In this study, we are concerned with introducing Weyl-Titchmarsh theory for a
class of dynamic linear Hamiltonian nabla systems over a half-line on Sturmian
time scales. After developing fundamental properties of solutions and regular
spectral problems, we introduce the corresponding maximal and minimal operators
for the system. Matrix disks are constructed and proved to be nested and
converge to a limiting set. Some precise relationships among the rank of the
matrix radius of the limiting set, the number of linearly independent square
summable solutions, and the defect indices of the minimal operator are
established. Using the above results, a classification of singular dynamic
linear Hamiltonian nabla systems is given in terms of the defect indices of the
minimal operator, and several equivalent conditions on the cases of limit point
and limit circle are obtained, respectively. These results unify and extend
certain classic and recent results on the subject in the continuous and
discrete cases, respectively, to Sturmian time scales.Comment: 34 page