65 research outputs found

    Extended and Improved Criss-Cross Algorithms for Computing the Spectral Value Set Abscissa and Radius

    Get PDF

    Pseudospectrum of horizonless compact objects: a bootstrap instability mechanism

    Full text link
    Recent investigations of the pseudospectrum in black hole spacetimes have shown that quasinormal mode frequencies suffer from spectral instabilities. This phenomenon may severely affect gravitational-wave spectroscopy and limit precision tests of general relativity. We extend the pseudospectrum analysis to horizonless exotic compact objects which possess a reflective surface arbitrarily close to the Schwarzschild radius, and find that their quasinormal modes also suffer from an overall spectral instability. Even though all the modes themselves decay monotonically, the pseudospectrum contours of equal resonance magnitude around the fundamental mode and the lowest overtones can cross the real axis into the unstable regime of the complex plane, unveiling the existence of nonmodal pseudo-resonances. A pseudospectrum analysis further predicts that fluctuations to the system may destabilize the object when next to leading-order effects are considered, as the triggering of pseudo-resonant growth can break the order-expansion of black-hole perturbation theory.Comment: 19 pages, 5 figures; v2: minor changes and references adde

    Approximating the Real Structured Stability Radius with Frobenius Norm Bounded Perturbations

    Get PDF
    We propose a fast method to approximate the real stability radius of a linear dynamical system with output feedback, where the perturbations are restricted to be real valued and bounded with respect to the Frobenius norm. Our work builds on a number of scalable algorithms that have been proposed in recent years, ranging from methods that approximate the complex or real pseudospectral abscissa and radius of large sparse matrices (and generalizations of these methods for pseudospectra to spectral value sets) to algorithms for approximating the complex stability radius (the reciprocal of the H∞H_\infty norm). Although our algorithm is guaranteed to find only upper bounds to the real stability radius, it seems quite effective in practice. As far as we know, this is the first algorithm that addresses the Frobenius-norm version of this problem. Because the cost mainly consists of computing the eigenvalue with maximal real part for continuous-time systems (or modulus for discrete-time systems) of a sequence of matrices, our algorithm remains very efficient for large-scale systems provided that the system matrices are sparse

    Non-Normality In Scalar Delay Differential Equations

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2006Analysis of stability for delay differential equations (DDEs) is a tool in a variety of fields such as nonlinear dynamics in physics, biology, and chemistry, engineering and pure mathematics. Stability analysis is based primarily on the eigenvalues of a discretized system. Situations exist in which practical and numerical results may not match expected stability inferred from such approaches. The reasons and mechanisms for this behavior can be related to the eigenvectors associated with the eigenvalues. When the operator associated to a linear (or linearized) DDE is significantly non-normal, the stability analysis must be adapted as demonstrated here. Example DDEs are shown to have solutions which exhibit transient growth not accounted for by eigenvalues alone. Pseudospectra are computed and related to transient growth

    Stable high-order finite-difference methods based on non-uniform grid point distributions

    Get PDF
    It is well known that high-order finite-difference methods may become unstable due to the presence of boundaries and the imposition of boundary conditions. For uniform grids, Gustafsson, Kreiss, and Sundstr¨om theory and the summation-by-parts method provide sufficient conditions for stability. For non-uniform grids, clustering of nodes close to the boundaries improves the stability of the resulting finite-difference operator. Several heuristic explanations exist for the goodness of the clustering, and attempts have been made to link it to the Runge phenomenon present in polynomial interpolations of high degree. By following the philosophy behind the Chebyshev polynomials, a non-uniform grid for piecewise polynomial interpolations of degree q_N is introduced in this paper, where N + 1 is the total number of grid nodes. It is shown that when q = N, this polynomial interpolation coincides with the Chebyshev interpolation, and the resulting finite-difference schemes are equivalent to Chebyshev collocation methods. Finally, test cases are run showing how stability and correct transient behaviours are achieved for any degree q<N through the use of the proposed non-uniform grids. Discussions are complemented by spectra and pseudospectra of the finite-difference operators
    • …
    corecore