17,959 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Programming Language Feature Agglomeration

    Get PDF
    Feature-creep is a well-known phenomenon in software systems. In this paper, we argue that feature-creep also occurs in the domain of programming languages. Recent languages are more expressive than earlier languages. However recent languages generally extend rather than replace the syntax (sometimes) and semantics (almost always) of earlier languages. We demonstrate this trend of agglomeration in a sequence of languages comprising Pascal, C, Java, and Scala. These are all block-structured Algol-derived languages, with earlier languages providing explicit inspiration for later ones. We present empirical evidence from several language-specific sources, including grammar definitions and canonical manuals. The evidence suggests that there is a trend of increasing complexity in modern languages that have evolved from earlier languages

    On the basis for ELF - An Extensible Language Facility

    Get PDF
    Computer language for data processing and information retrieva

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    Semantic enabled complex event language for business process monitoring

    Get PDF
    Efforts are being made to enable business process monitoring and analysis through processing continuously generated events. Several ontologies and tools have been defined and implemented to allow applying general-purpose Business Process Analysis techniques to specific domains. On this basis, a Semantic Enabled Monitoring Event Language (SEMEL) is proposed to facilitate defining complex queries over monitoring data so as to interleave temporal and ontological reasoning. In this paper, the formal semantics of SEMEL is discussed, and the implementation approach of SEMEL interpreter is also briefly described, which encompasses translation into an operational language
    • 

    corecore