR1.φ

M
R2,

which is not difficult to show as equal to φR1;;R2 (see e.g. [3] for an elementary proof).
That is, given an element a ∈ A, its (R1;;R2-image) (which is a family (multiset) over C)
can be computed either relationally as (a∗;;R1);;R2 = a∗;; (R1;;R2), or navigationally as
a.φR1.φ

M
R2. Note also that the special case when multirelation R1 is not defined on a is

well treated without exclusion, because then multiset φR1(a) will be empty (i.e., an empty
family given by an empty function ∅ : ∅ → B), and φM

R2(∅) = ∅.
The description above shows that span composition effectively prevents the NULL-

navigation safety issue occurring in many textual languages such as OCL[20]. Indeed, we
use empty multisets to represent the case of non-existence similarly to how other languages
use NULLs. Any composition with an empty multiset results in an empty multiset without
special treatment. Hence, the navigation is always safe.

2.3 Indices vs. Multiplicities

We compare the expressive power of the two frameworks, first for the unary constructs
(families and multisets), and then for binary (spans and multirelations).

Families vs. Multisets. Every family f determines itsmultiplicity functionmf : A→ N
by setting mf (a) = #f−1(a) for all a∈A, where the operator # denotes ordinary set car-
dinality. Note that as we do not require f to be surjective, multiplicity may be equal to

16

zero for some elements. It is easy to see that isomorphic families provide the same mul-
tiplicity function: f ∼= f ′ implies mf = mf ′ . Conversely, if two families over A have the
same multiplicity function, then they are isomorphic (because any two sets of the same
cardinality can be bijectively related). It is easy to see for any multiset, we have mfm = m,
and for any family f , we have f(mf) ∼= f (in the sense of Definition 9). Thus, the notions
of multiset and family are equivalent.

Theorem 1
Let f1, f2 be two arbitrary families over the same ground set.

(a) f1 ∼= f2 iff mf1 = mf2 .
(b) mf1+f2 = mf1 + mf2 . Thus, merging families is the indexed counterpart of the

add-union of multisets.
(c) mf1×f2 = mf1 × mf2 . Thus, product of families is the indexed counterpart of the

mult-intersection of multisets.

Spans vs. Multirelations. Given a multirelationm : A→N B, we build a span Sm : A9 B
as follows. For all a∈A, b∈B, let Iab be any set with cardinality m(a, b), and let Im =⊎

a∈A,b∈B Iab be their disjoint union. We define functions sm : Im → A and tm : Im → B by
setting sm(i) = a and tm(i) = b if i∈Iab. Now we define span Sm = (Im, sm, tm). Con-
versely, given a span S : A9 B, we define a multirelation mS : A×B → N by setting for
all a∈A, b∈B

mS(a, b) = # {h ∈ headS : a = slegS(h) and tlegS(h) = b} .

Now it is easy to see that for any multirelation, we havem(Sm) = m, and for any span S,
we have S(mS) ∼= S (in the sense of Definition 8). Thus, wrt. formal expressiveness, the no-
tions of multirelation and span are equivalent (up to the indexing set isomorphism). More-
over, we can prove a much stronger result that Sm×n

∼= Sm;Sn, and mS1;S2 = mS1 ×mS2 .
Thus, the correspondence between spans and multirelations is compatible with operations
over them.

17

Chapter 3

Multiconcepts Encoding in Alloy

Alloy modeling language and analyzer were created by Daniel Jackson and his team [12].
Instead of focusing on theorem proving like B, VDM and Z, Alloy emphasizes automatic
analysis of models. The Alloy language itself has a lot of similarities to object-oriented
programming languages; language features such as as single inheritance, subtyping type
system and navigational access style are supported in Alloy. The underlying logic system
of Alloy is first-order logic with relational algebra and transitive closure, which is easy to
understand and powerful enough to express specifications upon Alloy models.

3.1 Overview of Alloy

3.1.1 Sets, Relations and Atoms

Sets and relations, which are simple abstract concepts yet powerful enough to describe any
complex system, are the building blocks of models in Alloy. Conceptually, Alloy unifies
sets and relations by treating sets as unary relations. Alloy does not distinguish sets and
elements (scalars) by introducing the concept atom. An atom is essentially a unary relation
(set) containing a single tuple, which is not divisible and remains uninterpreted. Breaking
down the distinction between sets and elements might be counter-intuitive, but in practice
it brings a nice uniformity on the language design such that the syntax can be simplified.
The example below demonstrates a set (Item), a relation (belongsTo) and an atom (Bread)
in textual notation:

18

Item = {(Bread), (Butter), (Milk)}
belongsTo = {(Bread,Bakery), (Butter,Dairy)}

Bread = {(Bread)}

In terms of syntax, keyword sig (signature) declares a set of atoms. Relations are
declared as fields of signatures. The number of atoms in a introduced set is not fixed,
which could even be empty set. Alloy also supports subtyping by the keyword extends,
representing a subset of atoms inside the superset. All subsets are ensured to be disjoint
if they are introduced by the keyword extends.

3.1.2 Logic and Constraints

Alloy relies on a first-order relational logic system, which can be automatically analyzed by
limiting the scope (number of atoms in each set) of a model. The purpose of constraints in
Alloy is to state specifications on a model or to check if a certain property in a model holds
true. There are three forms of constraints in Alloy: fact, predicate and assertion. Facts are
logic expressions to state that some properties in a model are always true. Predicates are
parametrized logic expressions, which can accept and apply on different inputs. Assertions
are used to command the Alloy analyzer to check if the property stated in an assertion
always holds true in a model; the analyzer will search in a finite solution space (since the
scope is limited), trying to find a counter-example.

3.1.3 Type System and Polymorphism

Generally, polymorphism mechanisms provided in programming languages are the key
feature to implement generic codes. In Alloy, the type system supports subtypes; by the
nature of subtyping, subtype polymorphism (inclusion polymorphism) is supported. For
any two types S and T , if there is a subtype relation between them (denoted as S <: T),
it means that any context expecting a term of type T can safely accept a term of type S.
The top type, which is the super type of every other type, is defined by the keyword univ
in Alloy. Using top type univ in type signatures as type placeholder is one common way
to write generic predicates or functions in Alloy; the side effect is the loss of type safety.

Alloy also supports a certain degree of parametric polymorphism by the feature called
parametric module. Module is the unit of reusable code in Alloy. In every module, a list

19

of type parameters can be declared at the beginning and instantiated when the module
is being imported. This mechanism of parametrization is more of a textual substitution
approach like macros in the C programming language. Instantiating a module is just
replacing all the type parameters in the module with given concrete types.

3.1.4 Integer

Alloy supports integers with special treatments. In spite of the fact that atoms in Alloy is
uninterpreted, there is a library coming along with Alloy distribution which treats integers
as a special class of atoms. Each raw integer value of type int is wrapped within an atom
of type Int (like the Integer wrapper class of raw type int in Java). Integer in Alloy
needs to be carefully taken when using because of the limit of bitwidth; overflow often
happens and unexpected instance might be given in the analyzer.

3.1.5 Command and Scope

In an Alloy model, each set has a scope, which makes an upper bound of the number of
atoms in it. Consequently, the total possible instances of the model is finite; thus theoret-
ically, a model can be automatically analyzed by enumerating all the possible instances.
Alloy relies on small-scope hypothesis [12], arguing that the deficiencies of a model are
highly possible to be found given only a small scope. In practice, to analyze or verify
an Alloy model, one needs to issue a command along with the scopes of signatures de-
clared in the model. There are two kinds of commands: command run will instruct the
Alloy Analyzer to find all the valid instances that satisfy all the constraints stated in the
model; command check followed with an assertion will instruct the analyzer to try to find
a counter-example that contradicts the assertion. However, even if no counter-example is
found, it does not necessarily prove that the assertion is always true because of the limit
in small-scope hypothesis.

3.2 Index-based Multiconcepts Implementation

Sets and relations in Alloy are ordinary and there is no first-class support for multicon-
cepts. In order to work with multisets and multirelations, encodings are necessary. In
Chapter 2 we demonstrate two mathematical approaches to formalize multiconcepts; both
are encodable in Alloy since the concepts used in the formalizations are nothing but sets,

20

relations and natural numbers, all of which are supported in Alloy. We start by presenting
the index-based encoding, and then we present the multiplicity-based encoding. We have
two objectives for the implementation: firstly the implementation should be generic and
reusable; secondly the implementation should expose a clean interface so that users can
import and use the multiconcept implementation with minimal efforts.

3.2.1 Family and Span

Before we dive into the actual implementation of index-based multisets and multirelations,
we start drafting from the perspective of types: the type of a multiset or a multirelation
should be a type constructor (a special kind of type which has type parameters and can
be instantiated by given concrete types), denoted as follows.

multiset :: MSet(t)
multirelation :: MRel(s, t)

To interpret, the type of a multiset has a type parameter t, which can be instantiated
with a concrete type, for example, a primitive type named Item; then we obtain a type
MSet(Item) representing the type of a multiset of Item. The instantiation mechanism
applies to the multirelation type in the same way such as MRel(Bundle, Item).

The discussion of types of multisets and multirelations is trying to shed light on the
implementation of multiconcepts in Alloy. Conceptually multisets and multirelations are
generic data types; families and spans are structures which represent multiconcepts; there-
fore they should also reflect the generality. Polymorphism in programming languages is
often used to implement generic data structure; there is no exception in Alloy: parametric
polymorphism provided by parametric module is naturally a proper technique to model
families and spans.

21

1 module mset [t]
2

3 sig Idx {
4 f : one t
5 }
6

7 fun get[] : Idx -> t {
8 f
9 }

1 module mrel [s, t]
2

3 sig Head {
4 sLeg: one s,
5 tLeg: one t
6 }
7

8 fun get[]: s -> Head -> t {
9 a: s, h: Head, b: t |

10 h.sLeg = a && h.tLeg = b
11 }

Both modules declare type parameters at the beginning, which can be instantiated on
demand. The structure of families and spans are constructed from the index set. For
families, we create a signature named Idx, in which there is a relation f pointing to
another set of type t (t is a type parameter). The modifier one ensures that relation f is
a total function, since every element in set Idx must be linked with exactly one element in
another set. A span is implemented in a similar way: a index set named Head containing
two totally-defined single-valued functions sLeg and tLeg pointing to source s and target
t as the mathematical definition of a span.

The structure of a family or a span can be flattened as a plain relation in tabular form.
A family can be viewed as a totally-defined single-valued binary relation; a span can be
viewed as a ternary relation, in which head set sits in the middle column along with source
and target sets on the sides. Based on the views above, each module exposes a function
get which transforms its internal structure to a binary or a ternary relation (line 7 and
line 8 resp.).

There are two benefits of the transformation described above: firstly we could write
the parameter type and return type of a function or a predicate operating on a family or a
span without knowing the internal structure of our encoding (the internal structure is not
visible until the parametric module has been instantiated by the time of importing); second,
we gain the interoperability between ordinary concepts and multiconcepts automatically.
Since a span is transformed to a ternary relation, it can be joined with another total single-
valued binary relation using the built-in dot operator resulting in another ternary relation
which is just the ternary form of another span.

On the other hand, we can still retrieve the components of a family or a span from the
returned binary or ternary relations. Alloy provides utility modules to work with binary
and ternary relations in the default distribution. We use them to manipulate binary and
ternary relations to implement the helper functions, see module multi in Appendix A.

22

3.2.2 Span Composition

The importance of composition cannot be overstated. For ordinary relations, it is stated
as “the quintessential relational operator is composition.” [12] in the Alloy book. This
importance also applies to the composition operation over multiconcepts. In the index-
based formalization, it contains two steps to perform composition:

1. perform the pullback operation;
2. functionally compose the legs to get the final result.

We first implement the pullback operation. In the pullback square
diagram on the right, the given sets and relations are X1, X2, Y , f1
and f2; the calculated parts are P , p1 and p2 by the pullback operation.
The result of a pullback operation can be understood as the information
of the pairs of elements from X1 and X2 pointing to the same element
in set Y . The Alloy code for pullback operation is shown as follows.

X1
f1 // Y

P

p1

OO

p2
// X2

f2

OO

1 pred pullback[X1: univ, X2: univ,
2 f1: X1 -> one univ, f2: X2 -> one univ,
3 P: univ, p1: P -> X1, p2: P -> X2]
4 {
5 (no X1 or no X2) implies {
6 no P
7 } else {
8 all x1: X1 | all x2: X2 | x1.f1 = x2.f2 implies
9 { one p: P | p.p1 = x1 && p.p2 = x2 }

10 #P = #(f1.~f2)
11 }
12 }

We first deal with the case when set X1 or set X2 is empty (line 5), which implies set P
is also empty. The constraint in line 8 and 9 simply obeys the definition of pullback. We
iterate the elements in set X1 and X2. If elements x1:X1 and x2:X2 satisfy the condition
x1.f1 = x2.f2, it implies that there must be one element p in set P which makes the
pullback diagram commute by applying the constraint p.p1=x1 && p.p2=x2.

This constraint sets a lower bound to the solution space. With this constraint solely,
the solver will generate all the correct atoms in set P and possibly some unexpected atoms
due to the lack of an upper bound constraint. We set an upper bound to the solution space
using the fact that the cardinality of set P is equal to the cardinality of the composition
result f1.˜f2 according to the definition of pullback.

23

We reuse the pullback predicate to implement the composition operation. Before we
go into details, we should notice that set P is fresh and disjoint with any other set in the
pullback diagram, this is why pullback cannot be encoded as a function in Alloy because
it is impossible to generate a set that has not been declared ahead in a function. This is
also the reason that we need to manually declare a multiset or a multirelation to hold the
result of composition.

Once we have the pullback predicate, we could use it as a helper sub-predicate to
implement the composition predicate. The composition predicate is located in module
mset and mrel to state that the current family or span is the result of composition from
other families and spans.

1 // in module mset [g]
2 open multi
3

4 // current family is composed from fami & span
5 pred composedFrom[fami: univ -> one univ, span: univ -> univ -> g] {
6 let I = fami.idx, Hd = span.head,
7 sLeg = span.sleg, tLeg = span.tleg
8 | some p1: Idx->I, p2: Idx-> Hd
9 | pullback[I, Hd, fami, sLeg, Idx, p1, p2] // Step 1, pullback

10 && f = p2.tLeg // Step 2, functional compostion of legs
11 }

1 // in module mrel [s, t]
2 open multi
3

4 // current span is composed from span1 & span2
5 pred composedFrom[span1: s -> univ -> univ, span2: univ -> univ -> t] {
6 let Hd1=span1.head, Hd2=span2.head,
7 sLeg1=span1.sleg, tLeg1=span1.tleg,
8 sLeg2=span2.sleg, tLeg2=span2.tleg
9 | some p1: Head -> Hd1, p2: Head -> Hd2

10 | pullback[Hd1,Hd2, tLeg1,sLeg2, Head,p1,p2] // Step 1, pullback
11 && sLeg = p1.sLeg1 && tLeg = p2.tLeg2 // Step 2, functional composition of legs
12 }

3.2.3 Multiplicity of Elements

In the index-based encoding, we can specify the multiplicity of a element in a multiset
by indirectly putting constraint on the multiplicity of indices pointing to the element; the

24

same approach applies to span-structured multirelations. We expose a predicate named
moe in module mset and mrel respectively as follows:

1 module mset [g]
2

3 pred moe[e: g, n: Int] {
4 #(f.e) = n
5 }

1 module mrel [s, t]
2

3 pred moe[source: s, target: t, n: Int] {
4 #(source.(get[]).target) = n
5 }

3.2.4 Union, Intersection and Merge

Let A and B be two multisets. If an element e occurs x times in A and y times in B, it
occurs x + y times in the result of merge A + B. In our encoding, it is simply a union
of two families (assuming their index sets are disjoint). For the union of two multisets, if
element e occurs x times in A and y times in B, it occurs max(x, y) times in the result of
union A ∪B. Similarly, e occurs min(x, y) times in the result of intersection A ∩B.

Set comprehension is used to implement union and intersection operations as functions.
Merge (or disjoint union) can be simply encoded as the union of two families.

1 // max-union, element with larger multiplicity wins
2 fun union[f1, f2: univ->one univ] : univ->one univ {
3 let I = idx[f1]+idx[f2], G = grd[f1]+grd[f2] |
4 { i: I, g: G | (i in idx[f1] && g = i.f1 && #f1:>g >= #f2:>g) or
5 (i in idx[f2] && g = i.f2 && #f1:>g < #f2:>g) }
6 }
7 // min-intersection, element with smaller multiplicity wins
8 fun intersection[f1, f2: univ->one univ] : univ->one univ {
9 let I = idx[f1]+idx[f2], G = grd[f1]+grd[f2] |

10 { i: I, g: G | (i in idx[f1] && g = i.f1 && #f1:>g <= #f2:>g) or
11 (i in idx[f2] && g = i.f2 && #f1:>g > #f2:>g) }
12 }
13 // disjoint union, simply a union of two families
14 fun merge[f1, f2: univ->one univ] : univ->one univ {
15 f1 + f2
16 }

25

3.2.5 Domain and Range Restriction, Inverse

Since we can transform a span to a ternary relation, it is straightforward to implement the
operation inverse by simply flipping the first and third column of the ternary relation.

The built-in domain and range restriction operators are directly applicable to the trans-
formed ternary relation.

1 // flip the 1st and 3rd column
2 fun inverse[span: univ->univ->univ] : span {
3 ter/flip13[span]
4 }

3.2.6 Lift and Drop

An ordinary set can be viewed as a multiset by assigning each element a unique index.
In the same way, an ordinary relation can be seen as a multirelation. Therefore, we can
transform an ordinary set or relation to a multiset or multirelation in our encoding. The
operation lift is implemented as follows:

1 // in module mset [g]
2

3 pred liftedFrom[G: g] {
4 Idx.f = G && #Idx = #G
5 }

1 // in module mrel [s, t]
2

3 pred liftedFrom[r: s -> t] {
4 (~sleg).tleg = r && #Head = #r
5 }

Conversely, we can transform a multiset or multirelation to an ordinary set or relation
by dropping the indices, which is encoded as follows:

1 // in module multi
2 fun drop[f: univ -> one univ] : univ {
3 rel/ran[f]
4 }
5

6 fun drop[span: univ -> univ -> univ] : univ -> univ {
7 ter/select13[span]
8 }

26

3.3 Multiplicity-based Multiconcepts Implementation

3.3.1 Multiplicity-based Representation

In the multiplicity-based multiconcepts library, we mainly leverage the top type and co-
variance in Alloy’s subtyping system to implement generic representations and operations
for multisets and multirelations. The universal type for sets and binary relations in Alloy
are univ and univ->univ. What we need to do is augmenting the type with an ex-
tra column to carry the multiplicity information, which results in types Int->univ and
univ->Int->univ (the position of type Int can be arbitrary but it is convenient to im-
plement some operations when type Int is in the middle). In other words, any expression
with subtype of Int->univ or univ->Int->univ can be considered as a representation of
a multiset or a multirelation (with one extra constraint applied). For example, a valid
encoding of a multirelation is shown below,

1 abstract sig Bundle {
2 contain : Int -> Item
3 }
4 abstract sig Item {}

the expression contain refers to a ternary relation with type Bundle->Int->Item which
is a subtype of univ->Int->univ. Another way to construct a valid ternary relation could
be using a global singleton such as follows,

1 abstract sig Bundle {}
2 abstract sig Item {}
3 one sig Sing {
4 contains : Bundle->Int->Item
5 }

In this setting, we declare a singleton Sing with a field named contains. The expression
Sing.contains then yields a relation with type Bundle->Int->Item representing a mul-
tirelation between Bundle and Item. As we can see, our implementation is not limited to
one specific form to encode multiplicity-based multiconcepts. Additionally, the following
constraint needs to be applied to ensure that the representation is essentially a positive
numeric-valued function.

1 pred mRel[r: univ->Int->univ] {
2 let dom = r.dom | let ran = r.ran |
3 all a:dom, b:ran | no a.r.b || (one a.r.b && a.r.b > 0)

27

4 }

The constraint requires that given a ternary relation r of type univ->Int->univ, for
any pair in the Cartesian product of the domain and range set, either there is no integer
value associated or there is only one integer which must be greater than zero. Only with this
constraint applied, ternary relation r can be a legitimate representation of a multirelation.

3.3.2 Matrix Multiplication as Composition

Composition for numeric encoding is matrix multiplication as we defined in Sect. 2.1.2.
From the perspective of type, we compose two relations of types T->Int->U and U->Int->V
resulting in a relation of type T->Int->V, where T, U and V are three type parameters. The
encoding of matrix multiplication is shown below with explanation afterward.

1 module matrix[T, U, V]
2

3 open util/integer
4 open util/ternary
5

6 fun id3[x: univ] : x -> x -> x {
7 { a, b, c: x | a = b && b = c }
8 }
9

10 fun mjoin[m1: T->Int->U, m2: U->Int->V] : T->Int->V {
11 { t:T, n:Int, v:V |
12 let r = (t.m1).(id3[U]).(m2.v) | // r : Int -> U -> Int
13 (some r) && n = (sum u:U | mul[(select12[r]).u, u.(select23[r])]) }
14 }

For demonstration purpose, we introduce three type parameters T, U and V (line 1) at
the beginning; we open two utility module integer and ternary for integer multiplication
and ternary relation operations (line 3 and 4). Before the composition implementation, we
implement a helper function named id3 to generate a ternary identity relation.

We use set comprehension to encode the matrix multiplication. To multiply two ma-
trices m1 and m2 of type T->Int->U and U->Int->V, the result is a set of triple (t:T,
n:Int, v:V) (line 11), where elements t, n, v satisfies a certain condition (described
in line 11, 12). To state the condition, we bind a intermediate ternary relation of type
Int->U->Int to an identifier r, which is obtained by joining the last two columns of m1, a
ternary identity relation of all atoms in U and the first two column of m2; then we require

28

that r is non-empty and the integer value n for the corresponding elements t and v is the
summation of the multiplication of the integer in first column and last column in relation
r for each u.

3.3.3 Union, Intersection and Merge

The union, intersection and merge operations for multisets are implemented by arithmetic
calculation on the multiplicity of elements.

1 fun union[f1, f2: Int -> univ] : Int -> univ {
2 let base = (ran[f1]+ran[f2]) |
3 { n : Int, e : base | (some f1.e || some f2.e) && n = larger[f1.e, f2.e] }
4 }
5

6 fun intersect[f1, f2: Int -> univ] : Int -> univ {
7 let base = (ran[f1]+ran[f2]) |
8 { n : Int, e : base | (some f1.e && some f2.e) && n = smaller[f1.e, f2.e] }
9 }

10

11 fun merge[f1, f2: Int -> univ] : Int -> univ {
12 let base = (ran[f1]+ran[f2]) |
13 { n : Int, e : base | n = add[f1.e, f2.e] }
14 }

3.3.4 Domain and Range Restriction, Inverse

The domain and range restriction is similar to index-based encoding. Built-in operators <:
and :> can be directly used since the encoding is merely a ternary relation. The function
flip13 in the library ternary can be used as inversion.

3.3.5 Lift and Drop

Operation lift can be encoded as a function, which returns a ternary relation by associating
multiplicity one to each pair in the original ordinary relation. Operation drop is similar to
the implementation in index-based encoding.

1 fun lift[r: univ->univ] : univ->Int->univ {
2 let dom = r.univ, ran = univ.r |

29

3 { a:dom, n:Int, b:ran | a->b in r && n = 1}
4 }
5

6 fun drop[r: univ -> Int -> univ] : univ->univ {
7 select13[r]
8 }

30

Chapter 4

Evaluation

4.1 Demonstration

In this section, we demonstrate the usage of both multiconcept implementations to build
the bundling model introduced in Sect. 1.1 in Alloy. The full Alloy models are shown in
Listing 4.1 and Listing 4.2.

Both multiconcept implementations are capable to model the grocery sale scenario and
express the bundling rules; Alloy analyzer finds correct instances for both models. However,
in terms of usability, the multiplicity-based implementation has one noticeable advantage:
all the algebraic operations over multiconcepts are encoded as functions, thus a sequence
of operations can be written as a series of function invocations. In the contrary, due to
previously discussed limitation, composition in the index-based implementation has to be
encoded as a predicate, which means every intermediate result in a series of compositions
has to be declared explicitly with the composition predicate applied. Obviously, the com-
position operation in index-based implementation is less convenient to use than the one in
multiplicity-based implementation.

Another advantage of multiplicity-based implementation is its visualization. Alloy An-
alyzer can visualize instances of a model using graphical representations. When displaying
a ternary relation of type univ->Int->univ, the analyzer will automatically put the in-
teger on the arc. For example, the visualization of an instance of the bundling model is
shown in Fig. 4.1 without any manual configuration. It is clear to see the multiplicity of
each relation. In this particular instance, bundle B1 has 2 bread, 2 milk and bundle B2
has 1 bread, 1 milk, 1 butter; both bundles satisfy the rules we stated in the model. To

31

Figure 4.1: Visualization of multiplicity-based model

Figure 4.2: Visualization of index-based model

compare, Fig. 4.2 shows the visualization of an instance of the bundling model with the
index-based implementation. Without any configuration, it is not as comprehensible as
the multiplicity-based visualization since every index is displayed separately, which makes
calculating the multiplicity of each relation an extra step. Even though we could im-
prove the visualization (see Fig. 4.3) by hiding the head set of the span and displaying the
transformed ternary relation from the span, it still needs to calculate the number of links.
According to the two advantages discussed above, the multiplicity-based implementation
is more preferable in terms of usability.

32

1 // import multiplicity-based multiconcepts module
2 open matrix[Bundle, Item, Category]
3

4 // Setup sets Bundle, Item and Category
5 abstract sig Bundle {
6 Contains: Int -> Item // Declare ternary relation Contain
7 }
8 one sig B1, B2 extends Bundle {}
9 abstract sig Item {

10 belongsTo: set Category // Declare an ordinary relation belongsTo
11 }
12 one sig Bread, Butter, Milk extends Item {}
13 fact {
14 Bread.belongsTo = Bakery
15 Butter.belongsTo = Dairy
16 Milk.belongsTo = Dairy
17 }
18

19 abstract sig Category {}
20 one sig Dairy, Bakery extends Category {}
21

22 fact {
23 // Restrict ternary relation to be a multirelation
24 mRel[Contains]
25 // Lift ordinary relation belongsTo to a multirelation
26 let BelongsTo = lift[belongsTo] |
27 // Compute the composition
28 let Result = matmul[Contains, BelongsTo] |
29 // State the bundling rules
30 all b : Bundle | b.Result.Dairy >= 2 && #(b.(drop[Result])) >= 2
31 }
32

33 run {} for 4 but 4 Int

Listing 4.1: Bundling model based on multiplicity-based implementation

33

1 // Utility module of index-based multiconcepts implementation
2 open multi
3 // declare a multirelation from Bundle to Item
4 open mrel[Bundle, Item] as Contains
5 // declare a multirelation from Item to Category
6 open mrel[Item, Category] as BelongsTo
7 // declare a multirelation to hold the composition result
8 open mrel[Bundle, Category] as Result
9

10 // Setup sets Bundle, Item and Category
11 abstract sig Bundle {}
12 one sig B1, B2 extends Bundle {}
13 abstract sig Item {
14 belongsTo: set Category // Declare an ordinary relation belongsTo
15 }
16 one sig Bread, Butter, Milk extends Item {}
17 fact {
18 Bread.belongsTo = Bakery
19 Butter.belongsTo = Dairy
20 Milk.belongsTo = Dairy
21 }
22 abstract sig Category {}
23 one sig Dairy, Bakery extends Category {}
24

25 fact {
26 // State that mrel BelongsTo is lifted from belongsTo
27 BelongsTo/liftedFrom[belongsTo]
28 // State that mrel Result is composed from Contains and BelongsTo
29 Result/composedFrom[Contains/get, BelongsTo/get]
30 // State the rules
31 all b : Bundle | #(b<:Result/get:>Dairy) >= 2
32 all b : Bundle | #(b.(drop[Result/get])) >= 2
33 }
34

35 // for better visualization
36 fun disp1[] : univ->univ->univ {
37 Contains/get
38 }
39

40 run {} for 6 Contains/Head, 3 BelongsTo/Head, 7 Result/Head

Listing 4.2: Bundling model based on index-based implementation

34

Figure 4.3: Visualization of index-based model with extra configuration

4.2 Performance

In this section, we make a fair comparison of the performance between index-based and
multiplicity-based multiconcept implementations in Alloy. The benchmark method we
adopt is using each multiconcept library to encode the same model; then we record and
compare the running time for the Alloy analyzer to execute each model. We focus on
measuring the performance of the composition operation since it has the most complex
implementation in both libraries and is the most important operation in multirelational
algebra.

The model we choose is an abstract matrix multiplication computation of two all-
one matrices. First we measure the cost of encoding two all-one matrices using each
multiconcept library; next we compose two all-ones matrices to compare the performance
of the composition implementation in each library. We also scale up the dimension of the
matrices to test how the performance of each library scales with the size of the model.

For instance, the multiplication of two 3× 3 all-ones matrices is shown below in math-
ematical notations. We encode this multiplication process using our multiconcept imple-
mentation. The common setup is shown in Listing 4.3.

35


b1 b2 b3

a1 1 1 1
a2 1 1 1
a3 1 1 1

×

c1 c2 c3

b1 1 1 1
b2 1 1 1
b3 1 1 1

 =


c1 c2 c3

a1 3 3 3
a2 3 3 3
a3 3 3 3


Figure 4.4: All-ones matrices multiplication when dimension is 3× 3

1 abstract sig A {}
2 one sig a1, a2, a3 extends A {}
3

4 abstract sig B {}
5 one sig b1, b2, b3 extends B {}
6

7 abstract sig C {}
8 one sig c1, c2, c3 extends C {}

Listing 4.3: Common setup for 3× 3 matrix

Firstly, we created three disjoint sets with names A, B and C; each set contains three
elements (atoms). We model two all-one matrices using our index-base and multiplicity-
based multirelation implementation, shown below.

1 open matrix[A, B, C]
2

3 one sig Sing {
4 mrel1 : A -> Int -> B,
5 mrel2 : B -> Int -> C,
6 mrel3 : A -> Int -> C // for composition
7 }
8

9 fact {
10 Sing.mrel1 = a1->1->b1 + a1->1->b2 + a1->1->b3
11 + a2->1->b1 + a2->1->b2 + a2->1->b3
12 + a3->1->b1 + a3->1->b2 + a3->1->b3
13

14 Sing.mrel2 = b1->1->c1 + b1->1->c2 + b1->1->c3
15 + b2->1->c1 + b2->1->c2 + b2->1->c3
16 + b3->1->c1 + b3->1->c2 + b3->1->c3
17

18 Sing.mrel3 = mjoin[Sing.mrel1, Sing.mrel2] // for composition
19 }

Listing 4.4: Multiplicity-based encoding of two 3× 3 all-ones matrices

36

1 open mrel[A, B] as mrel1
2 open mrel[B, C] as mrel2
3 open mrel[A, C] as mrel3
4

5 fact {
6 mrel1/moe[a1, b1, 1] && mrel1/moe[a1, b2, 1] && mrel1/moe[a1, b3, 1]
7 mrel1/moe[a2, b1, 1] && mrel1/moe[a2, b2, 1] && mrel1/moe[a2, b3, 1]
8 mrel1/moe[a3, b1, 1] && mrel1/moe[a3, b2, 1] && mrel1/moe[a3, b3, 1]
9

10 mrel2/moe[b1, c1, 1] && mrel2/moe[b1, c2, 1] && mrel2/moe[b1, c3, 1]
11 mrel2/moe[b2, c1, 1] && mrel2/moe[b2, c2, 1] && mrel2/moe[b2, c3, 1]
12 mrel2/moe[b3, c1, 1] && mrel2/moe[b3, c2, 1] && mrel2/moe[b3, c3, 1]
13

14 mrel3/composedFrom[mrel1/get, mrel2/get] // for compostion
15 }

Listing 4.5: Index-based encoding of two 3× 3 all-ones matrices

The lines with comments is to set up the composition. We first evaluate the cost of
encoding two all-ones matrices. The model without the commented lines will be executed.
The scope is set to be the minimum number that Alloy analyzer can find an instance.
The Alloy analyzer is configured to use the MiniSAT with unsat core solver and runs on a
2.4Ghz Core i7 machine with 8GB RAM. The result is presented in Table 4.1.

Encoding Matrix Size Var Primary Var Clauses Generation time Analysis time
2 135 128 134 5 9

Numeric 3 151 144 150 10 17
4 519 512 518 103 89
2 436 40 877 28 12

Index 3 2188 126 5441 64 30
4 6340 288 17157 212 77

Table 4.1: Result of modeling two all-ones matrices, time in ms

From the benchmark result we could see that the multiplicity-based encoding performs
slightly better than index-based encoding. An interesting observation is that there are
less difference between var and primary var in multiplicity-based encoding than that in
the index-based encoding, where primary var corresponds to instances declared in a model
and var reflects the variables that are needed to encode the constraints into SAT formula.

37

Next we test the performance of the composition operation in each encoding. We
benchmark the composition of two multirelations represented by all-ones matrices, scaling
up the dimension from 2× 2. The result is shown in Table 4.2.

Encoding Matrix Size Var Primary Var Clauses Generation time Analysis time
2 2314 96 8137 27 10

Numeric 3 7453 216 26586 62 14
4 47898 768 194265 732 76
2 2354 144 5487 61 46

Index 3 21501 801 55185 582 305620
4 115282 2912 321756 5721 Suspended

Table 4.2: Result of composition over two all-ones matrices, time in ms

We could clearly see the performance of composition operation encoding in both en-
codings. The composition operation in multiplicity-based encoding performs very well and
scales reasonably with the size of the model. In contrast, the performance of composition
operation in index-based encoding is acceptable when the size of the model is small (2×2);
however, the performance degenerates dramatically with the increase of the model size;
the model cannot be analyzed in reasonable time (beyond 20 minutes) when the matrix
size is 4× 4, in which case we have to manually suspend the analysis.

From the benchmark result we could see that the multiplicity-based implementation
outperform the index-based implementation enormously when composition operation is
used in the model. Combined with the usability discussion in previous section, we think
the multiplicity-based library is more practical and preferable to use when modeling with
multiconcepts in Alloy.

4.3 Application

Multiconcepts are useful in many areas, one example is in software architecture analysis. It
has been studied that it is beneficial to attribute the links between different components in
a large software system with a number [10], which essentially are multirelations. With only
ordinary relations, a typical software architecture diagram turns out almost fully meshed;
The distinction between important connections and minor or trivial connections can barely
be observed. In contrast, the quantitative information in a multirelation explicitly shows

38

the importances of different connections, in which way the recognition and understanding
of a system architecture diagram could be potentially improved.

More interestingly, a theory named ‘lifting’ can transforms a low-level component inter-
dependency relation in a system to a high-level one. The theory of lifting is proposed under
the algebra of ordinary relations at first [11]; further study shows that it can be generalized
to the context of multirelations, turning out to be a transformation aggregating meaningful
quantitative information.

We demonstrate the application of multirelation in Alloy using an imaginary system
architecture scenario. The Alloy model is shown in Listing 4.6. The system consists of
Subsystems and each Subsystem consists of several Components. The ordinary relation
partOf defines the ownership of each component; the multirelation use is to describe the
inter-dependency relation among Components. We will use the lifting theory to transform
the low level use relation to a high level relation Use among Subsystems.

The lifting theory in the multirelation context is defined as follows: given a ‘use’ relation
r with type MRel(T,T) and a ‘part-of’ relation p with type Rel(T,U), the expression
lift(p−1);; r;; lift(p) (recall that lift is the operation which transforms an ordinary relation
to a multirelation) yields a multirelation with type MRel(U,U), representing the ‘use‘
relation in a higher level with quantitative information aggregated. Line 28 in listing 4.6
is the lifting transformation expression in Alloy with our multiplicity-based multiconcepts
implementation. Two instances of the architecture model are shown in Fig. 4.6 and Fig. 4.5;
one can clearly see the low-level and high-level view of the system architecture.

1 open matrix[univ, univ, univ]
2

3 abstract sig Component {
4 partOf : Subsystem,
5 use : Int -> Component
6 }
7

8 abstract sig Subsystem {
9 Use : Int -> Subsystem

10 }
11

12 one sig Subsystem1, Subsystem2, Subsystem3 extends Subsystem {}
13 abstract sig ComGroup1, ComGroup2, ComGroup3 extends Component {}
14

15 one sig Component1, Component2, Component3 extends ComGroup1 {}
16 one sig Component4, Component5, Component6 extends ComGroup2 {}
17 one sig Component7, Component8, Component9 extends ComGroup3 {}
18

39

19 fact {
20 ComGroup1.partOf = Subsystem1
21 ComGroup2.partOf = Subsystem2
22 ComGroup3.partOf = Subsystem3
23 }
24

25 fact {
26 mRel[use]
27 mRel[Use]
28 Use = lift[~partOf].mjoin[use].mjoin[lift[partOf]]
29 }

Listing 4.6: A system architechure model with two layers

Obviously, with numbers on the arcs, we have more visibility on how heavily a part of
the system is used by the others. What is more, the topography of the system graph is
still preserved since we can drop a multirelation to an ordinary relation; one can even put
graph property constraints on the model such as requiring that the high-level subsystem
graph is acyclic, in which case, the instance in Fig. 4.5 is an invalid instance. Such analysis
of system architectures are presented and proved to be practical and useful in existing
literatures, see [10] and [11].

40

Figure 4.5: An instance of system architecture model with lifting

Figure 4.6: Another instance of system architecture model with lifting

41

Chapter 5

Conclusion and Future Work

In this thesis, a systematic and principled framework for modeling with multisets and mul-
tirelations is presented, including theoretical foundations, practical implementations and
applications. In terms of theory background, we revisited the common multiplicity-based
approach and presented a less-known index-based formalization based on the concept of
spans in category theory. Both formalizations have covered the representation of multi-
concepts and a set of algebraic operations. We have also shown that both formalization
have the same expressiveness.

We have implemented two multiconcepts libraries in Alloy according to the mathe-
matical formalizations. Both libraries support multiconcept declarations and algebraic
operations. Implementations are presented in detail, which could be inspiring for other
modeling languages to implement a similar multiconcepts library. Both libraries expose
a carefully-designed interface, which is easy to use and allows Alloy users to model with
multiconcepts by simply importing our library. We release our multiconcepts libraries as a
contribution to the Alloy community. We have also evaluated both libraries concerning the
usability and performance. Multiplicity-based implementation has a nicer usage pattern
and scales better with the increase of the model size; therefore, is more preferable and
applicable in practical modeling. Finally, as a by-product, we have demonstrated how to
implement a few important concepts and operations from category theory in Alloy: family,
span, and their composition via pullback.

In the future, there are several potential extensions of our work on multiconcepts.
Transitive closure is defined for ordinary relations but remains unclear for multirelations;
a further investigation on a theoretical explanation for transitive closure in the context
of multirelations might be valuable. Satisfiability Modulo Theories (SMT) solvers provide

42

similar constructs to Alloy; sets, total functions, integers and first-order logic are avail-
able in SMT. One could attempt to implement multiconcepts in SMT using our Alloy
implementation as blueprints. The multiconcept implementation in Alloy can also be used
as semantic primitives to implement a modeling language which has built-in multiconcept
support. Clafer [4], which uses Alloy as one of the back-end solver, can declare span-shaped
multirelations. One could extend the syntax and semantic of Clafer to support operations
over multiconcepts natively.

43

References

[1] Are there multisets in Alloy?, 2014. http://stackoverflow.com/questions/
23579928/are-there-multisets-in-alloy, last accessed in Aug 2016.

[2] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On challenges
of model transformation from UML to Alloy. Software & Systems Modeling, 9(1):69–
86, 2010.

[3] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Partial instances via subclassing. In International Conference on Software
Language Engineering, pages 344–364. Springer, 2013.

[4] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: unifying class and feature modeling. Software & Systems Modeling,
2014.

[5] Paolo Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, PhD thesis, Department of Computer Science, University of
Pisa, 2000. Available as technical report n. TD-1/00, 2000.

[6] Michael Barr and Charles Wells. Category theory for computing science, volume 49.
Prentice Hall New York, 1990.

[7] Wayne D Blizard et al. The development of multiset theory. Modern logic, 1(4):319–
352, 1991.

[8] Roberto Bruni and Fabio Gadducci. Some algebraic laws for spans. Electr. Notes
Theor. Comput. Sci., 44(3):175–193, 2001.

[9] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via smt solving.
In International Symposium on Formal Methods, pages 133–148. Springer, 2011.

44

http://stackoverflow.com/questions/23579928/are-there-multisets-in-alloy
http://stackoverflow.com/questions/23579928/are-there-multisets-in-alloy

[10] L Feijs and RL Krikhaar. Relation algebra with multi-relations. International Journal
of Computer Mathematics, 70(1):57–74, 1998.

[11] Loe Feijs, René Krikhaar, and R Van Ommering. A relational approach to support
software architecture analysis. Software: Practice and Experience, 28(4):371–400,
1998.

[12] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press,
2012.

[13] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,
volume 1. Springer Science & Business Media, 2013.

[14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class diagrams
analysis using alloy revisited. In MoDELS, pages 592–607. Springer, 2011.

[15] GP Monro. The concept of multiset. Mathematical Logic Quarterly, 33(2):171–178,
1987.

[16] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[17] Richard Rado. The cardinal module and some theorems on families of sets. Annali di
Matematica pura ed applicata, 102(1):135–154, 1975.

[18] Jonathan A Robles and Geoffrey A Solano. Modeling petri nets using alloy. In
TENCON 2012-2012 IEEE Region 10 Conference, pages 1–6. IEEE, 2012.

[19] Peiyuan Sun, Zinovy Diskin, Michał Antkiewicz, and Krzysztof Czarnecki. Model-
ing and reasoning with multirelations, and their encoding in Alloy. In OCL 2016–
16th International Workshop on OCL and Textual Modeling: Tools and Textual Model
Transformations Workshop Proceedings, 2016.

[20] Edward D Willink. Safe navigation in ocl. In OCL 2015–15th International Workshop
on OCL and Textual Modeling: Tools and Textual Model Transformations Workshop
Proceedings, page 81, 2015.

45

APPENDICES

46

Appendix A

Alloy Index-based Multiconcepts
Library

1 /** Parametric module to declare a multiset of type g */
2 module mset [g]
3 open multi as m
4

5 abstract sig Idx {
6 f : one g
7 }
8

9 // plain binary relation representation
10 fun get[] : Idx -> one g { f }
11

12 // multiplicity Of element
13 pred moe[e: g, n: Int] {
14 #(f:>e) = n
15 }
16

17 // is isomorphic to another family
18 pred isomorphicTo[family: univ -> one univ] {
19 let I = family.idx |
20 some r: I->Idx | bijection[r, I, Idx] && r.f = family
21 }
22

23 // current lift from an ordinary set
24 pred liftedFrom[s: univ] {
25 Idx.f = s && #Idx = #s
26 }

47

27

28 // current family is the composition result from another family and span
29 pred composedFrom[fami: univ -> one univ,
30 span: univ -> univ -> g] {
31 let I = fami.idx, sLeg = span.sleg, tLeg = span.tleg, Hd = span.head
32 | some p1: Idx->I, p2: Idx-> Hd
33 | pullback[I, Hd, fami, sLeg, Idx, p1, p2]
34 && f = p2.tLeg
35 }

1 /** Parametric module to declare a multirelation from type s to type t */
2 module mrel [s, t]
3 open multi as m
4

5 sig Head { sLeg : one s, tLeg : one t }
6

7 // fact { some Head }
8

9 // ternary relation representation
10 fun get[] : s -> Head -> t {
11 { a: s, h: Head, b: t | h.sLeg = a and h.tLeg = b}
12 }
13

14 // multiplicity Of element
15 pred moe[source: s, target: t, n: Int] {
16 #(get[].mdom[source].mran[target]) = n
17 }
18

19 // current span is lift from an ordinary binary relation
20 pred liftedFrom[r: s -> t] {
21 (~sLeg).tLeg = r && #Head = #r
22 }
23

24 // current span is the composition result from another two spans.
25 pred composedFrom[span1 : s -> univ -> univ,
26 span2 : univ -> univ -> t] {
27 let sLeg1=span1.sleg, tLeg1=span1.tleg, Hd1 = span1.head,
28 sLeg2=span2.sleg, tLeg2=span2.tleg, Hd2 = span2.head
29 | some p1: Head -> Hd1, p2: Head -> Hd2
30 | pullback[Hd1, Hd2, tLeg1, sLeg2, Head, p1, p2]
31 && sLeg = p1.sLeg1 && tLeg = p2.tLeg2
32 }

48

1 /** utility functions for family and span */
2 module multi
3

4 open util/relation as rel
5 open util/ternary as ter
6

7 // return the index set of family f
8 fun idx[f: univ -> one univ] : univ {
9 rel/dom[f]

10 }
11

12 // return the ground set of family f
13 fun grd[f: univ -> one univ] : univ {
14 rel/ran[f]
15 }
16

17 // return the head of the span
18 fun head[span: univ -> univ -> univ] : univ {
19 ter/mid[span]
20 }
21

22 // return the source leg of the span
23 fun sleg[span: univ -> univ -> univ] : univ -> univ {
24 ~(ter/select12[span])
25 }
26

27 // return the target leg of the span
28 fun tleg[span: univ -> univ -> univ] : univ -> univ {
29 ter/select23[span]
30 }
31

32 // inverse, by flipping the 1st and 3rd column
33 fun inverse[span: univ->univ->univ] : span {
34 ter/flip13[span]
35 }
36

37 // domain restriction, return the ternary relation starting with e
38 fun mdom[span: univ->univ->univ, e: univ] : span {
39 e <: span
40 }
41

42 // range restriction, return the ternary relation ending with e
43 fun mran[span: univ->univ->univ, e: univ] : span {
44 span :> e
45 }

49

46

47 // max-union, element with larger multiplicity are selected in the result
48 fun union[f1, f2: univ->one univ] : univ->one univ {
49 let I = idx[f1]+idx[f2], G = grd[f1]+grd[f2] |
50 { i: I, g: G | (i in idx[f1] && g = i.f1 && #f1:>g >= #f2:>g) or
51 (i in idx[f2] && g = i.f2 && #f1:>g < #f2:>g) }
52 }
53

54 // min-intersection, element with smaller multiplicity are selected in the result
55 fun intersection[f1, f2: univ->one univ] : univ->one univ {
56 let I = idx[f1]+idx[f2], G = grd[f1]+grd[f2] |
57 { i: I, g: G | (i in idx[f1] && g = i.f1 && #f1:>g <= #f2:>g) or
58 (i in idx[f2] && g = i.f2 && #f1:>g > #f2:>g) }
59 }
60

61 // disjoint union, simply a union of two families
62 fun merge[f1, f2: univ->one univ] : univ->one univ {
63 f1 + f2
64 }
65

66 // drop indices and return ordinary set or relation
67 fun drop[f: univ -> one univ] : univ.f {
68 rel/ran[f]
69 }
70

71 fun drop[span: univ -> univ -> univ] : ((span.univ).univ) -> (univ.(univ.span)) {
72 ter/select13[span]
73 }
74

75 // pullback
76 pred pullback[X: univ, Y: univ, f: X -> one univ, g: Y -> one univ,
77 P: univ, p1: P -> X, p2: P -> Y] {
78 (no X or no Y) implies { no P } else {
79 all x: X | all y: Y | x.f = y.g implies
80 { one p: P | p.p1 = x && p.p2 = y }
81

82 all p: P | p.p1.f = p.p2.g
83 //#P = #(f.~g)
84 }
85 }

50

Appendix B

Alloy Numeric-based Multiconcepts
Library

1 module multi
2

3 open util/relation
4 open util/ternary
5

6 // apply this predicate to any ternary relation
7 // to make it a valid multirelation representation
8 pred mRel[r: univ->Int->univ] {
9 let dom = r.dom | let ran = r.ran |

10 all a:dom, b:ran | no a.r.b || (one a.r.b && a.r.b > 0)
11 }
12

13 // generate a tenary identity relation
14 fun id3[x: univ] : x -> x -> x {
15 { a, b, c: x | a = b && b = c }
16 }
17

18 // matrix multiplication as composition
19 fun mjoin[m1: univ->Int->univ, m2: univ->Int->univ] : univ->Int->univ {
20 let T = dom[m1], U = ran[m1], V = ran[m2] |
21 { t:T, n:Int, v:V |
22 let r = (t.m1).(id3[U]).(m2.v) | // r : Int -> U -> Int
23 (some r) && n = (sum u: U | mul[(select12[r]).u, u.(select23[r])]) }
24 }
25

26 // lift an orinary relation to a multirelation

51

27 fun lift[r: univ->univ] : univ->Int->univ {
28 let dom = r.univ, ran = univ.r |
29 { a:dom, n:Int, b:ran | a->b in r && n = 1}
30 }
31

32 // drop the multiplicity information
33 fun drop[m: univ -> Int -> univ] : univ->univ {
34 select13[m]
35 }
36

37 // inverse a multirelation
38 fun inverse[m : univ->Int->univ] : univ->Int->univ {
39 flip13[m]
40 }
41

42 // max union
43 fun union[f1, f2: Int -> univ] : Int -> univ {
44 let base = (ran[f1]+ran[f2]) |
45 { n : Int, e : base | (some f1.e || some f2.e) && n = larger[f1.e, f2.e] }
46 }
47

48 // min intersection
49 fun intersect[f1, f2: Int -> univ] : Int -> univ {
50 let base = (ran[f1]+ran[f2]) |
51 { n : Int, e : base | (some f1.e && some f2.e) && n = smaller[f1.e, f2.e] }
52 }
53

54 // merge
55 fun merge[f1, f2: Int -> univ] : Int -> univ {
56 let base = (ran[f1]+ran[f2]) |
57 { n : Int, e : base | n = add[f1.e, f2.e] }
58 }

52

	List of Tables
	List of Figures
	Introduction
	A Running Example
	Requirements

	Contributions
	Related Work
	Structure of the Thesis

	Mathematical Foundation
	Multiplicity-based Formalization
	Multisets and Operations
	Multirelations and Operations

	Index-based Formalization
	Multirelations as Spans
	Multisets as Families and Operations over Them
	Mixed Setting: Families/Spans and Ordinary/Multi
	Composition as Navigation

	Indices vs. Multiplicities

	Multiconcepts Encoding in Alloy
	Overview of Alloy
	Sets, Relations and Atoms
	Logic and Constraints
	Type System and Polymorphism
	Integer
	Command and Scope

	Index-based Multiconcepts Implementation
	Family and Span
	Span Composition
	Multiplicity of Elements
	Union, Intersection and Merge
	Domain and Range Restriction, Inverse
	Lift and Drop

	Multiplicity-based Multiconcepts Implementation
	Multiplicity-based Representation
	Matrix Multiplication as Composition
	Union, Intersection and Merge
	Domain and Range Restriction, Inverse
	Lift and Drop

	Evaluation
	Demonstration
	Performance
	Application

	Conclusion and Future Work
	References
	APPENDICES
	Alloy Index-based Multiconcepts Library
	Alloy Numeric-based Multiconcepts Library

