528,119 research outputs found

    Localization of Matters on a String-like Defect

    Full text link
    After presenting string-like solutions with a warp factor to Einstein's equations, we study localization of various spin fields on a string-like defect in a general space-time dimension from the viewpoint of field theory. It is shown that spin 0 and 2 fields are localized on a defect with the exponentially decreasing warp factor. Spin 1 field can be also localized on a defect with the exponentially decreasing warp factor. On the other hand, spin one-half and three-half fields can be localized on a defect with the exponentially increasing warp factor, provided that additional interactions are not introduced. Thus, some mechanism of localization must be invoked for these fermionic fields. These results are very similar to those of a domain wall in five space-time dimensions except the case of spin 1 field.Comment: 15 pages, LaTex 2e, minor corrections (to appear in Phys. Lett. B

    The Defect of Random Hyperspherical Harmonics

    Full text link
    Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit dd-sphere (d≥2d\ge 2). We investigate the distribution of their defect i.e., the difference between the measure of positive and negative regions. Marinucci and Wigman studied the two-dimensional case giving the asymptotic variance (Marinucci and Wigman 2011) and a Central Limit Theorem (Marinucci and Wigman 2014), both in the high-energy limit. Our main results concern asymptotics for the defect variance and quantitative CLTs in Wasserstein distance, in any dimension. The proofs are based on Wiener-It\^o chaos expansions for the defect, a careful use of asymptotic results for all order moments of Gegenbauer polynomials and Stein-Malliavin approximation techniques by Nourdin and Peccati. Our argument requires some novel technical results of independent interest that involve integrals of the product of three hyperspherical harmonics.Comment: Accepted for publication in Journal of Theoretical Probabilit

    Defect CFTs and holographic multiverse

    Full text link
    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS_4x S^7, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.Comment: 19 pages; v2: typos fixed, minor changes

    Systematic Study of Electron Localization in an Amorphous Semiconductor

    Full text link
    We investigate the electronic structure of gap and band tail states in amorphous silicon. Starting with two 216-atom models of amorphous silicon with defect concentration close to the experiments, we systematically study the dependence of electron localization on basis set, density functional and spin polarization using the first principles density functional code Siesta. We briefly compare three different schemes for characterizing localization: information entropy, inverse participation ratio and spatial variance. Our results show that to accurately describe defect structures within self consistent density functional theory, a rich basis set is necessary. Our study revealed that the localization of the wave function associated with the defect states decreases with larger basis sets and there is some enhancement of localization from GGA relative to LDA. Spin localization results obtained via LSDA calculations, are in reasonable agreement with experiment and with previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.

    The Virtue of Defects in 4D Gauge Theories and 2D CFTs

    Full text link
    We advance a correspondence between the topological defect operators in Liouville and Toda conformal field theories - which we construct - and loop operators and domain wall operators in four dimensional N=2 supersymmetric gauge theories on S^4. Our computation of the correlation functions in Liouville/Toda theory in the presence of topological defect operators, which are supported on curves on the Riemann surface, yields the exact answer for the partition function of four dimensional gauge theories in the presence of various walls and loop operators; results which we can quantitatively substantiate with an independent gauge theory analysis. As an interesting outcome of this work for two dimensional conformal field theories, we prove that topological defect operators and the Verlinde loop operators are different descriptions of the same operators.Comment: 59 pages, latex; v2 corrections to some formula

    On topological defect formation in the process of symmetry breaking phase transitions

    Full text link
    By resorting to some results in quantum field theories with spontaneous breakdown of symmetry we show that an explanation based on microscopic dynamics can be given of the fact that topological defect formation is observed during the process of non-equilibrium phase transitions characterized by a non-zero order parameter. We show that the Nambu-Goldstone particle acquires an effective non-zero mass due to the boundary (finite volume) effects and this is related with the size of the defect. We also relate such volume effect with temperature effect.Comment: 12 pages, no figure

    Local polariton modes and resonant tunneling of electromagnetic waves through periodic Bragg multiple quantum well structures

    Get PDF
    We study analytically defect polariton states in Bragg multiple-quantum-well structures and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three ways: exciton-light coupling strength, exciton resonance frequency, and inter-well spacing. We show that a single defect leads to two local polariton modes in the photonic bandgap. These modes cause peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of these plays a distinct role in the optical properties of the system. For some defects, we predict a narrow transmission window in the forbidden gap at the frequency set by parameters of the defect. We obtain analytical expressions for corresponding local frequencies as well as for reflection and transmission coefficients. We show that the presence of the defects leads to resonant tunneling of the electromagnetic waves via local polariton modes accompanied by resonant enhancement of the field inside the sample, even when a realistic absorption is taken into account. On the basis of the results obtained, we make recommendations regarding the experimental observation of the effects studied in readily available samples.Comment: 17 pages, 10 figures, RevTex, Submitted to PR

    Unifying discrete and continuous Weyl-Titchmarsh theory via a class of linear Hamiltonian systems on Sturmian time scales

    Full text link
    In this study, we are concerned with introducing Weyl-Titchmarsh theory for a class of dynamic linear Hamiltonian nabla systems over a half-line on Sturmian time scales. After developing fundamental properties of solutions and regular spectral problems, we introduce the corresponding maximal and minimal operators for the system. Matrix disks are constructed and proved to be nested and converge to a limiting set. Some precise relationships among the rank of the matrix radius of the limiting set, the number of linearly independent square summable solutions, and the defect indices of the minimal operator are established. Using the above results, a classification of singular dynamic linear Hamiltonian nabla systems is given in terms of the defect indices of the minimal operator, and several equivalent conditions on the cases of limit point and limit circle are obtained, respectively. These results unify and extend certain classic and recent results on the subject in the continuous and discrete cases, respectively, to Sturmian time scales.Comment: 34 page
    • …
    corecore