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Abstract

Motivated by a recent result of Walter [19] concerning the chromatic polynomials
of some hypergraphs, we present the chromatic polynomials of several (non-uniform)
mixed hypergraphs. We use a recursive process for generating explicit formulae for lin-
ear mixed hypercacti and multi-bridge mixed hypergraphs using a decomposition of the
underlying hypergraph into blocks, defined via chains. Further, using an algebra soft-
ware package such as Maple, one can use the basic formulae and process demonstrated
in this paper to generate the chromatic polynomials for any linear mixed hypercycle,
unicyclic mixed hypercyle, mixed hypercactus and multi-bridge mixed hypergraph. We
also give the chromatic polynomials of several examples in illustration of the process
including the formulae for some mixed sunflowers.

Keywords: Hypergraph coloring, cohypergraph, bihypergraph, mixed hypergraph,
hypercycle, hypercactus, multi-bridge hypergraph, Θ−hypergraph, sunflower, chro-
matic polynomial.

1 Introduction

A hypergraph H is an ordered pair (X, E) where X is a finite set of vertices, with order
|X| = n, and E is a collection of nonempty subsets of X. The number of elements of X
contained in an element e of E , denoted |e|, is the size of e. When |e| = 2 for all elements of
E , then H is a graph and the elements of E are its edges. More generally, H is a hypergraph
and the elements of E are its hyperedges. The degree of a vertex v, denoted d(v) = dH(v),
is the number of hyperedges of H containing v. H is Sperner if no hyperedge is a subset of
another hyperedge. H is said to be linear if e1∩e2 is either empty or a singleton for any pair
of hyperedges. If all hyperedges of H have size k, then we say H is k−uniform. Obviously a
2−uniform hypergraph is a graph. For further basic definitions of graphs and hypergraphs,
we refer the reader to [5, 20].

Much progress has been made to extend and generalize several theories of graphs to
hypergraphs. In particular, vertex coloring is an active area of ongoing research [6, 7, 9, 13,
14, 15, 16]. A λ−coloring of a hypergraph H is a mapping f : X → {1, 2, . . . , λ}. A surjective
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mapping f is a strict coloring. In graph theory, a coloring is a proper coloring if f(u) �= f(v)
any time u and v are adjacent, meaning {u, v} ∈ E . The natural extension to hypergraphs,
wherein f is a proper coloring if at least two vertices of each hyperedge are assigned different
colors, has been studied extensively and is usually what is meant by hypergraph coloring.
However, some authors have studied the inverse condition, wherein at least two vertices
of each hyperedge are given the same color. Others have even required the combination
of both conditions simultaneously, which is only possible for (hyper)edges of size at least
3. When hypergraph vertex coloring is studied, we partition E into three disjoint subsets
E = C ∪ D ∪ B and denote the hypergraph H by the four-tuple (X, C,D,B). In this context
H is a mixed hypergraph. Besides being used to encode partitioning constraints, mixed
hypergraphs theory has several other applications, notably in communications models for
cyber security [11].

A proper coloring of a mixed hypergraph is a λ−coloring such that f assigns the same
color to at least one pair of vertices of each hyperedge in C, f assigns different colors to at
least one pair of vertices in each hyperedge in D, and f assigns the same color to one pair
and different colors to another pair of each hyperedge of B. Colorings f1 and f2 are different
if f1(u) �= f2(u) for at least one vertex u. The chromatic polynomial P (H) = P (H, λ) counts
the number of proper λ−colorings of H. Note that it is customary (in [18] for instance) to
write E as the union of two not necessarily disjoint sets C and D and define B to be their
intersection. For the purposes of writing explicit formulae for chromatic polynomials, it is
more convenient to require C, D, and B to be disjoint.

The subhypergraph H[V ] induced by a set of vertices V ⊂ X is the hypergraph with ver-
tices V and the hyperedges of H which are contained in V . The subhypergraph H[F ] induced
by a set of hyperedges F is the subhypergraph induced by the vertices of the elements of F .
The subhypergraph H[D] is a D−hypergraph, or simply a hypergraph. The subhypergraph
H[C] is a C−hypergraph or cohypergraph. The subhypergraph H[B] is a B−hypergraph, or
bihypergraph.

Explicit formulae for the chromatic polynomials for some types of hypergraphs have
been given by many authors [6, 7, 8, 19]. Fewer formulae are known for cohypergraphs,
bihypergraphs, and general mixed hypergraphs (see for instance [3, 4, 15, 18]), though much
has been studied about these colorings and related issues, such as the feasible set of integer
values of λ for which there is a strict proper coloring [12, 13, 14, 15, 17, 18]. Our contribution
is to extend some recent results of Walter concerning some D−hypergraphs to their mixed
hypergraphs counterparts, thus, adding to the very few known literature concerning the
chromatic polynomials of mixed hypergraphs. To achieve this purpose, this paper builds
on some explicit formulae given in [3] to find chromatic polynomials for a larger collection
of mixed hypergraphs. In section 2 we review a way to decompose mixed hypergraphs and
give a slightly more general version of a well-known splitting theorem for the chromatic
polynomials of certain separable mixed hypergraphs. In section 3 we review the results
of [3], as well as comment on formulations of some classes of hypergraphs. In section 4
we extend the results of [3] to obtain a process to generate the chromatic polynomial of
any linear mixed hypercycle. In section 5 we give a general expression for the chromatic
polynomial of any linear mixed hypercactus based on the formulae of sections 3 and 4, and
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give some examples to illustrate these formulae. In section 6 we give an expression for
the chromatic polynomial of linear multi-bridge mixed hypergraphs which can be referred
to as mixed Θ−hypergraphs (or Θ−mixed hypergraphs). To conclude, in section 7, we
derive the formulae for sunflower mixed hypergraphs, which are an example of nonlinear
mixed hypergraphs. Their blocks which are sunflowers, can be included to increase the class
of mixed hypergraphs whose chromatic polynomials can be computed using the splitting
theorem of section 2 or a combinatorial argument. We present the latter method.

2 Decompositions of Hypergraphs

The subset X0 ⊂ X is a separator of the connected hypergraph H if there are nonempty

pairwise disjoint subsets X1, . . . , Xk, k ≥ 2, such that X =
k⋃

i=0

Xi and no hyperedge con-

taining x ∈ Xi also contains y ∈ Xj for any 1 ≤ i < j ≤ k. The induced subhypergraphs
Hi = H[Xi ∪X0] for 1 ≤ i ≤ k are the derived subhypergraphs with respect to X0, which is
the induced subhypergraph H0 = H[X0] .

Voloshin [17] gives a decomposition theorem for chromatic polynomials which generalizes
a property of complete subgraphs, or cliques, to hypergraphs. The hypergraphs performing
this role are the uniquely colorable mixed hypergraphs, which are hypergraphs that have a
unique strict proper coloring, up to permutation of the colors.

Theorem 2.1. Let H = (X, C,D,B) be a connected mixed hypergraph with derived subhy-
pergraphs H1,H2, . . . ,Hk with respect to a uniquely colorable separator H0. Then

P (H) =
(
P (H0)

)1−k
k∏

i=1

P (Hi). (1)

It is easy to construct examples where the chromatic polynomial does not decompose in
this way for separators that are not uniquely colorable. See Figure 1.

Example 2.1. Let H be the D−hypergraph with two hyperedges of size 3 and a common
intersection of size 2. (See Figure 1).

Figure 1: A sunflower with two petals

��� �

Then, the derived subhypergraphs H1 and H2 are the hyperedges with respect to the sep-
arator H0

∼= K2 which is the empty graph on two vertices. The chromatic polynomials
P (H) = λ(λ− 1)(λ2 + λ− 1), P (H1) = P (H2) = λ(λ2 − 1), and P (H0) = λ2 do not satisfy
(1).
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However, it is easy to extend Theorem 2.1, recursively, when derived subhypergraphs
with respect to one uniquely colorable subhypergraph can be separated again by another
uniquely colorable subhypergraph. We state this result in a general form, and then give
a simpler form when singletons repeatedly separate the hypergraph which we use in the
majority of this paper.

Corollary 2.1.1. Let X1
0 separate the connected mixed hypergrpah H into two derived subhy-

pergraphs H1
1 and H1

2 with respect to a uniquely colorable separator H1
0. Let X

i
0 separate Hi−1

2

into two derived subhypergraphs Hi
1 and Hi

2 with respect to a uniquely colorable separator Hi
0

for 2 ≤ i ≤ k. Then

P (H) =
P (H1

1)P (H1
2)

P (H1
0)

= . . . =
P (H1

1) . . . P (Hk
1)P (Hk

2)

P (H1
0) . . . P (Hk

0)
. (2)

We now define blocks of a hypergraph, following Walter [19] and Acharya [1]. A
chain in a hypergraph H = (V, E) is an alternative sequence of vertices and hyperedges
v1, e1, v2, e2, . . . , em, vm+1 where vi �= vj for 1 ≤ i < j ≤ m and {vi, vi+1} ⊂ ei. If the hyper-
edges are also distinct, i.e., ei �= ej for 1 ≤ i < j ≤ m, the chain is a path of length m. A
chain with v1 = vm+1 is a cyclic chain and a path with v1 = vm+1 is a cycle.

The relation ∼ on E defined by e1 ∼ e2 if and only if e1 = e2 or there is a cyclic chain
containing both e1 and e2 is an equivalence relation [1]. A block of H is either an isolated
vertex or a subhypergraph induced by the hyperedge set of an equivalence class. This
definition is a natural generalization of the definition of blocks for graphs [20], as Acharya
shows with

Lemma 2.1. Two distinct blocks of a hypergraph have at most one vertex in common.

Though a block of a hypergraph can intersect two or more other blocks nontrivially, there
must always be a block which has a single vertex in common with the union of the other
blocks in the collection; else we can construct a cyclic chain contradicting the definition of
blocks. Since our hypergraphs are finite, we can order the blocks in the following convenient
way, which we state as

Corollary 2.1.2. There is an ordering of the blocks H1,H2, . . . ,Hk of a connected hyper-

graph H so that
k⋃

i=2

Hi ∩ H1 = {x1
0} and

j−1⋃
i=1

Hi ∩Hj = {xj
0} for 2 ≤ j ≤ k.

Since a single vertex, viewed as the induced subhypergraph Hi
0 = H[xi

0], is trivially
uniquely colorable, the above ordering of the blocks of a mixed hypergraph provides an iter-
ated set of separators and derived subhypergraphs Hi as in Corollary 2.1.1 (with appropriate
changes to names), and (2) immediately gives the

Corollary 2.1.3. Let H1,H2, . . . ,Hk be the blocks of a connected hypergraph H. Then

P (H) = λ1−k
k∏

i=1

P (Hi). (3)
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Note: Ordering the blocks as in Corollary 2.1.2 makes the proof of Corollary 2.1.3 im-
mediate from Corollary 2.1.1, but expression (3) is symmetric and, therefore, independent
of the ordering of the blocks.

3 Basic Formulae and Notations

A hypercycle is a subhypergraph HC induced by the hyperedge set of a cycle
v1, e1, v2, e2, . . . , em, v1. An elementary hypercycle is a hypercycle with dHC(vi) = 2 for

1 ≤ i ≤ m and dHC(u) = 1 for all other u ∈
m⋃
i=1

ei . When m ≥ 3 , a linear hypercycle

is equivalent to being elementary. A hypercycle may be generated by different cycles, but
the hyperedges of all of the cycles generating the hypercycle will be the same, up to a
permutation.

Acyclic hypergraphs (a hypertree when the hypergraph is connected, a hyperforest oth-
erwise) and unicyclic hypergraphs can now be defined in the natural ways. An acyclic
hypergraph contains no hypercycle and a unicyclic hypergraph contains only one hypercy-
cle.

We note that (in [13]) these classes of hypergraphs have been defined by the same struc-
tures in an underlying graph spanning the hypergraph, where a graph G spans a hypergraph
H if they have the same vertex set and each hyperedge of H induces a connected sub-
graph of G. However, there is an inherent ambiguity with this definition, since there are
nonisomorphic graphs that span the same hypergraph. We define classes of hypergraphs via
hypercycles, which were defined via cycles, or cyclic chains with the condition that ei �= ej for
any two hyperedges in the chain, to avoid the ambiguity of spanning graphs. The additional
benefit of doing so is the availability of the decomposition theorem with these definitions
based on chains. However, the analogous definitions based on spanning graphs used by Kràl
et al. [13] provides for larger classes of hypergraphs with interesting properties. We will
further this comment in the next section when we define hypercacti.

Chromatic polynomials for many hypergraphs have been expressed in terms of the stan-
dard powers of λ [2, 6, 7, 8, 19]. However, chromatic polynomials for cohypergraphs
and bihypergraphs can more easily be expressed using terms involving the falling facto-
rial λk = λ(λ− 1)(λ− 2) . . . (λ− k + 1). Further, it is also known that when the chromatic
polynomial of a mixed hypergraph is expressed in terms of the basis of falling factorial, its
coefficients are given by the values of the chromatic spectrum, which count feasible partitions
([18], prop 2.1.1).

In [3], we express some basic formulae in terms of the parameters γk(i) = (λ− i)k−i and
ζk(i) = λk−i − γk(i) when i = 1 or i = 2, and the chromatic polynomials for nonlinear cohy-
pergraphs and bihypergraphs also are easily expressed using the values of these parameters
corresponding to higher values of i ≤ k; we demonstrate this with a result at the conclusion
of this paper. Note that the parameter γk(i) counts the number of rainbows formed using
k− i vertices and λ− i colors while ζk(i) counts the number of ways to color k− i vertices so
that either at least two of the k − i vertices receive the same color from the λ− i colors, or
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at least one of the k − i vertices receives one of the other i specified colors. It is known (in
[3]) and easy to verify that the chromatic polynomials of an isolated hyperedge, cohyperedge
and bihyperedge are as follows.

Corollary 3.0.4. Let e be an isolated hyperedge. Then the chromatic polynomials of e when
viewed as a D−hyperedge, C−hyperedge, or B−hyperedge are

PD(e) = λ(λ|e|−1 − 1)

PC(e) = λ(λ|e|−1 − (λ− 1)|e|−1) = λζ|e|(1)

PB(e) = λ(λ|e|−1 − (λ− 1)|e|−1 − 1) = λ(ζ|e|(1) − 1)

(4)

respectively.

To further shorten the expressions for subsequent chromatic polynomials, we define the
edge type function π : E → {C,D,B} to specify the coloring condition each hyperedge e is
required to follow. Note the edge types can be any nonempty set of equivalence relations
on an ordered set. However, in this paper, we are only concerned with those edge types
that correspond to the C, D, or B coloring conditions. Furthermore, we can extend π to any
subhypergraph whose hyperedges all have the same edge type. For instance, π(HC) = C,
π(HD) = D, and π(HB) = B.

Since each hyperedge of an acyclic linear hypergraph is a block of the hypergraph, we can
use corollaries 2.1.3 and 3.0.4 to find the chromatic polynomial of any acyclic linear mixed
hypergraph. We state this general formula as

Theorem 3.1. Let T be a connected acyclic linear mixed hypergraph with m hyperedges.
Then the chromatic polynomial of T is

P (T ) = λ1−m
∏
e∈E

Pπ(e)(e). (5)

Note, since each factor Pπ(e)(e) itself has λ as a factor, the denominator cancels all but
one of the λ factors in the numerator for any T .

Figure 2: A linear mixed hyperpath

D−hyperedge

C−hyperedge

B−hyperedge
��� �� ���� �

We illustrate Theorem 3.1 with
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Example 3.1. Let T be a linear acyclic mixed hypertree with one 5−hyperedge, one
3−cohyperedge, and one 4−bihyperedge. Figure 2 is a representation. Using (4), (5) and
Maple 16, we compute the chromatic polynomial in expanded form as

P (T ) = 18λ8 − 45λ7 + 37λ6 − 10λ5 − 18λ4 + 45λ3 − 37λ2 + 10λ.

Chromatic polynomials for linear uniform mixed hypercycles, though not so simple, have
been computed in [3]. We record those results in the following lemma, and defer the proof to
section 4. In section 4 we extend the process of [3] to a method of generating the chromatic
polynomial of any linear mixed hypercycle, which naturally includes the following lemma as
a special case.

Lemma 3.1. Let HCk,m be a linear k−uniform m−hypercycle (with m k−hyperedges) with
a well-defined edge type and with m ≥ 3 . Then the chromatic polynomials for the three
possible edge types are

PD(HCk,m) = (λk−1 − 1)m + (−1)m(λ− 1)

PC(HCk,m) = λ
(

(γk(2))m−2
(
λ2k−4 + (λ− 1)(ζk(2))2

)
+ ζk(2)

∑m−2
j=1 (γk(2))j−1(ζk(1))m−j

)
PB(HCk,m) = λ

(
(γk(2) − 1)m−2

(
λ2k−4 + (λ− 1)(ζk(2))2 − 2λk−1 + 1

)
+

ζk(2)
∑m−2

j=1 (γk(2) − 1)j−1(ζk(1) − 1)m−j
)

(6)
respectively.

It is possible to extend the results in the previous lemma to non-uniform mixed hyper-

cycles as Walter [19] has shown for instance that PD(HC) =
∏
e∈D

(λ|e| − 1) + (−1)|D|(λ− 1).

However, in the interest of this paper, we leave it to the reader as an exercise and discuss in
the next section a more general result concerning (non-uniform) mixed hypercycles.

4 Mixed Hypercycles

Let HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3) be a linear (elementary) mixed hypercycle with
m1 cohyperedges, m2 hyperedges, and m3 bihyperedges.

Lemma 4.1. The chromatic polynomial of HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3) is inde-
pendent of the order of the hyperedges, justifying the symbol.

Proof. Let v1, v2, . . . , vm1+m2+m3 be the vertices at which two distinct hyperedges of the mixed
hypercycle intersect. We can compute the chromatic polynomial of the mixed hypercycle
by case work corresponding to counting the number of proper colorings adhering to each
possible combination of equality over the colors of each vi. For instance, when there are
three hyperedges there are five cases: f(v1) = f(v2) = f(v3), f(v1) = f(v2) �= f(v3),
f(v1) �= f(v2) = f(v3), f(v1) = f(v3) �= f(v2), and f(v1),f(v2),f(v3) are pairwise different.
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The contribution to a particular term of the chromatic polynomial made by a single
hyperedge is determined by the relationship of the colors at the two endpoint vertices (the
two vertices at which the hyperedge intersects other hyperedges). Hence, a permutation
of the order of the hyperedges corresponds to a permutation of terms of the chromatic
polynomial over the equality relationships of the colors of each vi .

We establish some recursive relationships to compute the chromatic polynomial of a mixed
hypercycle in terms of mixed hypertrees and mixed hypercycles with one fewer cohyperedge,
one fewer bihyperedge, or one fewer hyperedge. As such, we extend our notation so that
T (c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3) is a linear mixed hypertree with m1 cohyperedges, m2

hyperedges, and m3 bihyperedges.

Theorem 4.1. Let HC(c1, . . . , cm1 ; d1, . . . , dm2; b1, . . . , bm3) be a linear (elementary) mixed
hypercycle with m1 cohyperedges, m2 hyperedges, and m3 bihyperedges. Then
if m1 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3)) =
ζ|cm1 |(2)P (T (c1, . . . , cm1−1; d1, . . . , dm2; b1, . . . , bm3))+
γ|cm1 |(2)P (HC(c1, . . . , cm1−1; d1, . . . , dm2; b1, . . . , bm3)),

(7)

if m3 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3)) =
ζ|bm3 |(2)P (T (c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3−1))+
(γ|bm3 |(2) − 1)P (HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3−1)),

(8)

and if m2 ≥ 1 and m1 + m2 + m3 ≥ 3

P (HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3)) =
λ|dm2 |−2P (T (c1, . . . , cm1 ; d1, . . . , dm2−1; b1, . . . , bm3))−
P (HC(c1, . . . , cm1; d1, . . . , dm2−1; b1, . . . , bm3)).

(9)

Proof. (7) Let v1 and v2, for convenience, be the endpoints of the cohyperedge cm1 . We can
compute the chromatic polynomial of HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3) by case work
corresponding to a) f(v1) = f(v2) and b) f(v1) �= f(v2) .

In case a), we contract the hyperedge cm1 by replacing v1 and v2 with a single vertex.
Since the condition of equality of a pair of colors on cm1 has already been met, the remaining
vertices |cm1 | − 2 are now isolated and the connected component is chromatically equivalent
to HC(c1, . . . , cm1−1; d1, . . . , dm2 ; b1, . . . , bm3).

In case b) we add a 2−hyperedge joining v1 and v2 in the original hypercycle. The
ways of coloring the vertices of HC(c1, . . . , cm1; d1, . . . , dm2 ; b1, . . . , bm3) − cm1 ∪ {v1, v2}
ensuring that f(v1) �= f(v2) are given by P (T (c1, . . . , cm1−1; d1, . . . , dm2; b1, . . . , bm3)) −
P (HC(c1, . . . , cm1−1; d1, . . . , dm2; b1, . . . , bm3)), since the first term counts all colorings includ-
ing when f(v1) �= f(v2) and the second term only counts colorings when f(v1) = f(v2) . In

this case, there are λ|cm1 |−2 − (λ − 2)|cm1 |−2 ways of coloring the remaining vertices of cm1

avoiding a rainbow. Collecting terms from the two cases now gives (7).
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The proof of (8) is identical to the proof of (7), except in case a) the contracted hypergraph
has an additional hyperedge containing the fused vertex replacing v1 and v2 and the remaining
vertices of bm3 . As such, in this case there are λ|bm3 |−2 − 1 ways of coloring the remaining
vertices of bm3 while avoiding a monochrome coloring. The result (8) follows, again after
combining terms.

The proof of (9) is identical to (8), except in case b) the remaining |dm2| − 2 vertices of
dm2 are isolated.

The computation of the chromatic polynomial of any linear mixed hypercycle now reduces
to the computation of the chromatic polynomial of linear mixed hypertrees (which are given
by Theorem 3.1) and the chromatic polynomials of the following six mixed hypercycles
(which can be easily confirmed). For reference, we record them as

Lemma 4.2. The chromatic polynomial for a mixed hypercycle with two hyperedges is one
of the following six polynomials.

P (HC(d1, d2)) = λ(λ|d1|−2 − 1)(λ|d2|−2 − 1) + λ(λ− 1)(λ|d1|−2)(λ|d2|−2) (10)

P (HC(c1, c2)) = λ(λ|c1|−2)(λ|c2|−2) + λ(λ− 1)ζ|c1|(2)ζ|c2|(2) (11)

P (HC(b1, b2)) = λ(λ|b1|−2 − 1)(λ|b2|−2 − 1) + λ(λ− 1)ζ|b1|(2)ζ|b2|(2) (12)

P (HC(c1; d1)) = λ(λ|c1|−2)(λ|d1|−2 − 1) + λ(λ− 1)(λ|d1|−2)ζ|c1|(2) (13)

P (HC(c1; b1)) = λ(λ|c1|−2)(λ|b1|−2 − 1) + λ(λ− 1)ζ|c1|(2)ζ|b1|(2) (14)

P (HC(d1; b1)) = λ(λ|d1|−2 − 1)(λ|b1|−2 − 1) + λ(λ− 1)(λ|d1|−2)ζ|b1|(2) (15)

To illustrate, we find the chromatic polynomial of a non-uniform mixed hypercycle in

Example 4.1. Let HC(c1, c2; d1, d2; b1, b2) be a linear mixed hypercycle with the hyperedges
in any order and with sizes |c1| = 5, |c2| = 6 , |d1| = 7, |d2| = 8, |b1| = 3, |b2| = 4, which
can be written as HC(5, 6; 7, 8; 3, 4). Using Maple 16, we find that the chromatic polynomial
is

P (HC(5, 6; 7, 8; 3, 4)) = 2700λ23 − 32400λ22 + 184875λ21 − 647025λ20 + 1517340λ19 −
2467905λ18 + 2796183λ17 − 2143116λ16 + 947553λ15 + 135270λ14 − 827115λ13 + 950565λ12 −
330977λ11 − 623399λ10 + 1040846λ9 − 592140λ8 − 341964λ7 + 1392942λ6 − 2252053λ5 +
2397800λ4 − 1663148λ3 + 679008λ2 − 123840λ.
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We can compute this polynomial by contracting the hyperedges in any order until we
arrive at one of the six basic hypercycles in Lemma 4.2. We leave it as an exercise for the
reader to explore other reductions, while we demonstrate what is, perhaps, the easiest order
for the reduction. Since recursion (9) is simpler than recursions (7) and (8), we choose to
contract D−hyperedges first, when possible. Likewise, we then contract cohyperedges. For
Example 4.1, this gives

P (HC(5, 6; 7, 8; 3, 4)) = λ6P (T (5, 6; 7; 3, 4))−λ5P (T (5, 6; 0; 3, 4))+ζ6(2)P (T (5; 0; 3, 4))+
γ6(2)ζ5(2)P (T (0; 0; 3, 4)) + γ6(2)γ5(2)P (HC(0; 0; 3, 4)).

It is an easy, though a very laborious algebraic exercise to compute the chromatic poly-
nomials of mixed hypercycles recursively. We choose to demonstrate the general form used
in Example 4.1 when m3 ≥ 2 and leave other reductions to the reader.

Corollary 4.1.1. Let HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3) be a linear (elementary) hy-
percycle with m1 cohyperedges, m2 hyperedges, and m3 bihyperedges with m3 ≥ 2. Then
P (HC(c1, . . . , cm1 ; d1, . . . , dm2 ; b1, . . . , bm3)) =
λ|dm2 |−2P (T (c1, . . . , cm1 ; d1, . . . , dm2−1; b1, . . . , bm3)) −
λ|dm2−1|−2P (HC(c1, . . . , cm1 ; d1, . . . , dm2−2; b1, . . . , bm3)) + . . . +
(−1)m2−1λ|d1|−2P (T (c1, . . . , cm1 ; 0; b1, . . . , bm3)) +
(−1)m2P (HC(c1, . . . , cm1 ; 0; b1, . . . , bm3))

where

P (HC(c1, . . . , cm1 ; 0; b1, . . . , bm3)) = ζ|cm1 |(2)P (T (c1, . . . , cm1−1; 0; b1, . . . , bm3)) +
γ|cm1 |(2)ζ|cm1−1|(2)P (T (c1, . . . , cm1−2; 0; b1, . . . , bm3)) + . . . +
γ|cm1 |(2) . . . γ|c2|(2)ζ|c1|(2)P (T (0; 0; b1, . . . , bm3)) +
γ|cm1 |(2) . . . γ|c2|(2)γ|c1|(2)P (HC(0; 0; b1, . . . , bm3))

where

P (HC(0; 0; b1, . . . , bm3)) = ζ|bm3 |(2)P (T (0; 0; b1, . . . , bm3−1))+
(γ|bm3 |(2) − 1)ζ|bm3−1|(2)P (T (0; 0; b1, . . . , bm3−2)) + . . .+
(γ|bm3 |(2) − 1) . . . (γ|b4|(2) − 1)ζ|b3|(2)P (T (0; 0; b1, b2))+

(γ|bm3 |(2) − 1) . . . (γ|b3|(2) − 1)
(
λ(λ|b2|−2 − 1)(λ|b1|−2 − 1) + λ(λ− 1)ζ|b2|(2)ζ|b1|(2)

)
.

(16)

When the hypercycle is k−uniform and of a well-defined edge type, we can simplify
the recursive expression and substitute the corresponding formulae for mixed hypertrees to
obtain (6). For instance, the third expression of (6) is just (16) when all of the sizes of the
bihyperedges are k.

5 Mixed Hypercacti

Hypercacti are hypergraphs whose blocks are either elementary hypercycles or acyclic subhy-
pergraphs. In this section we work with linear hypercacti, where blocks are either elementary
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hypercycles or hyperedges.
As a side note on these definitions, our class of hypercacti is different from those studied

by Kràl et al.[13]; because, a cactus graph can span a hypergraph that does not decompose
into blocks such as the examples used by Kràl et al. to show that some (weak) hypercacti
have broken feasible sets (Theorem 3, [13]). If we remove the restriction in our definition that
blocks of hypercacti are elementary hypercycles and allow for arbitrary hypercyclic blocks,
then we allow for the complexity exhibited in examples such as those cited from Kràl et al.
Restricting ourselves to linear mixed hypergraphs, the confusion over these terms does not
affect us in this paper.

We can now find the chromatic polynomials for any linear mixed hypercactus. The
general expression immediately follows from Corollaries 2.1.3 and 3.0.4 and Lemma 3.1, and
we record it as

Theorem 5.1. Let H be a connected linear mixed hypercactus with blocks arranged into
subhypergraphs T1, . . . , Tn1, HC1, . . . ,HCn2 where each Ti is a connected acyclic linear mixed
hypergraph and each block HCj is a linear mixed hypercycle. Then the chromatic polynomial
of H is

P (H) = λ1−n1−n2

n1∏
i=1

P (Ti)

n2∏
j=1

P (HCj). (17)

Figure 3: A unicyclic mixed hypercycle
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As a special case, where the hypercyclic blocks are uniform and of a well-defined edge
type, we record the adapted formula as a corollary, since this case uses the reduced formulae
recorded in (6) and provides examples which are more easily computed.

Corollary 5.1.1. Let H be a connected linear mixed hypercactus with blocks arranged into

subhypergraphs T1, . . . , Tn1, HCk1,m1

1 , . . . ,HCkn2 ,mn2
n2 where each Ti is a connected acyclic linear

mixed hypergraph and each block HCkj ,mj

j is a linear mixed kj−uniform mj−hypercycle with
a well-defined edge type and with mj ≥ 3. Then the chromatic polynomial of H is

P (H) = λ1−n1−n2

n1∏
i=1

P (Ti)
n2∏
j=1

P
π(HCkj,mj

j )
(HCkj ,mj

j ). (18)

11



Note: Since each factor of the numerator corresponding to one of the listed subhyper-
graphs has a factor of λ with multiplicity 1, by examination of (6) and the comment following
Theorem 3.1, the denominator of (17) will be canceled, leaving a factor of λ with multiplic-
ity 1 in a reduced form of the polynomial. We now look at several examples to illustrate
Corollary 5.1.1.

Example 5.1. Let H1 be a linear unicyclic mixed hypergraph with one 3−uniform
3−hypercycle, one 5−hyperedge, one 3−cohyperedge, and one 4−bihyperdege. Figure 3 shows
this mixed hypergraph as a ”hairy mixed hypercycle” ([13]), but other non-isomorphic ar-
rangements will have the same chromatic polynomial.

Using (4),(5),(6),(18) and Maple 16, we compute the chromatic polynomial in expanded
form as

P (H1) = 18λ13− 45λ12− 17λ11 + 125λ10− 75λ9− 78λ8 + 173λ7− 192λ6 + 67λ5 + 123λ4−
156λ3 + 67λ2 − 10λ.

Example 5.2. Let H2 be a linear mixed hypercactus with one 3−uniform hypercycle of each
edge type, one 5−cohyperedge, and one 4−hyperedge. Figure 4 shows a version of this mixed
hypercactus arranged in such a way that the hyperedges separate the cycles. Kràl et al. use
the term weak mixed hypercactus for such a mixed hypergraph and show that some weak
mixed hypercacti have gaps in their feasible domain. Using (4),(5),(6),(18) and Maple 16,
we compute the chromatic polynomial in expanded form.

Figure 4: A weak mixed hypercactus
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P (H2) = 10λ18 + 335λ17 + 1315λ16 − 22944λ15 + 83457λ14 − 116239λ13 − 16361λ12 +
236106λ11−198736λ10−129724λ9+336372λ8−349896λ7+513731λ6−749582λ5+673924λ4−
344712λ3 + 93312λ2 − 10368λ.

Example 5.3. Let H3 be a linear mixed hypercactus with one 3−uniform bihypercycle, one
4−uniform hypercycle, and one 5−uniform cohypercycle. Figure 5 shows a version of this
hypergraph. Kràl et al.[13] call such mixed hypercacti, strong, and show that the feasible set
of any such mixed hypergraph is gap free. Using (4),(6),(17) and Maple 16, we compute the
chromatic polynomial in expanded form as

12



P (H3) = λ21 + 989λ20 + 6327λ19−167076λ18 + 1173697λ17−4671361λ16 + 12552218λ15−
25154549λ14 + 41274344λ13 − 60558188λ12 + 82266525λ11 − 100474755λ10 + 107431796λ9 −
101811056λ8+84213724λ7−52320940λ6+14282640λ5+9532944λ4−11620800λ3+4790016λ2−
746496λ.

Figure 5: A strong mixed hypercactus
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6 Mixed Θ−hypergraphs

Thus far, we have only considered mixed hypergraphs whose chromatic polynomials can be
decomposed as in Corollary 2.1.3 and factors are given by the basic formulae in (4), and
(6). It is immediately apparent that generalizations are possible by either extending the
dictionary of the basic formulae or by considering more general separators. As a step in
this direction, we define a class of multi-bridge mixed hypergraphs that are an extension of
Θ−graphs [10], which we call mixed Θ−hypergraphs. See [6, 7, 10] for other work with the
hypergraphs of this class.

Let Θr be a connected mixed hypergraph with separator K2
∼= Θr[{u, v}], the empty

graph on two vertices u and v, whose derived subhypergraphs T1, . . . , Tr are acyclic mixed
hypergraphs. Clearly each Ti is a bridge between the vertices u and v.

Since K2 is not uniquely colorable, we cannot immediately decompose the chromatic
polynomial of a mixed Θ−hypergraph using Corollary 2.1.1. However, a fundamental re-
duction of any chromatic polynomial reduces the computations to the two cases when 1)
f(u) = f(v) and 2) f(u) �= f(v) for a specified pair of vertices. Case 1) corresponds to
identifying the two vertices u and v by a single vertex (the result of contracting an added
2−hyperedge), and case 2) corresponds to connecting u and v by an additional 2−hyperedge.

In case 1) the new hypergraph is simply a (strong) mixed hypercactus with mixed hy-
percycles HCi separated by the new vertex. As such, the first component of the chromatic
polynomial of Θr is given by (17), without the mixed hypertree factors.

In case 2) the new hypergraph Θ∗
r is separated by the complete graph on two vertices

K2 and its chromatic polynomial can be found using (2) in Corollary 2.1.1. The derived
subhypergraphs of Θ∗

r are T ∗
1 , . . . , T ∗

r where each T ∗
i is Ti with the additional 2−hyperedge

13



connecting u and v. Observing that P (T ∗
i ) = P (Ti) − P (HCi), since P (HCi) counts the

proper colorings of Ti when f(u) = f(v) and P (T ∗
i ) only counts the colorings of Ti when

f(u) �= f(v), completes the proof of

Theorem 6.1. Let Θr be a connected mixed hypergraph with separator K2
∼= Θr[{u, v}], the

empty graph on two vertices u and v, whose derived subhypergraphs T1, . . . , Tr are acyclic
mixed hypergraphs. Furthermore, let HCi be the mixed hypercycle formed by identifying the
two vertices u and v into a single vertex in Ti. Then

P (Θr) = λ1−r
r∏

i=1

P (HCi) + λ1−r(1 − λ)1−r
r∏

i=1

(
P (Ti) − P (HCi)

)
. (19)

We leave it as an exercise for the reader to compute the chromatic polynomials of mixed
Θ−hypergraphs with non-uniform mixed bridges (using Theorem 3.1 and the remark fol-
lowing Lemma 3.1). In interest of space we illustrate the process, using expressions (6),
to find an explicit expression for the chromatic polynomial of Θr when each Ti bridge is a
ki−uniform linear mixed hypertree with mi hyperedges of the same edge type, so that each
HCi is a hypercycle HCki,mi with well-defined edge type.

Example 6.1. Let Θ3 be the mixed Θ−hypergraph with T1 a 5−uniform linear hyperpath
of length 4, T2 a 3−uniform linear bihyperpath of length 3, and T3 a 4−uniform linear
cohyperpath of length 5. Figure 6 is a representation.

Figure 6: A mixed Θ−hypergraph
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Then, using the notations in expression (4) and (6), and following (5) and (19),

we have P (Θ3) = λ−2PD(HC5,4)PB(HC3,3)PC(HC4,5) + λ−2(λ − 1)−2

(
λ−3
(
PD(e1)

)4
−

PD(HC5,4)

)(
λ−2
(
PB(e2)

)3
−PB(HC3,3)

)(
λ−4
(
PC(e3)

)5
−PC(HC4,5)

)
where ei is any hy-

peredge of Ti. Using Maple 16 to expand, we find
P (Θ3) = λ29 + 209917λ28 − 2553850λ27 + 14504412λ26 − 50900694λ25 + 122254132λ24 −

206276727λ23+226570863λ22−78922300λ21−280202606λ20+734764864λ19−1006697220λ18+
813848600λ17−104669524λ16−825215186λ15+1470992011λ14−1448149789λ13+768125234λ12+
169428056λ11− 862855382λ10 + 1038127864λ9− 77398819λ8 + 362123049λ7− 58306248λ6−
60471792λ5 + 59166288λ4 − 27064368λ3 + 6998400λ2 − 839808λ.

7 Comments

To complete the comment we started at the beginning of section 6, we close this paper with
the formulae for another class of mixed hypergraphs. These hypergraphs appear as blocks
of a super hypergraph, along with mixed acyclic and hypercyclic blocks, and Corollary
2.1.3 says the chromatic polynomial splits with factors given by these subhypergraphs. The
decomposition via case work in the proof of Theorem 6.1 also illustrates a brute force way
to decompose the chromatic polynomials of mixed hypergraphs which are separated by non-
uniquely colorable subhypergraphs. Such a process certainly grows in complexity with non-
polynomial growth. Thus, the formulae for mixed hypergraphs which separators are not
uniquely colorable are often obtained through a combinatorial argument, when it is possible.
As an example, we present here the result of a nonlinear mixed hypergraph after its definition
[4].

A sunflower (hypergraph) S = (X, E) with l petals and a core S is a collection of sets
e1, . . . , el such that ei∩ej = S for all i �= j. The elements of the core are called seeds. Figure
1 is an example of a 3−uniform sunflower with 2 seeds. When all the petals of S are of type
D, C or B, the resulting mixed hypergraph is called a D−, C− or B−sunflower, respectively.

The formula for the chromatic polynomial of a non-uniform D−sunflower was first ob-
tained by Walter [19]. We report his result here as a corollary (with a slightly different
notation) after we present an extension of that result to mixed sunflowers with petals of
both types D and C. We note that when |S| = 1, a mixed sunflower is isomorphic to a mixed
hyperstar which chromatic polynomial is given by Theorem 3.1. Thus, for the next results,
we assume |S| ≥ 2 and require that |e| − |S| > 0 for each e ∈ E = C ∪ D.

Theorem 7.1. Let S = (X, C,D) be any mixed sunflower. Then

P (S, λ) = λ
∏
d∈D
c∈C

λ|c|−|S|(λ|d|−|S|− 1) +λ|S| ∏
d∈D
c∈C

λ|d|−|S|ζ|c| (|S|) +λ(ζ|S|(1)− 1)
∏
d∈D
c∈C

λ|d|−|S|λ|c|−|S|.

Proof. In any proper coloring of the core S, either one of the following is true:
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(i) S is rainbow (or polychromatic). Then there are λ|S| ways to color its seeds. For
each such coloring, there are λ|c|−|S| − (λ − |S|)|c|−|S| = ζ|c| (|S|) and λ|d|−|S| ways to color

(independently) the remaining vertices of each petal c ∈ C and each petal d ∈ D, respectively.
This ensures the condition that no C−petal is rainbow and no D−petal is monochromatic,
giving the middle term.

(ii) S is monochromatic. In this case, there are λ|c|−|S| and λ|d|−|S| − 1 ways to color the
remaining vertices of each C−petal and each D−petal, respectively. Thus, the first term
gives the number of proper colorings.

(iii) S is neither polychromatic nor monochromatic. There are λ|S|−λ|S|−λ = λ(ζ
|S|

(1)−
1) ways to color its seeds. The number of proper colorings in this case is therefore given by
the last term.

Corollaries 7.1.1 and 7.1.2 follow from Theorem 7.1 when D = ∅ and C = ∅, respectively
(after expansion of the last term).

Corollary 7.1.1. Let S = (X, C) be any C−sunflower. Then

P (S, λ) = λn − λ|S|∏
c∈C

λ|c|−|S| + λ|S|∏
c∈C

ζ
|c|

(|S|).

Corollary 7.1.2. Let S = (X,D) be any D−sunflower. Then

P (S, λ) = λn − λn−|S|+1 + λ
∏
d∈D

(λ|d|−|S| − 1).

We point out that Walter’s original proof of Corollary 7.1.2 is by induction ([19], Theorem
2.2).

Work such as this to compute the chromatic polynomials of some mixed hypergraphs are
useful in some specific applications (see [18]), and we hope aids in experimentation toward
the goal of interpreting the coefficients of these polynomials, which remains an open problem.
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