5,010 research outputs found

    The power of symmetric extensions for entanglement detection

    Full text link
    In this paper, we present new progress on the study of the symmetric extension criterion for separability. First, we show that a perturbation of order O(1/N) is sufficient and, in general, necessary to destroy the entanglement of any state admitting an N Bose symmetric extension. On the other hand, the minimum amount of local noise necessary to induce separability on states arising from N Bose symmetric extensions with Positive Partial Transpose (PPT) decreases at least as fast as O(1/N^2). From these results, we derive upper bounds on the time and space complexity of the weak membership problem of separability when attacked via algorithms that search for PPT symmetric extensions. Finally, we show how to estimate the error we incur when we approximate the set of separable states by the set of (PPT) N -extendable quantum states in order to compute the maximum average fidelity in pure state estimation problems, the maximal output purity of quantum channels, and the geometric measure of entanglement.Comment: see Video Abstract at http://www.quantiki.org/video_abstracts/0906273

    A study of the classification of low-dimensional data with supervised manifold learning

    Full text link
    Supervised manifold learning methods learn data representations by preserving the geometric structure of data while enhancing the separation between data samples from different classes. In this work, we propose a theoretical study of supervised manifold learning for classification. We consider nonlinear dimensionality reduction algorithms that yield linearly separable embeddings of training data and present generalization bounds for this type of algorithms. A necessary condition for satisfactory generalization performance is that the embedding allow the construction of a sufficiently regular interpolation function in relation with the separation margin of the embedding. We show that for supervised embeddings satisfying this condition, the classification error decays at an exponential rate with the number of training samples. Finally, we examine the separability of supervised nonlinear embeddings that aim to preserve the low-dimensional geometric structure of data based on graph representations. The proposed analysis is supported by experiments on several real data sets

    Complete hierarchies of efficient approximations to problems in entanglement theory

    Full text link
    We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in Physical Review

    Largest separable balls around the maximally mixed bipartite quantum state

    Full text link
    For finite-dimensional bipartite quantum systems, we find the exact size of the largest balls, in spectral lpl_p norms for 1≀p≀∞1 \le p \le \infty, of separable (unentangled) matrices around the identity matrix. This implies a simple and intutively meaningful geometrical sufficient condition for separability of bipartite density matrices: that their purity \tr \rho^2 not be too large. Theoretical and experimental applications of these results include algorithmic problems such as computing whether or not a state is entangled, and practical ones such as obtaining information about the existence or nature of entanglement in states reached by NMR quantum computation implementations or other experimental situations.Comment: 7 pages, LaTeX. Motivation and verbal description of results and their implications expanded and improved; one more proof included. This version differs from the PRA version by the omission of some erroneous sentences outside the theorems and proofs, which will be noted in an erratum notice in PRA (and by minor notational differences

    Learning Co-Sparse Analysis Operators with Separable Structures

    Get PDF
    In the co-sparse analysis model a set of filters is applied to a signal out of the signal class of interest yielding sparse filter responses. As such, it may serve as a prior in inverse problems, or for structural analysis of signals that are known to belong to the signal class. The more the model is adapted to the class, the more reliable it is for these purposes. The task of learning such operators for a given class is therefore a crucial problem. In many applications, it is also required that the filter responses are obtained in a timely manner, which can be achieved by filters with a separable structure. Not only can operators of this sort be efficiently used for computing the filter responses, but they also have the advantage that less training samples are required to obtain a reliable estimate of the operator. The first contribution of this work is to give theoretical evidence for this claim by providing an upper bound for the sample complexity of the learning process. The second is a stochastic gradient descent (SGD) method designed to learn an analysis operator with separable structures, which includes a novel and efficient step size selection rule. Numerical experiments are provided that link the sample complexity to the convergence speed of the SGD algorithm.Comment: 11 pages double column, 4 figures, 3 table
    • 

    corecore