5 research outputs found

    Chromatic polynomials of some sunflower mixed hypergraphs

    Get PDF
    The theory of mixed hypergraphs coloring has been first introduced by Voloshin in 1993 and it has been growing ever since. The proper coloring of a mixed hypergraph H = (X; C;D) is the coloring of the vertex set X so that no D-hyperedge is monochromatic and no C-hyperedge is polychromatic. A mixed hypergraph with hyperedges of type D, C or B is commonly known as a D-, C-, or B-hypergraph respectively, where B = C = D. D-hypergraph colorings are the classic hypergraph colorings which have been widely studied. The chromatic polynomial P(H;λ) of a mixed hypergraph H is the function that counts the number of proper λ-colorings, which are mappings. Recently, Walter published [15] some results concerning the chromatic polynomial of some non-uniform D-sunflower. In this paper, we present an alternative proof of his result and extend his formula to those of non-uniform C-sunflowers and B-sunflowers. Some results of a new but related member of sunflowers are also presented

    Chromatic polynomials of some sunflower mixed hypergraphs

    Get PDF
    The theory of mixed hypergraphs coloring has been first introduced by Voloshin in 1993 and it has been growing ever since. The proper coloring of a mixed hypergraph H = (X; C;D) is the coloring ofthe vertex set X so that no D??hyperedge is monochromatic and no C-hyperedge is polychromatic. A mixed hypergraph with hyperedges of type D, C or B is commonly known as a D-, C-, or B-hypergraphrespectively where B = C = D. D-hypergraph colorings are the classichypergraph colorings which have been widely studied. The chro-matic polynomial P(H;) of a mixed hypergraph H is the function thatcounts the number of proper ??colorings, which are mappings f : X !f1; 2; : : : ; g. A sunfower (hypergraph) with l petals and a core S is a collection of sets e1; : : : ; el such that ei \ ej = S for all i 6= j. Recently, Walter published [14] some results concerning the chromatic polynomial of some non-uniform D-sunfower. In this paper, we present an alternative proof of his result and extend his formula to those of non-uniform C-sunowers and B-sunowers. Some results of a new but related member of sunfowers are also presented

    Chromatic Polynomials of Mixed Hypercyles

    Get PDF
    We color the vertices of each of the edges of a C-hypergraph (or cohypergraph) in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic) or when they are all colored with distinct colors (rainbow). In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles

    Chromatic Polynomials of Some Mixed Hypergraphs

    Get PDF
    Motivated by a recent result of M. Walter [Electron. J. Comb. 16, No. 1, Research Paper R94, 16 p. (2009; Zbl 1186.05059)] concerning the chromatic polynomials of some hypergraphs, we present the chromatic polynomials of several (non-uniform) mixed hypergraphs. We use a recursive process for generating explicit formulae for linear mixed hypercacti and multi-bridge mixed hypergraphs using a decomposition of the underlying hypergraph into blocks, defined via chains. Further, using an algebra software package such as Maple, one can use the basic formulae and process demonstrated in this paper to generate the chromatic polynomials for any linear mixed hypercycle, unicyclic mixed hypercyle, mixed hypercactus and multi-bridge mixed hypergraph. We also give the chromatic polynomials of several examples in illustration of the process including the formulae for some mixed sunflowers
    corecore