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ABSTRACT

This paper provides a philosophical basis and motivation for ELF - an
extensible language facility.

We introduce the subject by discussing the need for a variety of programming
languages and exploring several alternative ways of providing for this variety.
Following this, we present and discuss the overall design criteria which have pro-
vided the sources of constraint in the development of the extensible language
facility. We then consider the facility from three points of view: as a language,
from the point of view of compiling programs in the language, and from the point
of view of the interface between the language and the system.

The remainder of the paper might best be characterized as an essay on pro-
gramming languages. We consider a num!)er of features of programming languages
such as the basic data types and operations, control features, and so on. By con-
trasting the handling of these features in several current languages and by suggesting
several generalizations as well as noting a number of lacunae, we mo'dvate the
particular handling of them in ELF.

A

4

I	
l



PREFACE

For some time we have been working toward the development of a pro-
gramming language facility which cart be easily tailored to the needs of any
particular group of users. The Extensible Language Facility - ELF for short -
is the result of this work.

This paper is not, however, an introduction to ELF as such. Rather, our
concern here is with providing a philosophical basis for ELF and for motivating
the notions and mechanisms proposed for the programming language component
of ELF. A companion paper [ F 1 ] provides an introduction to the programming
language component of ELF. Programming languages and, particularly, complete
programming systems have become ever more complex; ELF is no exception, al-
though we do submit that it does not have the apparent complexity of PL/I or
ALGOL-68. It is our hope that this paper will provide sufficient background and
framework that the papers and documents which are concerned with the details
of ELF as such are more easily read and comprehended.

There have been many sources of inspiration for ELF. The GPL language
of Garwick (see [ G1 ] , f G2 ]) , the .ALGOL D language of Perlis and Galler (see
[G3]), and the recent draft report on ALGOL-68 (see [ V1 ]) have all had consid-
erable influence on our work. We would also note that many of our colleagues
have made significant contributions.

r

It



INTRODUCTION

There are two basic premises which underly the development of ELF. The

first of these is that there exists a need for a wide variety of programming languages;

indeed, our progress in the understanding and application of computers will de-

mand an ever widening variety of languages. There are, in fact, " scientific" pro-

blems, "data processing" problems, "information retrieval" problems, "symbol

manipulation" problems, "text handling" problems, and so on. From the point of

view of a computer user who is working in one or more of the su areas there are

certain units of data with which he would like to transact and there are certain

unit operations which he would like to perform on these data. The user will be

able to make effective use of a computer only when the language facilities provided

allow him to work toward a desired result in terms of data and operations which

he chooses as being a natural representation of his conception of the problem

solution. That is, it is not enough -co have a language facility which is formally

sufficient to allow the user to solve his problem; indeed, most available program-

ming languages are, to within certain size limitations, universal languages.

Rather, the facility must be natural for him to use in the solution of his particular

problem.

The second basic premise underlying our work is that the environment in

which programs are prepared, debugged, operated, documented, and maintained

is changing and that the language facilities currently available do not properly re-

flect these changes. We are speaking, of course, of the advent of interactive

computer systems which provide the user with computer-based files and which can

provide for a much more intimate involvement with the development, debugging,

and execution of a program than is possible with a batch system. A modern

language must be developed with this kind of programming and operating environment

in mind; although not everyone will be able to interact with a reasonable program-

ming system in the immediate future, the trend is clear.



.Let us now explore briefly the implications of these two premises and

examine some alternative approaches to providing an appropriate language

facility.

The "classical" approach to providing a large variety of languages has

been that of developing languages and their translators - and often even their

operating environments - independently. However, it seems clear that the cost

of creating and maintaining an ever increasing number of language systems is

not tolerable. Somehow we must both provide the variety of facilities but, at

the same time, also reduce the number of different systems. It would seem that

there are two extreme approaches to the problem of developing a language facility

which provides all things to all men. We will refer to these as the shell

approach and the core approach. The shell approach calls for the construction

of one universal language which Jontains all the facilities required for every

class of users. PL/I with the "compile-time' facility is probably the best cur-

rent example of a shell language. In contrast, the core approach calls for the

development of a small "core" language which, by itself, is probably not appro-

priate for any class of user, but which contains facilities for self-extension. A

particular class of users then extends the core language to create a language

which is appropriate for their problems. There are, to our knowledge, three cur-

rent languages which are, to some extent, core languages: ALGOL-D, GPL,

and ALGOL-68.

The shell approach does have a certain appeal. just as the telephone

company assures us that they have the potential of connecting us to any appro-

priately interfaced computer in the world within a few minutes for a modest fee,

it would be a comfort to feel that all the language facilities we might desire were

available and required only our calling them up and getting connected to them.

Nonetheless, it is our opinion that the shell approach must be rejected. The pro-

blem is not as simple as that of connecting a few telephone lines. First, the

overhead inherent in utilizing a shell language is rather large. That is, a user
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must carry as overhead all the mechanisms for language facilities which he is

not using, implying an overhead cost measured both in time (for example, in
looking for cases which don't occur in a program) and space (kee ping the whole
translator available "Just in case") . Perhaps a more important difficulty is
that if the PL/I philosophy of prescribing some meaning for most any construction
is followed, the language dosigner is forced to devise numerous default conven-
tions plus giving interpretations for all manner of operations on incompatible
operands. In PL/I this requirement has led to such anomalies as: both of the
boolean expressions 5 < 6 < 7 and 7 6 < 5, are true; the interpretation A w B where
A and B are matrices is the matrix whose (i, j) th element is the product of the
(i, j) th elements of A and B. It is not that these kinds of interpretations are "bad" -
the point is that they are built-in and unchangeable. No matter what meaning one
might like for 7 < 6 < 5 (I like false) or for (i, j) th element of A*B, (I like the
inner product of the i th row of A and of the j th column of B), that meaning pro-
vided by the designers is now fixed. One must revert to procedures if he wishes
to introduce new operators, or to detour around the built-in operators when he
needs to vary the meaning of those originally provided. And this becomes even
more cumbersome when, as in PL/I, procedures can produce only scalar results.
We would maintain that our reasons for rejecting the shell approach are not
based on speculation; the difficulties currently being experienced with the imple-
mentation and utilization of full VIVI provide ample evidence.

Thus it is our contention that the most reasonable approach to providing
the desired variety of language facilities is that of providing an extensible language
supported by an appropriate compiling system. We do not, however, suggest
that we can now devise a single universal core language which will adequately
provide for the needs of the whole programming community; the diversity in "styles"
of languages and translation mechanisms will probably always be sufficient to

encourage several language facilities. ELF, which is the subject of this paper,
provides a facility in the "style" of such languages as ALGOL-60, PL/I, and
COBOL.



Now let us discuss the second premise, concerning the environment in

which we envision programming being done. Our basic assumption here is that

the programmer does not approach the cjmputcr with a deck of cards or magnetic

tape which constitute a complete a.Ld independent run: a "run" deck which would

commence with control cards, followed by his problem and then by his data, and

which would result in the system accepting these, compiling his problem, run-

ning it against his data, and finally burying him in dumps or some other visible
output. Rather, the programmer's unit transactions should be thought of as acts
of updating some file. He might insert a fe\v corrections to his program text,
might call for some incremental change to some executable form of his program,
and then might let his program run, all the while maintaining an intimate control

over the proceedings, responding to messages as they occur instead of having

to wait for the final results before he can exert any control.

We do not suggest that the ELF is a solution to the problem of providing a

language for the e^fective use of a modern time-shared* system with permanent

users' files. Indeed, there is really very little experience now accumulated in

using such facilities, es most of the language facilities now in use on the avail-
able systems were developed as "batch" languages. It is to be hoped that work
such as that now underway at Carnegie-Mellon under Perlis' direction will pro-

vide some guidance in this area [ P2] .

We do suggest, however, that we can now devise an extensible language

facility in SL.vh a manner that it is cognizant of an available filing system and

provides for interactive control; we will discuss our point of view on the relation

of the language to the system in a later section.

*i 	 sThat is, interaeti^^e, how the intimacy between the user and the stem isy
arranged does not concern us.
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The remainder of this paper is divided into four sections. In the next

section we will discuss the overall design criteria which have guided the develop-

ment of the language. Following this, we will present an overview of the language

with the object of providing the reader with a general feeling for the language as

well as for the translating and executing mechanisms which we envision. Following

this we will discuss the kinds of features and facilities which will be in the

language; the purpose of this section is to justify and motivate the kinds of con-

structions proposed for ELF rather than to describe ELF as such. The final section

is devoted to a summary and conclusion.

r

r



DESIGN CRITERIA

Perhaps the most eloquent defense of the overall design criteria to which

we have tried to adhere was given in the 1966 Turing lecture by A. J. Perlis ( P1

There Perlis framed the problem as that of providing for systematic variability

in a languace. All acceptable languages provide for constant as well as for

variable operand values. However, a great deal more variability must be provided

if a language is to be extensible. There must be means of providing for variability

in the types of quantities with which we deal, in the operations on these quantities,

in programs or procedures, in the syntax of programs, in regimes of control, in

the binding of programs to other programs and data, in the means of accessing

data, in the employment of the various storage and input/'output resources afforded

by the system, and so on. However, we must provide for this variability very

carefully so that we retain the necessary control over the efficiency of use of the

computer, or else our result will be a purely academic exercise.

In our design of ELF vie have looked to a number of "users" as sources of

constraint; unless the language facility is properly matched to its users, it will

not be an effective tool. These "users" include the programmers who will read

and write in the language, the computer which will ew ,cute programs, the compiler

or translator which will prepare executable prograrris, and the operating system

which will provide the environment for the preparation and execution of programs.

In addition, we feel that there are two other important sources of constraint: the

traditions established by current languages, and the practicality of the language.

Let us now briefly discuss the nature of the constraints which each of these

various sources imposes.

Programmers

People have to learn and use the language. Indeed, we hope that people

will even read programs in the language in addition to writing them. However,

x
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we find that different people have rather different ideas about the form in which a
program should be cast.	 Most serious programmers adhere to the basic expression
forms where these forms are appropriate - using the infix, prefix, and postfix
operators plus parentheses which have resulted from the years of development of
mathematical notation.	 The form of program text which is not inherently "expres-
sion-like" is, of course, not so well established.	 We note here, however, that
the usual "out" for introducing new operations into a language - the use of functions
or procedures - does not provide an adequate notation for the majority of operations.
If the number of arguments required exceeds three or four, the user has difficulty
in associating the "meaning" of an argument with its position in the argument list
and he might be considerably better off with some keywords to help him focus on
what is what.	 Also, if the nesting of function calls gets to be more than two or
three deep, the "LISP-unreadability" problem becomes serious. 	 We would also
note that, for the user, an important criterion is that he should not have to intro-
duce and deal with constructs which are unnecessary to the solution of his pro-
blems.	 The arithmetic expression form provides a facility which is both natural
to a large class of users, and which also  very effectively hides the setting up of
temporary storage for intermediate results. 	 Similarly the various renderings of
McCarthy's conditional expressions as well as the iteration or looping facilities
which appear in many programming languages have, as a secondary effect, that
of eliminating the needs of introducing temporaries or lables which are used only
once (see [ D1 j and	 L2 ] for interesting discussions of this point).

Computers

The abilities of current and projected computers must also be viewed as
a source of constraint.	 That is, we should try to "match" the basic types and
operations in the language with those available in " standard" computers (and here

we have reference to CPUs, not the whole " system") .	 Thus, for example, al-
though our mathematical natures might encourage us to define only integer quantities

r
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and operations as primitive, anct obtain floating point quantities and operations
by extension, this would surely be foolish when we are faced with computers
which by-and-large have floating point quantities and operations as primitives.
Similarly, we reject the notion of quantities and operations drawn from set theory
as primitive in the language because of the wide variety of implementation strategies
which might be employed in providing for these. Such quantities and operations
should be introduced via extensions. We must presume that the facilities avail-
able in current computers mirror, to some extent, the basic facilities which the
users require.

Compilers

The past several years have witnessed the emergence of a considerable
body of experience and technology in compiling programs. Unfortunately, most
recent language developments seem to ignore this technology and demand new and
ever more difficult and expensive translating mechanisms. We have attempted to
reverse this trend and to adhere rather strictly to the technology available - to pro-
vide a language which can be effectively and efficiently translated and for which
the known techniques of code generation and optimization will apply.

02eratin, g Systems

The constraints which might be imposed by the peripheral devices and
operating systems which are to be used must be noted. Thus, the means for en-
coding messages to and from the computer are rather strictly dependent upon the
devices (and software) which are available; our adherence to a conventional string
language with reasonably conventional characters is dictated by this consideration.
The control structure inherent in modern computers must also be kept in mind;
for example, the notion of "interrupt" is basic in most computer systems and our
language facilities should reflect this. Further, the availability of various kinds
of storage having varying degrees of accessibility plus the needs of the operating
system to allocate the storage and other resources of the system must not be ignored.



Tradition

The "tradition" which has been established by such languages as ALGOL-60,

PL/I, COBOL, and LISP and which is being established by ALGOL-68, GPL, and

ALGOL-D should be considered as a source of constraint. That is, it does not

seem reasonable to re-invent and re-cast the facilities available in those languages

just to be different. Our departures from the facilities available there should be

well thought out and well justified. It will be clear that we have in fact departed

in more-or-less significant ways from all these languages; we hope that our argu-

ments for doing this are convincing.

Practicability

The final source of constraint which we have tried to observe is that of

practicability. It is our intention that the language be as efficient and useable

as any of the conventional programming languages. In adhering to this constraint

we have failed in many ways to reach all the goals of variability which Perlis pre-

scribed. Thus, ELF provides a language which has the kinds of variability which

we can imagine being handled with reasonable efficiency. Another generation of

language development will be desirable when we better understand other kinds of

variability and can devise mechanisms for handling them efficiently.



OVERVIEW OF THE EXTENSIBLE LANGUAGE

There are a number of vantage points from which one can view the exten-

sible language. In this section we will look at the language from three points

of view. First, we will take the conventional view, looking at the language as

providing various types of data and operations, and various ways of writing

about these. Following this we will consider it from the point of view of com-

piling programs written in it. We feel that an understanding of the language from

this point of view is helpful if one is going to understand the various exten-

sion mechanisms which are available in the language. The final point of view

we will take is that of the interface between the language and the operating

environment.

z
Conventional View

We can think- of the language as coz.taining a "base" component and an

"extension" component. The base component is rather similar to conventional

programming languages in that it provides for the declaration of operands of a

i	 number of basic data types and the construction of ordinary expressions over the

various types of operands. In addition there are the usual assignment and con-

trol statements, including goo to and iteration statements plus conditional expres-

sions, conditional variable references, and conditional statements. The declarations

and imperatives are all imbedded in a block structure which is similar to that of

ALGOL-60. The differences between the base component and, say, ALGOL-60 are

not dramatic save in certciin notations used and the fact that there is an operating

system and a filing facility in the background.

It is the extension component which departs from most conventional pro-

gramming languages; there are, however, some strong similarities here with

ALGOL-D, GPL, and ALGOL-68. Basically, one can introduce new data types,

F



new operations, and new forms of writing (that is, new syntactic structure) into

the language. New operations can be defined over new data types in terms of

previously defined operations over the components of these types. New forms

of writing may be introduced either by introducing new formats for operators or

by what is essentially a combined lexical and syntactic macro facility (see [Cl]).

The new data types are created by the operations of constructing n-tuples (with

named components) , constructing rows (with numbered components) , and con-

structing pointers, all recursively. Further, one can gain control over the inter-

pretations of certain constructions which effectively permit rather more context

than a single operation to be taken into account in determining the way in which

some particular operation is to be "coded" . As with ALGOL-D this facility per-

mits one to carefully control the employment of temporaries and other such space/

time trade-offs when generating code for such things as matrix operations.

In the next section we will discuss the elements of the language in some-

what more detail; for the moment it will suffice to think of the language as similar

to ALGOL-60 but with provisions for new data types and operations (or, if ALGOL-

68 is familiar to you, similar to ALGOL-68) .

Compilation View

The second point of view we want to explore is that of the compiling

mechanism which we have in mind. Although one does not conventionally talk

about compiling techniques in describing a language, we believe that it is rather

important in this case. That is, we have been strongly influenced in our choice

of language constructs, notations, and mechanisms by what we feel can be

readily handled by the current compiling technology and thus understanding our

view of the kinds &I compiling mechanisms envisioned is rather important. For

present purposes we want to think of the compiler for the language as consisting

of several " com-ponenks!.' , including: a lexical analyzer, a syntactic analyzer, a
W	
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parse interpreter, and a user controlled optimizer, plus other components for

generating machine code and filing it, or for interpretively executing some

"internal" representation of the program text, and so on. We shall have no par-

ticular interest in these latter components here; let us now consider the other

components.

Lexical. Analyzer

The lexical analyzer will be responsible for isolating, identifying, and

appropriately converting the source input (e.g. typed characters) thus producing

a stream of "token descriptors" representing constructs at the level of "identifier"

"literal" , "operator" , "delimiter" , and so on. We anticipate that, although the

lexical analyzer will be "table driven" by tables derived from a grammar which

specifies the structure of the tokens, this component will not be changed or ex-

tended by the average user and we will thus think of it as fixed.

Syntactic Analyzer

We intend that the syntactic analyzer be essentially an operator precedence

analyzer. An operator precedence analyzer is, of course, one of the simplest and

most efficient kinds of syntactic analyzers available. Operator precedence analysis

works only on a rather restricted set of languages. However, as Floyd demon-

strated in his original paper on this method [ F2) , ALGOL-60 is close to being an

operator precedence language; further, those changes Floyd proposed to the original

syntax rules for ALGOL-60 and to certain constructions in the language in order

to make it operator precedence did no real violence to the language but actually

made it cleaner and more symmetric. Thus, a language does not necessarily suf-

fer in richness of style because it was designed with this method of analysis in

mind. Another important reason for the choice of this method is that those pro-

perties of the operators which, properly encoded, are required to drive" such an

r



analyzer are exactly the properties which the user has in mind when he specifies

an operator, namely, the precedence, in the sense of order of evaluation of

that operator relative to other operators.

It will be convenient to think of the operators available in the language

as including binary infix (e.g. '+' or '<'),  unary prefix (e.g. ' -') , unary suffix

(e.g. ' ! ') , unary outfix (e.g. ' ... I ') , n-ary " distributed" (e.g. 'if .. , then ...

else' or ' increment ... by ... 9, and "functional" (e.g. 'MAX („ .. , ...)' or

' SIN( )') . Each operator (actually each fixed "part" of each operator) will enjoy

one of four relations with respect to all other operators (or parts of operators) ,

namely: takes precedence, yields precedence, has equal precedence, or none.

The user will introduce a new operator (syntactically) b y specifying the prece-

dence of each of its parts relative to the precedence of operators already available.

It will generally be the case that a given operator will be defined for operands of

a variety of data types; the " syntactic analyzer" will isolate a phrase - an

operator plus its operands - by using the precedence relations, and then the parse

interpreter will then determine the "meaning" or "interpretation" of the phrase in

accordance with specifications which are either built-in (e.g. with '+' operating

on two integers) or supplied as extensions by the user (e.g. with '+' operating

on two quaternions) . One of the "dispositions" which the parse interpreter might

make of some phrase is to place the operands of that phrase into some previously

given (macro) "skeleton" and re-submit the resulting text for syntactic analysis.

This will provide what are essentially the "lexical macro" and "syntactic macro"

facilities proposed in [ Cl ] .

There are certain operators which require a larger context than the phrase

in which they occur for their interpretation, particularly if one has a goal of pro-

ducing optimal coding and either does not have, or prefers not to overburden, a

code optirnizer. An example here would be the coding of the multiplication of two

conformable matrices in the three contexts:



r

A* C	 (A+B) *C	 (A+B) * (C+D)

Thus, it may be thr.t one might desire an algorithm for matrix multiplication
which required only one temporary scalar for the first cane, a temporary row for
the second, and a full temporary matrix only for the third. On the other hand,
one might use temporary rows for all three cases, giving up storage efficiency in
the first case and computation efficiency in the third. The point is that there
are cases in which the determination of the appropriate means for performing some
operation depends upon some context. The user controlled optimization phase
provides for this. It would also be in this stage that the user would have the
ability to tinker with such things as the allocation of storage, the means of
access (e.g. via some hardware or software "paging" scheme) to certain quan-
tities, and so on.

Briefly, we think of the parse interpreter as constructing what in effect is
a computation tree representation of the analyzed program text; each node of this
tree would be labelled with the data type of the value it represents. The user
controlled optimizer may then be thought of as a mechanism which "walks" over
this computation tree, inspects context as appropriate, and re-organizes and re -
constructs portions of this tree. The mechanism has certain similarities with
those proposed in ALGOL-D, but with a control and sequencing strategy similar
to that of the GSL component of the CGS system (see [ S1 ] , [ S2] , and, [W2 ]) .

Interface View

Now let us briefly consider the language from the point of view of its
interaction with the Environment in which programs are constructed, debugged, and
executed. First, we want to emphasize that we would expect the language to
include the means for the kinds of communication with the operating environment
which are typically handled via "control" or "job" statements as well as the kinds

r
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of communications which have to do with "editing" . We presume that there is

a filing system which contains such things as: (1) program text which we might

want to incorporate into the input stream to the compiler during some run, (?)

specifications of modes of programs or procedures which our current program might

want to reference, (3) modifications or extensions to the compiler which we might

want incorporated for processing our current program text, (4) an "executor" which

can execute programs as they are represented following the interpre -,tion of the

parse and user-controlled optimization, (S) data which has been previously input

or generated and then filed, (6) and so on. Clearly there must also be means

for placing any of these items in the. filing system. Thus, a "run" or ' session"

might be one in which we input a number of extensions to the language including

new data types and operations over them, with the result that they are filed in

such a fashion that we can later call the compiler, mentioning that it is to include

these extensions. Another type of session might be the input of program state-

ments with the expectation that they be executed directly. Another might be the

input and editing of a program with the expectation of filing it for later execution.

That is, a "unit transaction" with -n t1he EILF system will typically utilize material

previously developed and filed, and result in material to be filed. There will be

a number of forms which this material might take, ranging from text at one extreme

to modifications to compiler tables or certain programs within the compiler at the

other. So long as ti' , is philosophy of operation is understood, we will not go into

further details here; we intend to spell out more details of the linguistic forms

and possible system mechanisms to attend to problems in this area in a sub-

sequent paper.
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THE BASE LANGUAGE

In this section we will discuss a number of concepts and mechanisms
which are relevant in a general purpose programming language and to attempt to
motivate the particular realizations which have been made of them in ELF. It is
not our purpose to discuss ELF as such, and certainly not to provide an introduction
or primer for the language. Rather, we hope that our discussion here will, as it
were, " soften the blow" and make the specifics of ELF which might otherwise
appear to be rather strange departures from convention appear to be more reason-
able (or, perhaps, less capricious) . Thus, our hope is to suggest the kinds and

can of variability which ELF will possess;means	 bi y	 our method will be to discuss in-p	 ,
adequacies in current languages and, mainly by example, to show how they might
be removed. One must turn to [ F1] for th y: introduction to ELF as such. We
might also note that we are not here attempting to give a complete justification
for all the concepts and notions in the language,. Indeed, perhaps the best view
of the sequel is as a series of remarks on languages and language design.

One of the first issues we would like to discuss is related to the ambiguity
of a variable name in most programming languages. That is, it requires a certain
amount of context to specify the meanings of the three occurrences of 'X' in the
ALGOL-50 fragments

X := X + 1	 and	 F (... , X, ... )

Of course we all know that the first and second Xs mean the location in which
a value is stored, and the value stored at that location, respectively. The ':_'
and the '+' provide sufficient context to determine which of the two possible
meanings is to be taken. The third 'X' is more troublesome. Without the des-
cription of the procedure named 'F' we simple have no idea whether the place or
the value is meant. There is a further source of difficulty with "names" and
"values" when we wish to pass to a procedure what amounts to the address of some

quantity so that the procedure might store a new value into the location associated



with it as well as to fetch and use its current value. Of course ALGOL-60 has

the provision for name and value parameters of call; the trouble arises from the

fact that ALGOL-60 really has no provision for passage of an address only, thus,

for example, denying any direct and efficient general procedure which exchanges

two values.

ALGOL--68 deals with this problem rather directly. In ALGOL-68 one de-

Glares the referential level" of each identifier, as for example in

real PI = 3.14159265;

ref rea 1 X;

ref ref real P-

roc () ref real N;

Here PI is declared as a literal (real) value (and, like any literal, cannot appear

on the left hand side of an assignment); X is declared as a reference to a real,

that is, a variable - a place to store a real; P is declared as a reference to a ref-

erence to a real; a place to store the address of (or a pointer to, etc.) a real var-

iable; and, N is declared to be a procedure which takes no arguments but produces

as value a place to store a real. Passing arguments of the types real, ref real,

and proc ( ) ref real are equivalent, in ALGOL-68, to what is usually called value,

address, and name call. ALGOL-68 goes on to include as a basic feature of the

language the automatic adjustment of referential levels. That is, appearances

of X and P in arithmetic expressions and assignments would be attended by the

equivalent of the insertion of the prefix operator 'val', interpreted as "take the

value of" , whenever the referential levels of quantities under various operations

do not match. Thus, given the assignment

P:=X+PI;

ALGOL-68 would automatically adjust this to

val P := val X + PI;

and, given

P.= X.

I



would provide no adjustment since none is required; the variable P would receive

as value the address of X. One of our more Serious objections to ALGOL-68 is

this automatic adjustment of referential levels. An alternative way to handle

the adjustment of referential levels would be to insist that the user specify all

such adjustments by extensions of the meanings of various operations.

Another feature of ALGOL-68 which we find controversial is its handling

of the allocation of space. In the above example, no space would be allocated

for PI, a space appropriate for storing a real would be allocated for X, and two

space, one appropriate for storing a real and one appropriate for storing the

address of the first space would be allocated for P.

It might be more desirable to arrange that there be no automatic allocation

of space save that required to accomodate the "highest level" portion of a quantity

declared, so that declaration of variables of data types "real variable" and

"pointer to a real variable" would cause allocation of space adequate for storing

a :eal and space adequate for storing a pointer to a real, respectively, leaving it

to the user to obtain any further space he desired. We note that one good feature

of ALGOL-68 in distinct contrast to PL/I, is that ALGOL-68 does not jenerully

deal with pointers or addresses which point to (address) entities of unknown types;

rather, one known exactly what is pointed to in each case, an advantage which

avoids many of the anomalies of pointers in PL/I.

It is possible to define several primitive data types or modes from which

all other data types or modes are constructed via extensions. One set which

corresponds well with conventional usage and conventional computing machines

is the following:



Mode Examples

int 1	 2
real 1.5E6	 3.14159265
bool true
char 'a'
label L
mode real

Meaning

integer value
real (or, floatinq) value
boolean value
character value
label value
mode (or, data type) value

F

It might als, be worthwhile to introduce a further primitive mode, say 'none' to
describe those constructions, such as control transfers, which have no "value" in
the conventional sense. Certainly one wants procedures which deliver no value.
However, we would not want to specify that a procedure take as an argument a
It

	 with no value; we might argue that compile time insertion of a statement
in place of some parameter would be useful, but at run-time one should expect to
pass the name of a procedure rather than the procedure itself as an argument since
one would not want the procedure carried out as the arguments of call are processed,
but rather, when it is referenced in the body. That is, the mode 'none' is unlike
the other (value) modes in that one cannot specify that an argument to a procedure
have mode 'none..

There is one further construct which might be introduced as a primitive; that
is the tuple . It is clear that we want as a primitive notion that of an argument list
for a function which the programmer wishes to reference by the conventional "functional
notation" .

When talking about the various quantities which can be manipulated in a
language it will be convenient to speak of them as a triple - the name (designation,
etc.) , the mode (data type, etc.) of the quantity, and the meaning (interpretation,
referent ,etc.); herein we will often display such triples in the form
{name I mode I meaning} as for example:

i



(1 ( i nt 1 1 }
n'

(pi real 3. 14159265 }

( L I label	 some particular point in a program}

(int ( mode ' built-in notion of integer value}

(X I loc real I a location in which a real can be stored, a real variable

We might note here that we use the operator 'loc' in much the say way
'ref' is understood in ALGOL-68; we use the word loc rather than ref to emphasize
the fact that no automatic adjustment of referential level is implied as it is in
ALGOL- 68 .

The notion of expressions which have values is included in most languages.
In general, these are constructed by using various operators (binary infix, unary
suffix and prefix, n-ary distributed, and functional form) and their associated
operands; the order of evaluation is determined by the relative precedence of the
operators and further controlled by the use of parentheses for grouping. Some
examples are

Expression	 Mode

(1 + 2) * 3	 int
(1 < 2) n true	 bool

sin (.5)	 real

ao to L;	 none

The operators which we might view as primitive would include the ordinary
arithmetic operations over ints and reel s, the boolean operators over bools,
and the relations which take ints or reals or chars and produce bools.

In most languages, there is no notion of mode valued expression or
mode operator except that which is implicit in such constructions as

I



array HENRY [ 1:N]	 of ALGOL-60

DCL 1 A,
2 Al INTEGER,	 of PL/I
2 A2 FLOAT,

etc.

It would be much more consistent to treat modes as values - albeit "values" which
indicate structure or meaning rather than the more conventional view of value as
represented by numbers, characters, and so on. Indeed, one can define various
operations which take mode valued operands and result in mode values, as well as
define procedures which deliver modes as results. A completely symmetric treatment
of modes as values would include a notion of mode valued variables. However, our
adherence to a principle of "practicability" dictates a very careful control of the kinds
of variability permitted in the mode of a quantity. Thus, as is the case with most
programming languages, it is in this area that we would propose to carefully restrict
variability.

There are three basic mode operators which we might remark upon briefly. The
first of these was hinted at above; this is 'loc' operator, a unary prefix operator
which takes a mode expression as operand and is interpreted as "create a space of
the appropriate size and shape to store a . . ." . A mode expression of the form

loc ...

in the context of providing for the declaration of some quantity would indicate that
the quantity is an address of (pointer to, etc.) a ' . . 0  .

The second operator is one which would permit the construction of a homo-
geneous collection of somethings. It is a binary operator whose operands are a
mode and an integer value. The integer value is the number of somethings and the
mode value is the mode of each something. The binding of the value of the integer
operand could, of course, be expected to be accomplished at several different times
including compile time, block entry time, or even dynamically. The use of this kind

to
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of mode operator would permit (by recursive use) the modelling of arrays, lists,
and the like.

The third mode operator would be an n-cry operator which would permit the
specification of n-tuples of (generally) non-homogeneous components.

With the "row" and " n-tuple" operators we would also have to provide some
means for selecting the components as well as for constructing instances of structures
created using these operators. The selection of a component of a row would doubt-
less be via its number (subscript); it might be more convenient to name rather than
number the components of an n-tuple, however.

With the use of these three mode operators we might then construct
things like the following:

{complex I mode I a pair of real s named 'r' and I V }

{vector ( mode ( a row of 10 ints named ' 1 1 . ' 2' , , . , ' loll

{TJ I for, complex I the location of a place of the appropriate shape and
size to store a pair of real s; the two components
of U might be accessed via the names 'U.r' and
'U , i' or by the forms 'r of U' and ' i of U' , etc. }

(V 11oc vector ( the location of a place of the appropriate shape and
size to store 10 ints; the 1 st , 2 nd , etc. compon-
ents of V might be accessed by the names ' V. V,
'V.2',  etc . or the forms '1 of 7, '2 of V', etc,
or the form 'V[1]', 'V[2]', etc. }

I
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As for constructing instances we might imagine such things as

complex (1.0, 2.0)

row (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

which would permit assignment statements like

complex (1,0, 2.0) — U ;

row (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) -- V ;

Most programming languages have some form of 'if ... then ... else' or

"conditional" operator. ALGOL-60 permits both conditional expressions and con-

ditional statements, but does not permit conditional references (of, if you prefer,

conditional "left-hand sides") , We submit that the conditional operator ought to

be included in a language and to permit then and else clauses of any allowable

mode, so long as the then clause and the else clause have the same mode (unless

one has extended the meaning to cover the case of certain different modes) .

There are some questions concerning the assignment operator and its

interpretation in a programming language. Most programming languages use right

to left substitution and there is considerable variation in the treatment of multiple

assignment and imbedded assignments. We submit, first, that a left to right

substitution is more "natural" and avoids the usual difficulties of explaining the

order of evaluation of left- and right-hand sides. Thus, we might employ the

operator '--' and write assignments like

0.0 -► X

t
pi *sin(. 5)	 X

I	 V[ I]

etc.

An interesting interpretation of '--' as an operator is that it has a value, which

is the value of its left-hand side. One might then view the 1 ;' as a

r



suffix operator which has the effect of "throwing away a value" . Thl.s would
clarify such constructions as

0.0	 V [ 1 --- I] ;

Whether or not one prefers left-to-right or right-to-left assignments it does seem
reasonable to take the assignment operator as having a value and to define the
operator as "built-in" when occurring between an operand which is a value and an
operand which is a location of a size and shape appropriate to store that value;
any other interpretations could be entered via extensions For example, in
ALGOL- 68 the assignment

P :=X

where P is a ref ref real and X is a ref real is defined to result in P "po nting to"
X; a case could be made, however, for interpreting the meaning as causing the
place P points to to receive the value currently in the location corresponding to
X. Our point is that user control over the interpretation should be possible.

Most modern programming languages have a notion of compound statement
and/or block. Usually a "block" is a compound statement with declarations; the
identifiers introduced are local to the block and allocation and freeing of whatever
space is required by virtue of the declarations is arranged upon entry to and exit
from the block. However, few have any notion of a compound or block expression,
except for the case where the block constitutes a procedure. body. It seems to us
an obvious generalization to permit blocks and/or compound statements in general
to have as value a value of any mode and to permit their inclusion wherever such
values might be permitted. Taking curly brackets as "compound expression de-
limiters" we might have an expression like

{ S (L) , L-1 -- L; } * {S(L),  L-1 -- L; } --- { L+ 1 -- L; S (L) }

which does something like popping two values off a stack, multiplying them, and
pushing the result onto the stack.

I
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We would also note that tying all allocation and freeing of space to block
entry and exit does not generally provide the user sufficient control over his
allocation and that something like the AUTOMATIC, CONTROLLED, and STATIC
allocation attribute of PL/I is required.

There are a number of difficulties with the way in which procedures are
handled in most programming .languages. A procedure is nothing but a parametrically
dependent value. That is, it requires certain parameters or arguments, each of a
certain mode, and produces a value of a certain mode. The mode of a procedure
might be indicated as

proc (real) real

proc (int, int) mode

procedure taking a real argument
and delivering a real result, such as
a trigonometric function.

a procedure taking two int arguments
and delivering a mode valued result,
such as,  for example, 'row M of row
N of real'.

The definition of a particular procedure requires that (1) the mode of the proce-
dure (in the above sense) be established, and that (2) one indicate the formal
parameters which, in the body of the procedure, act as place-holders for the actual
parameters which will be delivered upon the call of the procedures, and (3) one
provide the body of the procedure. The body generally is an expression involving
the formal parameters plus, perhaps, other data such as literals, variables local to
the procedure, and variables in some containing block. A possible notation for this
defining a procedure, somewhat reminiscent of the k-calculus is suggested by:

proc (int i , int j) ((i + j) t 2)

which is taken to be the definition of a procedure which takes two int
valued arguments and (by virtue of the fact that the expression following
the argument list has an int value) , returns an int value, the square of
their sum. There are two contexts in which we might find a procedure
body.
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First, being essentially a A-expression it could be applied to two
arguments, sliz:

proc (int i, int j) ((i + j) t 2) [ 1,2]

resulting in ' 9 1 . A more conventional (in programming languages) use
would be in the context of a procedure name declaration like

let P be proc (int i, int j) ((i + j) t 2);

which establishes P as the name of a procedure which takes two int
arguments and returns the square of their sum as its int result. By insis-
ting upon explicit indication of the mode of a procdure (P would have the
mode proc (int, int) int) one can separate the declaration of a procedure
name and the assignment of a value to it, as suggested by:

let TRIG be a loc proc (real) real;

SIr
	

TRIG;

(val TRIC ) [ . 5 1 	 X;

The assignment of SIN to TRIG is clearly acceptable since SIN has mode proc
(real) real and TRIG was declared to be a loc proc (real) real, that is, a location
of the shape and size appropriate for storing a proc (real) real. The value of a
loc anything is that anything, here the SIN procedure which duly takes its argu-
ment and produces SIN (. 5) .

There is another area of confusion as regards procedures in most conven-
tional programming languages. Generally, the user is permitted to introduce and
use procedures only by adhering to the "procedure name followed by parenthesized
argument list" form. We would argue that other forms should be permitted, par-
ticularly those in which the procedure name looks like an operator and is employed
in suffix, infix, or prefix fashion, or, like the "if ... then ... else . . . " operator,



with its "name" spread out among its operands. So long as we can parse pro-

gram text and relate an operator and its operands,the "free form" should surely

be permitted and treated just like any procedure call.

Again it is generally not possible in most programming languages to utilize

the same procedure form with different modes of arguments except in solve special

cases like the arithmetic operators which generally accept either int or real

operands, or in the case of PL/I where "anything goes" and conversion to some

canonical mode is arranged for automatically. However, the mechanism to per-

mit the same procedure form to enjoy different interpretations depending on the

data type of its operands is really quite simple; if one is to be permitted new data

types he should surely be permitted the pleasure of defining meaning for old

friends like ' +' for these new modes of operands.

While we are on the subject of operators and procedures, we would note

that typically one can control the order of execution of his operations through

the precedence of each operator, plus the use of parentheses to force precedence.

In general one cannot, however, say anything about the order of evaluation of the

operands of an operator; that is built in as left-to-right, or as being in parallel,

and so on, and is not subject to change or control by the user. Faced with the

newer computing machines and/or operating systems which have some provision

for parallel operations at the arithmetic, storage access, or program execution

level, it would seem that we ought to provide language features which take some

advantage of these. One way to do this would be to permit the user to specify

for each operator the permissible order of evaluation of its operands. Thus,

one might indicate that with most of the arithmetic operators parallel evaluation

of their operands is permitted, that the operands of '-► ' or ':=' are left-to-right

or right-to-left, and so on. However, if left-to-right order of evaluation was

important, as it would be in an expression with " side effects" (such as is the

case with stack popping and pushing) then one could stipulate that the left-to-

right order be preserved. For operators at the " statement-level" such as ';' or

'begin' and so on, such control would amount to indicating sequential or parallel

operation. of parts of programs.
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Most current programming languages have some kind of provision for iteration

or repeated execution of a compound statement. Typically one can specify that

some (integer) variable takes on some sequence of values specified either by dis-

playing the sequence of values or by indicating an initial and final value and an

increment. Further, there is sometimes a provision for stopping the iteration at any

cycle via a while clause which tests for the truth of some boolean expression. We

would like to discuss several extensions of the conventional iteration statement

which we think are justifiable constructions in a basic; language (i.e. not obtained

via extensions) . First, if we are to have some notion like that of row discussed

above and some means for constructing a row whose number of components might

vary then we need some kind of language feature which will permit this. The

generalization of iteration facilities suggested by the following might be considered.

for i= 1toN keep i

Here we hope to suggest that N int values, specifically (1, 2 1 3 1 ... , N) are con-

structed. These could then be combined into a row by use of a row-constructing

function.

There are a couple of other generalizations of iterations which, if they were

to be defined as extensions, would require introducing either unwanted labels or

temporary storage, both of which are objectionable since it takes a fairly  clever

optimizer to detect the superfluity of such constructs. First, we might envision

adding a variant of the while clause; the while clause of course simply stops the

iteration when it becomes false. An interesting variant which has deep roots in

mathematical usage might be called a such that clause, a boolean expression which

simply acts like a filter, letting some values through and " skipping" the cycle for

others. Second, we might note that with the 'dc:' and 'keep' variations we can

iterate statements and we can produce a collection of values; the one thing we can't

do simply is to produce a single value, for instance the bool desirable from a pro-

gramming language equivalent of a predicate like

Ib i (Ai = Bi)

r
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That is, we want to cycle through some index set making a test; the success, or
failure of that test might trigger both stopping the iteration (which can be handled
by a while clause) and returning a value. One possible construction would be a
clause which we might call the exit value expression, which would be associated
with some part of the iteration specification: if that part of the iteration specification
caused termination of the loop, then the value of the -,:^cit value expression would be
taken as the value of the iteration statement as a whole. The predicate above might
then be rendered as:

for i from 1 to N exit value (true) while (A = Bi) exit value (false)

That is, the construction will have the value true if the loop terminates because
it has been done N times and false if the loop stops because the while clause fails.

In general, the facilities available in most languages for any kind of con-
trol operations other than simple go to statements, conditionals, and loops is rather
meager. Indeed, most languages do not permit the use of the control features avail-
able on most machines such as interrupt, interrogation of the status of various
devices, and so on. PL/I, of course, made a significant step in this direction by
introducing tasks and the ON facility. We submit that considerably more must be
provided in this area. One must be able to call procedures with a variety of relation-
ships - subroutine, co-routine, independent task, and so on - and also to obtain
and make use of various hands of status information.

The final question we would like to discuss is that of the binding of various
quantities such as the extents of arrays the values of variables, and so on. In
ALGOL-60 like languages it has been customary to think of binding as occurring
at one of four times: compile time, load time, block entry time, or execute time.
There are good and practical reasons for distinguishing such times for potential
binding; our argument with the conventional approach is that the things which can
be bound at these various times are too rigidly fixed. Thus, in moat languages

1

0



one can only bind or fix the data type of a quantity at compile time; while this is
a perfectly reasonable restriction for many programs it is completely inadequate
for a general purpose output routine. That is, one should be able to write an
output routine competent to deal with any type of quantity, charging it with the
responsibility for determining the type of any quantity submitted for output and
switching to the appropriate conversion and formatting sub-routines. Requiring a
user to supply some data type code as a parameter is not an adequate solution.
ALGOL-68 has an interesting kind of compromise solutiur, to this problem. In
ALGOL-68 one can specify that the mode of Yt , )me quantity is to be one of a fixed
set of modes, and "Chdt the particular one of these modes that is has at any time
may vary dynamically as assignments are made to the quantity. It would appear that WE

could go somewhat further than ALGOL-68, however, particularly in permitting
variability (i.e. deferred binding) in arguments to procedures.

In a similar vein, it is generally the case that a procedµre is bound to
all of its actual parameters dynamically at the point of its call; there is no
provision, for example, to specify that it be bound to certain parameters at corn-
pile time or block entry time, a provision which, implemented properly, could
result in much more efficient programs. Also, most languages baL sally have
two ways of inserting procedures in a program - in line and as subroutines. How-
ever it is seldom the case that the user has any control over which operators or
procedures are handled in which, manner. This aspect of binding should clearly
be brought more under the users' control; the "macro" and " subroutines" specifi-
cation permitted in GPL are certainly steps in the right direction.

A related kind of restriction is that of insisting that the way in which
arguments are made accessible to a procedure adhere strictly to the mode declared
for the corresponding formal parameter. For example, if a procedure is to take
a matrix as an actual, parameter and we want to insure that the procedure treats
the matrix as a value;, then we either huve to pass a copy of the matrix or pass an
address (or dope vector) and hope that the procedure does not directly or in-
directly affect the value of the matrix. Surely considerably more can be done here.

I



One kind of provision which would be useful is to allow specifying two modes
for certain parameters; the mode which will be passed and the mode which the
procedure is to presume. Thus, we might indicate in the matrix case that a
matrix was to be passed by address but to be treated as a value (i.e. not con-
verted to the desired mode but treated as though it were of the desirod mode
and providing for the fact that it is not) . We might note here that given proper
system support, facilities for dealing with the whole notion of custody and respon-
sibility as described in [ L1 ] should be available at the programming language
level.
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