601 research outputs found

    2Planning for Contingencies: A Decision-based Approach

    Full text link
    A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.Comment: See http://www.jair.org/ for any accompanying file

    The blind leading the blind: Mutual refinement of approximate theories

    Get PDF
    The mutual refinement theory, a method for refining world models in a reactive system, is described. The method detects failures, explains their causes, and repairs the approximate models which cause the failures. The approach focuses on using one approximate model to refine another

    A Cross-disciplinary Framework for the Description of Contextually Mediated Change

    Full text link
    We present a mathematical framework (referred to as Context-driven Actualization of Potential, or CAP) for describing how entities change over time under the influence of a context. The approach facilitates comparison of change of state of entities studied in different disciplines. Processes are seen to differ according to the degree of nondeterminism, and the degree to which they are sensitive to, internalize, and depend upon a particular context. Our analysis suggests that the dynamical evolution of a quantum entity described by the Schrodinger equation is not fundamentally different from change provoked by a measurement often referred to as collapse, but a limiting case, with only one way to collapse. The biological transition to coded replication is seen as a means of preserving structure in the fact of context-driven change, and sextual replication as a means of increasing potentiality thus enhancing diversity through interaction with context. The framework sheds light on concepts like selection and fitness, reveals how exceptional Darwinian evolution is as a means of 'change of state', and clarifies in what sense culture, and the creative process underlying it, are Darwinian.Comment: 19 pages. arXiv admin note: substantial text overlap with arXiv:q-bio/051100

    Contextualizing concepts using a mathematical generalization of the quantum formalism

    Get PDF
    We outline the rationale and preliminary results of using the State Context Property (SCOP) formalism, originally developed as a generalization of quantum mechanics, to describe the contextual manner in which concepts are evoked, used, and combined to generate meaning. The quantum formalism was developed to cope with problems arising in the description of (1) the measurement process, and (2) the generation of new states with new properties when particles become entangled. Similar problems arising with concepts motivated the formal treatment introduced here. Concepts are viewed not as fixed representations, but entities existing in states of potentiality that require interaction with a context---a stimulus or another concept---to `collapse' to observable form as an exemplar, prototype, or other (possibly imaginary) instance. The stimulus situation plays the role of the measurement in physics, acting as context that induces a change of the cognitive state from superposition state to collapsed state. The collapsed state is more likely to consist of a conjunction of concepts for associative than analytic thought because more stimulus or concept properties take part in the collapse. We provide two contextual measures of conceptual distance---one using collapse probabilities and the other weighted properties---and show how they can be applied to conjunctions using the pet fish problem

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201
    • …
    corecore