
Open Research Online
The Open University’s repository of research publications
and other research outputs

Semantic enabled complex event language for business
process monitoring
Conference or Workshop Item
How to cite:

Liu, Dong; Pedrinaci, Carlos and Domingue, John (2009). Semantic enabled complex event language for business
process monitoring. In: The 6th Annual European Semantic Web Conference (ESWC2009), 1 Jun 2009, Heraklion,
Crete, Greece.

For guidance on citations see FAQs.

c© Not known

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://sbpm2009.fzi.de/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/4821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://sbpm2009.fzi.de/
http://oro.open.ac.uk/policies.html

Semantic Enabled Complex Event Language for Business
Process Monitoring

Dong Liu
Knowledge Media Institute

The Open University
Walton Hall, Milton Keynes, UK

d.liu@open.ac.uk

Carlos Pedrinaci
Knowledge Media Institute

The Open University
Walton Hall, Milton Keynes, UK

c.pedrinaci@open.ac.uk

John Domingue
Knowledge Media Institute

The Open University
Walton Hall, Milton Keynes, UK

j.b.domingue@open.ac.uk

ABSTRACT
Efforts are being made to enable business process monitoring and
analysis through processing continuously generated events.
Several ontologies and tools have been defined and implemented
to allow applying general-purpose Business Process Analysis
techniques to specific domains. On this basis, a Semantic Enabled
Monitoring Event Language (SEMEL) is proposed to facilitate
defining complex queries over monitoring data so as to interleave
temporal and ontological reasoning. In this paper, the formal
semantics of SEMEL is discussed, and the implementation
approach of SEMEL interpreter is also briefly described, which
encompasses translation into an operational language.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – constraints, data types and structures, patterns.

General Terms
Management, Documentation, Design, Languages.

Keywords
Semantics, Complex Event Language, Event Pattern, Business
Process, Monitoring.

1. INTRODUCTION
Business Process Analysis uses the logs generated by systems
such as Workflow Engines or Enterprise Resource Planning
(ERP) solutions in order to, on the one hand, track the execution
of processes and identify potential improvements, and on the other
hand, verify and validate the actual execution of processes with
respect to prescribed or expected behaviour. We have previously
argued for the need for applying general purpose analysis
techniques over specific domains in a way that allows analysts to
use their particular terminology and existing knowledge about
their domain and we have defined and implemented a set of
ontologies and tools to cater for this [1]. In this paper we propose
SEMEL, a Semantic Enabled Complex Event Language for
Business Process Monitoring that provides an additional layer of
abstraction allowing the definition of complex queries over
monitoring data interleaving temporal and ontological reasoning,
through an easy-to-use SQL-like language.

We first describe an ontology-based event model, on the basis of
which SEMEL is designed, and then follow up specification of
syntax and formal semantics, as well as examples for basic usages

of SEMEL. Finally, we briefly describe the implementation
approach of SEMEL interpreter.

2. ONTOLOGY-BASED EVENT MODEL
Business monitoring events, which are made up of timestamp,
causality, and a set of attribute values, signify and record runtime
behaviours and execution histories of business processes. In order
to describe semantics of monitoring events and automatically
reason over them, we adopted an ontology-based event model,
which consists of three pre-defined ontologies: Core Ontology for
Business pRocess Analysis (COBRA), Event Ontology (EVO)
and Time Ontology [1].

COBRA provides a core terminology for business process
monitoring and analysis, which includes the Monitoring Event
concept. Monitoring Event characterized by a timestamp, a
causality vector and associated data, is the common ancestor of all
monitoring events.

EVO extends COBRA ontology (see Figure 1) by a set of
concepts to capture states and transitions of process or activity
instances, namely seven Process Monitoring Events and twelve
Activity Monitoring Events. For instance, Activity Started concept
in EVO implies that a new instance of activity is created.

Time Ontology sets forth the timing properties of events and
temporal reasoning. Time Ontology defines three top-level
concepts, namely Time Instant, Time Interval and Temporal
Entity, and it implements both the interval relations defined in
Allen's interval algebra [2] and additional instant-interval relations
see Figure 2.

Since the ontology-based event model serves as the foundation of
SEMEL language, atomic and complex events are respectively
defined as follows.

Figure 1. EVO and Part of COBRA Ontology [1]

· Definition 1 (Atomic Event). An atomic event, denoted by
lower-case letter e, is defined to be an instance of concept
Monitoring Event in COBRA ontology or its sub-concepts. As
an event refers to an instantaneous occurrence of interest, a
particular attribute of the concept Monitoring Event, known as
"occurAt", is used to specify the time when the event happens.

· Definition 2 (Complex Event). Complex events are built up
by a set of atomic events, which hold certain temporal
relationships or satisfy constraint conditions on attributes. The
occurrence time of a complex event is an interval rather that a
time instant, which starts when its earliest constituent event
happens, and ends when the latest constituent happens.

3. SEMEL LANGUAGE
As stated in [3], an event language should satisfy four primary
requirements, i.e. power of expressions, notational simplicity,
precise semantics, and scalable pattern matching. Besides the
syntax and semantics, in this section, we will also clarify that the
proposed SEMEL language can satisfy these requirements to a
certain extent.

3.1 Syntax and Structure
SEMEL is a declarative language with a SQL-like syntax similar
to [4], which has EVENT, FROM, WHERE and WITHIN clauses
(see the listing below). These four clauses respectively depict
event patterns, event source, attribute constraints and a sliding
window of observation. By this means, the creation of ontological
expressions for specifying complex events is simplified, and the
similarity with SQL helps reducing the learning curve while
retaining the expressivity power.

EVENT <event_patterns>
[FROM <event_sources>]
[WHERE <attribute_constraints>]
[WITHIN <sliding_window>]

The EVENT clause in a SEMEL statement specifies event
patterns to be detected during event processing, which will be
detailed in Section 3.2. The FROM clause indicates sources of
events to be queried on, e.g. the log repositories of workflow
engines. The existing event languages such as [4] only support
value-based constraints. In contrast, the WHERE clause of
SEMEL allows the conditions being expressed ontologically. In
this way, we can benefit from ontology reasoning and also

seamlessly integrate domain specific knowledge within SEMEL.
The WHERE clause, together with FROM clause makes up the
non-temporal part of the specification in SEMEL language. The
BNF grammar of event source and attribute constraint is:

<event_sources> ::= <source_name> { <source_name>}
<attribute_constraints> ::= <constraint> {<conj> <constraint>}
<constraint> ::= <attribute_name> "(" <event_name>
 ")" <comp> <attribute_value>
<attribute_value> ::= <const> | <attribute_name> "("
 <event_name>")"
<conj> ::= and | or | not
<comp> ::= "<" | ">" | "=" | "<=" | ">="

The WITHIN clause imposes a time bound on the collection of
events by an interval, and events happen outsides will not be taken
into account. The WITHIN and EVENT clauses are the temporal
parts of SEMEL. Herein is the BNF of the sliding window of
observation, which is introduced by WITHIN clause:

<sliding_window> ::= <integer> <time_unit>
<time_unit> ::= second | minute | hour | day | month | year

The rest of this section will detail the specification of event
pattern, and exemplify the basic usage. Additionally, the formal
semantics of SEMEL language will be put forward.

3.2 Event Pattern Specification
Event patterns are built by event constructs. The existing event
languages vary in their supports to event constructs, especially the
negation construct [5]. In SEMEL language, event constructs can
be divided into two classes: primitive constructs and composite
constructs. The former ones are comprised of temporal constructs
and negation constructs. Temporal constructs correspond to the
temporal relationships defined in Time Ontology, i.e. "precedes",
"follows", "before", "meets", "during", etc. Negation constructs
mean the event never happens during the given time period.

Composite constructs are combinations of the primitive ones, in
other words, if we regard event constructs as predicates on
monitoring data, composite constructs will be composite
predicates. For example, the "sequence" can be defined as:

sequence e1,e2 ,,en() = before e1,before e2 ,,before en−1,en()()()

The BNF grammar of event pattern specification in SEMEL is as
follows:

<event_patterns> ::= <atomic_event> |
 <event_construct>(<event_list>)
<event_list> ::= <event> { "," <event>}
<event> ::= <atomic_event> | <complex_event>
<complex_event> ::= <atomic_event> |
 <event_construct>"("<event_list>")"
<atomic_event> ::= <event_name>":"<event_concept>
<event_construct> ::= <t_construct> | <n_constrct> |
 <c_construct>
<t_construct> ::= precedes | follows | before | meets |
 meets | during | after | starts | finishes |
 overlaps | instantsCoincide |
 temporallyCoincide
<n_construct> ::= never | not
<c_construct> ::= sequence

Figure 2. Temporal Relations [1]

3.3 Semantics
Because the underlying formalism of the adopted COBRA, EVO
and Time Ontology is Description Logics, and temporal relations
are binary logical relations between individuals, we give the
semantics of SEMEL following the model-theoretic way of DLs
[6]. Formally, the semantics of DLs is revealed by a pair

Δ I ,iI() ,

which is also known as an interpretation. Δ I is a set of
individuals, while i

I maps every concept to a sub-set of Δ I , every
attribute to a sub-set of Δ I × Δ I as well.

Overall, temporal constructs are a set of predicates on CI × DI ,
and C, D are sub-concepts of Monitoring Event, i.e.
CI ,DI ⊆ MonitoringEvent I . The semantics of construct "before"
is shown below, and those of all other temporal constructs can
also be defined in the same way.

before e :C, f :D() = e∈CI , f ∈DI ∃t1,t2 ∈TimeInstance
I ,{

e,t1()∈occurAt I ∧ f ,t2()∈occurAt I ∧ t1,t2()∈beforeI }

Here, beforeI is the interpretation of the corresponding temporal
relation "before" defined in the aforementioned EVO ontology,
which is essentially a binary relation on the interpretation of Time
Instance, i.e. before⊆ TimeInstanceI ×TimeInstanceI

The negation constructs, "never" and "not", are predicates
onCI ×TimeInstanceI ×TimeInstanceI . C is also one of the sub-
concepts of Monitoring Event, i.e.CI ⊆ MonitoringEvent I , thus,
the semantics of "never" is:

never e :C, st,et() = e∈CI{ ¬ ∃t ∈TimeInstanceI , e,t()∈occurAt I(
 ∧ st,t()∈precedesI ∨ t,et()∈precedesI)}

Ternary predicate "never" can be used on its own. In contrast, the
other negation construct "not", which is a unitary predicate,
should arise inside the construct "sequence". Additionally, the
semantic of "not" is similar to that of "never", but the starting and
ending time are determined by the other events of sequence or
observation window.

The attribute constraints filter monitoring events by certain
conditions. For example, causedBy selects all the events caused
by a given event, i.e.

causedBy e() = f ∈MonitoringEvent I f ,e()∈causedByI{ }

As for the WITHIN clause, it filters the constituents of a complex
event by a time interval. Supposed that es ,ee , having occurrence
time ts ,te , are respectively the earliest and latest constituent event
of a pattern, then clause "WITHIN t" means te − ts ≤ t .

3.4 Examples
In this section, we illustrate the basic usages of SEMEL language
by the following examples:

1. An activity instance completes within 10 minutes:

EVENT sequence(e1:ActivityStarted,e2:ActivityCompleted)
WHERE concernsActivityInstance(e1)

 = concernsActivityInstance(e2)
WITHIN 10 minute

2. The execution time of an activity instance exceeds 20
minutes:

EVENT sequence(e1:ActivityStarted),
 not(e2:ActivityMonitoringEvent))
WHERE concernsActivityInstance(e1)
 = concernsActivityInstance(e2)
WITHIN 20 minute

3. Three instances of activity act1 start within 1 minutes

EVENT sequence(e1:ActivityStarted, e2:ActivityStarted,
 e3:ActivityStarted)
WHERE performs(concernsActivityInstance(e1))=act1 and
 performs(concernsActivityInstance(e2))=act1 and
 performs(concernsActivityInstance(e3))=act1
WITHIN 1 minute

4. IMPLEMENTATION
A SEMEL interpreter will be implemented by translating it into
the Operational Conceptual Modeling Language (OCML) [7],
which provides support for executing the definitions in the
ontology and export mechanisms to other representations such as
OWL and WSML. The translation starts with the declaration of
variables, each of which will be translated into an "instance-of"
clause. Let "(e:Concept)" be a declaration of event e, the
translation result of it will be "(instance-of ?e iri)". Here, "iri"
represents the IRI of the designated event concept.

Temporal constructs will be translated to an "and" clause. For
instance, the "before" construct will be restated in OCML as
following:

(and (instance-of ?t1 #_TIME:TimeInstant)
 (instance-of ?t2 #_TIME:TimeInstant)
 (has-slot-value ?e1 #_EVO:occurAt ?t1)
 (has-slot-value ?e2 #_EVO:occurAt ?t2)
 (#_TIME:before ?t1 ?t2))

Translation of other temporal constructs will be performed in the
same way. Since the composite event constructs are combinations
of the primitive ones, they can recursively be translated into
OCML segments. Negation constructs are mapping to a "not-
exist" clause in OMCL. For instance, the translation result of
"not" construct in second example shown in Section 3.4 is
presented below, where values of t1, t2 are determined by event
e1 and the WITHIN clause.

(and (instance-of ?t1 #_TIME:TimeInstant)
 (instance-of ?t2 #_TIME:TimeInstant)
 (not (exists ?e2 (and (instance-of ?e2
 #_EVO:ActivityMonitoringEvent)
 (has-slot-value ?e2 #_EVO:occurAt ?oe2)
 (#_TIME:before ?t1 ?oe2)
 (#_TIME:before ?oe2 ?t2)))))

We explain translation of the WHERE clause by an example,
namely the first one shown in Section 3.4, which is translated as:

(and (instance-of ?e1
 #_EVO:BusinessMonitoringEvent)
 (instance-of ?e2
 #_EVO:BusinessMonitoringEvent)
 (has-slot-value ?e1

 #_EVO:concernsActivityInstance ?cai1)
 (has-slot-value ?e2
 #_EVO:concernsActivityInstance ?cai2)
 (= ?cai1 ?cai2))

Before processing the WITHIN clause such as the one of the first
example in Section 3.4, we convert the time unit to millisecond,
and then translate it as:

(and (instance-of ?oe1 #_TIME:TimeInstant)
 (instance-of ?oe2 #_TIME:TimeInstant)
 (has-slot-value ?e1 #_EVO:occurAt ?oe1)
 (has-slot-value ?e2 #_EVO:occurAt ?oe2)
 (<= (- ?oe2 ?oe1) n)))

5. RELATED WORK
There are several complex event languages have been proposed in
previous works, of which Cayuga, SEL, SASE, RAPIDE and EPL
are the most representative ones. However, all these existing event
languages do not have ontology-based event model or support to
processing semantics of events.

Cayuga Event Language (CEL) is based the Cayuga Algebra and
designed to query over event streams [8]. CEL takes temporally
ordered sequences of tuples as the data model, and makes a simple
mapping between the operators of Cayuga Algebra and a SQL-
like syntax.

SASE is a declarative language with SQL-like syntax, which can
be used to filter, correlate and transform events [4, 9]. Infinite
sequence of events that are composed of a timestamp, the name of
type and some associate attributes, serves as the underlying data
model of SASE. Rather than a generalized event language, SASE
specially applies to RFID-enabled applications.

SEL focus on the specification of event patterns, and takes into
account the appropriateness and completeness of event operators,
effectiveness and efficiency of expressions, flexibility and
readability of language [5]. Especially, SEL proposes a novel way
to deal with negation operator in event language.

RAPIDE event pattern language [3] is a strong-typing declarative
computing language, which provides built-in data types, basic
event patterns, pattern operators, temporal operators, etc. The
syntax of RAPIDE is similar to the object-oriented programming
languages such as C# and Java.

EPL, which stands for Event Processing Language, is the SQL-
like event language of Esper⎯an event stream and complex event
processor for Java [10]. EPL can help retrieving information from
event streams, and also manipulating the event streams.

6. CONCLUSIONS AND FUTURE WORK
SEMEL, an event language for business processing monitoring
and analysis is proposed in this paper. It has not only SQL-like
syntax that is easy to use, but also formal semantics. SEMEL
interpreter can be implemented by recursively translating SEMEL
statements into the Operational Conceptual Modeling Language
(OCML) [7], which provides support for executing the definitions
in the ontology and export mechanisms to other representations.
Our future works will also include optimization of SEMEL

queries and the mechanism of automatically triggering
management actions in a scalable SOA environment, when
specific events happen.

7. ACKNOWLEDGMENTS
This work was funded by the European projects SUPER (FP6-
026850) and SOA4All (FP7-215219).

8. REFERENCES
[1] Pedrinaci C., Domingue J., de Medeiros A. K. A. 2008. A

Core Ontology for Business Process Analysis. In
Proceedings of the 5th European Semantic Web Conference
(Tenerife, Spain, June 01 - 05, 2008). ESWC '08. Springer
Verlag, 49-64.

[2] Allen, J.F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM. 26,11, 832–843.

[3] Luckham, D. 2002. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley.

[4] Wu, E., Diao, Y., Rizvi, S. 2006. High-Performance
Complex Event Processing over Streams. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data (Chicago, IL, USA, June 26-29,2006).
ACM Press, New York, NY, 407 - 418. DOI=
http://dx.doi.org/10.1145/1142473.1142520

[5] Zhu, D., Sethi, A. S. 2001. SEL, a New Event Pattern
Specification Language for Event Correlation. In
Proceedings the 10th International Conference on Computer
Communications and Networks (Piscataway, NJ, USA,
October 15 - 17, 2001). ICCCN '01. IEEE Computer Society,
586-589. DOI=
http://dx.doi.org/10.1109/ICCCN.2001.956327

[6] Baader, F., B �urckert, H. J., Heinsohn, J., Hollunder, B.,
M �uller, J., Nebel, B., Nutt, W. and Protlich, H. J. 1990.
Terminological knowledge representation: a proposal for a
terminological logic. Technical memo TM-90-04, DFKI,
Saarbr �ucken, Germany.

[7] Motta, E. 1999. Reusable Components for Knowledge
Modeling. Case Studies in Parametric Design Problem
Solving. Volume 53 of Frontiers in Artificial Intelligence and
Applications. IOS Press

[8] Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J.,
Panda, B., Riedewald, M., Thatte, M. and White, W. 2007.
Cayuga: a high-performance event processing engine. In
Proceedings of ACM SIGMOD International Conference on
Management of Data (Beijing, China, June 12 - 14, 2007).
ACM, Beijing, China, 412 - 423.
DOI=http://doi.acm.org/10.1145/1247480.1247620

[9] Gyllstrom, D., E. Wu, et al. 2007. SASE: Complex Event
Processing over Streams. In Proceeding of the 3rd Biennial
Conference on Innovative Data Systems Research (Asilomar,
California, USA, January 7 - 10, 2007). CIDR '07.

[10] EsperTech Inc. 2008. Event Stream Intelligence.
http://www.espertech.com/index.php

