13 research outputs found

    Some results on the structure of multipoles in the study of snarks

    Full text link
    Multipoles are the pieces we obtain by cutting some edges of a cubic graph. As a result of the cut, a multipole MM has dangling edges with one free end, which we call semiedges. Then, every 3-edge-coloring of a multipole induces a coloring or state of its semiedges, which satisfies the Parity Lemma. Multipoles have been extensively used in the study of snarks, that is, cubic graphs which are not 3-edge-colorable. Some results on the states and structure of the so-called color complete and color closed multipoles are presented. In particular, we give lower and upper linear bounds on the minimum order of a color complete multipole, and compute its exact number of states. Given two multipoles M1M_1 and M2M_2 with the same number of semiedges, we say that M1M_1 is reducible to M2M_2 if the state set of M2M_2 is a non-empty subset of the state set of M1M_1 and M2M_2 has less vertices than M1M_1. The function v(m)v(m) is defined as the maximum number of vertices of an irreducible multipole with mm semiedges. The exact values of v(m)v(m) are only known for m5m\le 5. We prove that tree and cycle multipoles are irreducible and, as a byproduct, that v(m)v(m) has a linear lower bound

    Some results on the structure of multipoles in the study of snarks

    Get PDF
    Multipoles are the pieces we obtain by cutting some edges of a cubic graph in one or more points. As a result of the cut, a multipole M has vertices attached to a dangling edge with one free end, and isolated edges with two free ends. We refer to such free ends as semiedges, and to isolated edges as free edges. Every 3-edge-coloring of a multipole induces a coloring or state of its semiedges, which satisfies the Parity Lemma. Multipoles have been extensively used in the study of snarks, that is, cubic graphs which are not 3-edge-colorable. Some results on the states and structure of the so-called color complete and color closed multipoles are presented. In particular, we give lower and upper linear bounds on the minimum order of a color complete multipole, and compute its exact number of states. Given two multipoles M1 and M2 with the same number of semiedges, we say that M1 is reducible to M2 if the state set of M2 is a non-empty subset of the state set of M1 and M2 has less vertices than M1. The function v(m) is defined as the maximum number of vertices of an irreducible multipole with rn semiedges. The exact values of v(m) are only known for m <= 5. We prove that tree and cycle multipoles are irreducible and, as a byproduct, that v(m) has a linear lower bound.Peer ReviewedPostprint (published version

    Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44

    Get PDF
    The family of snarks -- connected bridgeless cubic graphs that cannot be 3-edge-coloured -- is well-known as a potential source of counterexamples to several important and long-standing conjectures in graph theory. These include the cycle double cover conjecture, Tutte's 5-flow conjecture, Fulkerson's conjecture, and several others. One way of approaching these conjectures is through the study of structural properties of snarks and construction of small examples with given properties. In this paper we deal with the problem of determining the smallest order of a nontrivial snark (that is, one which is cyclically 4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of structural analysis with extensive computations we prove that the smallest order of a snark with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such a snark must have at least 38 vertices [J. Combin. Theory Ser. B 103 (2013), 468--488] and one such snark on 44 vertices was constructed by Lukot'ka et al. [Electron. J. Combin. 22 (2015), #P1.51]. The proof requires determining all cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled list of all such snarks up to 34 vertices [J. Combin. Theory Ser. B, loc. cit.]. As a by-product, we use this new list to test the validity of several conjectures where snarks can be smallest counterexamples.Comment: 21 page

    The smallest nontrivial snarks of oddness 4

    Full text link
    The oddness of a cubic graph is the smallest number of odd circuits in a 2-factor of the graph. This invariant is widely considered to be one of the most important measures of uncolourability of cubic graphs and as such has been repeatedly reoccurring in numerous investigations of problems and conjectures surrounding snarks (connected cubic graphs admitting no proper 3-edge-colouring). In [Ars Math. Contemp. 16 (2019), 277-298] we have proved that the smallest number of vertices of a snark with cyclic connectivity 4 and oddness 4 is 44. We now show that there are exactly 31 such snarks, all of them having girth 5. These snarks are built up from subgraphs of the Petersen graph and a small number of additional vertices. Depending on their structure they fall into six classes, each class giving rise to an infinite family of snarks with oddness at least 4 with increasing order. We explain the reasons why these snarks have oddness 4 and prove that the 31 snarks form the complete set of snarks with cyclic connectivity 4 and oddness 4 on 44 vertices. The proof is a combination of a purely theoretical approach with extensive computations performed by a computer.Comment: 38 pages; submitted for publicatio

    Graphs, Friends and Acquaintances

    Get PDF
    As is well known, a graph is a mathematical object modeling the existence of a certain relation between pairs of elements of a given set. Therefore, it is not surprising that many of the first results concerning graphs made reference to relationships between people or groups of people. In this article, we comment on four results of this kind, which are related to various general theories on graphs and their applications: the Handshake lemma (related to graph colorings and Boolean algebra), a lemma on known and unknown people at a cocktail party (to Ramsey theory), a theorem on friends in common (to distanceregularity and coding theory), and Hall’s Marriage theorem (to the theory of networks). These four areas of graph theory, often with problems which are easy to state but difficult to solve, are extensively developed and currently give rise to much research work. As examples of representative problems and results of these areas, which are discussed in this paper, we may cite the following: the Four Colors Theorem (4CTC), the Ramsey numbers, problems of the existence of distance-regular graphs and completely regular codes, and finally the study of topological proprieties of interconnection networks.Preprin

    Desenvolvimentos da Conjetura de Fulkerson

    Get PDF
    Orientador: Christiane Neme CamposDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Em 1971, Fulkerson propôs a seguinte conjetura: todo grafo cúbico sem arestas de corte admite seis emparelhamentos perfeitos tais que cada aresta do grafo pertence a exatamente dois destes emparelhamentos. A Conjetura de Fulkerson tem desafiado pesquisadores desde sua publicação. Esta conjetura é facilmente verificada para grafos cúbicos 3-aresta-coloráveis. Portanto, a dificuldade do problema reside em estabelecer a conjetura para grafos cúbicos sem arestas de corte que não possuem 3-coloração de arestas. Estes grafos são chamados snarks. Nesta dissertação, a Conjetura de Fulkerson e os snarks são introduzidos com ¿ênfase em sua história e resultados mais relevantes. Alguns resultados relacionados à Conjetura de Fulkerson são apresentados, enfatizando suas conexões com outras conjeturas. Um breve histórico do Problema das Quatro Cores e suas relações com snarks também são apresentados. Na segunda parte deste trabalho, a Conjetura de Fulkerson é verificada para algumas famílias infinitas de snarks construídas com o método de Loupekine, utilizando subgrafos do Grafo de Petersen. Primeiramente, mostramos que a família dos LP0-snarks satisfaz a Conjetura de Fulkerson. Em seguida, generalizamos este resultado para a família mais abrangente dos LP1-snarks. Além disto, estendemos estes resultados para Snarks de Loupekine construídos com subgrafos de snarks diferentes do Grafo de PetersenAbstract: In 1971, Fulkerson proposed a conjecture that states that every bridgeless cubic graph has six perfect matchings such that each edge of the graph belongs to precisely two of these matchings. Fulkerson's Conjecture has been challenging researchers since its publication. It is easily verified for 3-edge-colourable cubic graphs. Therefore, the difficult task is to settle the conjecture for non-3-edge-colourable bridgeless cubic graphs, called snarks. In this dissertation, Fulkerson's Conjecture and snarks are presented with emphasis in their history and remarkable results. We selected some results related to Fulkerson's Conjecture, emphasizing their reach and connections with other conjectures. It is also presented a brief history of the Four-Colour Problem and its connections with snarks. In the second part of this work, we verify Fulkerson's Conjecture for some infinite families of snarks constructed with Loupekine's method using subgraphs of the Petersen Graph. More specifically, we first show that the family of LP0-snarks satisfies Fulkerson's Conjecture. Then, we generalise this result by proving that Fulkerson's Conjecture holds for the broader family of LP1-snarks. We also extend these results to even more general Loupekine Snarks constructed with subgraphs of snarks other than the Petersen GraphMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    corecore