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Abstract
Modelling the evolution of biological complexity with a two-dimensional lattice self-assembly process

Alexander S. Leonard

Self-assembling systems are prevalent across numerous scales of nature, lying at the
heart of diverse physical and biological phenomena. Individual protein subunits self-
assembling into complexes is often a vital first step of biological processes. Errors during
protein assembly, due to mutations or misfolds, can have devastating effects and are
responsible for an assortment of protein diseases, known as proteopathies. With proteins
exhibiting endless layers of complexity, building any all-encompassing model is unrealistic.

Coarse-grained models, despite not faithfully capturing every detail of the original
system, have massive potential to assist understanding complex phenomenon. A principal
actor in self-assembly is the binding interactions between subunits, and so geometric
constraints, polarity, kinetic forces, etc. can often be marginalised. This work explores how
self-assembly and its outcomes are inextricably tied to the involved interactions through
the use of a two-dimensional lattice polyomino model.

First, this thesis addresses how the interaction characteristics of self-assembly build-
ing blocks determine what structures they form. Specifically, if the same structures are
consistently produced and remain finite in size. Assembly graphs store subunit interac-
tion information and are used in classifying these two properties, the determinism and
boundedness respectively. Arbitrary sets of building blocks are classified without the
costly overhead of repeated stochastic assembling, improving both the analysis speed and
accuracy. Furthermore, assembly graphs naturally integrate combinatorial and graph
techniques, enabling a wider range of future polyomino studies.

The second part narrows in on implications of nondeterministic assembly on interac-
tion strength evolution. Generalising subunit binding sites with mutable binary strings
introduces such interaction strengths into the polyomino model. Deterministic assemblies
obey analytic expectations. Conversely, interactions in nondeterministic assemblies rapidly
diverge from equilibrium to minimise assembly inconsistency. Optimal interaction strengths
during assembly are also reflected in evolution. Transitions between certain polyominoes
are strongly forbidden when interaction strengths are misaligned.

The third aspect focuses on genetic duplication, an evolutionary event observed in
organisms across all taxa. Through polyomino evolutions, a duplication-heteromerisation
pathway emerges as an efficient process. This pathway exploits the advantages of both
self-interactions and pairwise-interactions, and accelerates evolution by avoiding complexity
bottlenecks. Several simulation predictions are successfully validated against a large data
set of protein complexes.

These results focus on coarse-grained models rather than quantified biological insight.
Despite this, they reinforce existing observations of protein complexes, as well as posing
several new mechanisms for the evolution of biological complexity.
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CHAPTER

ONE

INTRODUCTION

Biology and physics were long separate pillars in the scientific world. Only at the tail of the
19th century did the two intermingle, with Karl Pearson seeding the concept of biophysics.
Cooperation between these fields has driven advances that were inconceivable when viewed
through a singular perspective, isolated in their traditional contexts. These developments
necessarily rely on uniting concepts, approaches, and techniques across multiple disciplines,
propelling areas as disparate as the mechanics of cancer [1] or foraging patterns of marine
predators [2].

Interdisciplinary attitudes are essential to progressing science into a new era. The
work presented in this thesis is situated at the interface of physics and biology, applying
statistical modelling and analytic equations to the dynamics and evolution of complexity
in protein quaternary structure.

1.1 Modelling biological complexity

Traditionally, much of science was based on reductionism, where understanding the minimal
units of a system could constitute complete knowledge of the whole. This changed in
the 1970’s with the advent of complexity science. Complexity science revolves around
holism, where the system can only be understood in its entirety; examining minimal units
in isolation washes away the emergence of the dynamics of interest. Given the enormous
complexity of biological systems, the language of complexity science finds a natural home
in the context of biophysics.

Complexity science also emphasises the power of simplicity in modelling complex
phenomena, known as effective theories [3]. As succinctly phrased by George Box, “all
models are wrong, but some are useful” [4]. Distilling problems down to their most
core concepts, at the expense of introducing approximations, enables the construction of
new models. An imperfect understanding of a complex phenomenon is still a promising
advancement in an otherwise intractable problem.

One such example is modelling atrial fibrillation, the largest cause of stroke, with a
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2 CHAPTER 1. INTRODUCTION

simple 3-state lattice model [5]. Elements in the lattice, i.e. heart muscle cells, can be
resting, excited, or refractory, and can only interact with nearest neighbours. While this
model is far too simple to capture all dynamics involved in atrial fibrillation, it captures
most in a highly understandable framework. With orthodox clinical interventions enjoying
little success, the approximate critical regions identified through the model for treatment
represent a step forward.

Similarly, crowd dynamics leading to disasters have been modelled with barebone
equations for the “force” exerted by adjacent pedestrians [6]. While the model may not
provide directly implementable solutions on how to avoid such disasters, it is again a useful
tool to explore ideas for potential solutions. This cyclic relationship between complex
phenomena, coarse-grained modelling, and approximate understanding is highlighted in
Figure 1.1.

complex problem complex concept

simple modelqualitative predictions

distill

construct

extract

inform

Figure 1.1: Complex problems often have details superfluous to the dynamics of interest, which
can be expunged. A sufficiently focused concept can lead the construction of a coarse-grained
model, which can generate qualitative predictions. These predictions do not provide quantitative
answers, but can inspire novel interpretations or supplemental insights which may steer actionable
solutions.

The Ising model [7] in physics is a prime example of the cyclic relationship. Determining
the structural order of atomic dipole moments quickly grows unsolvable. By considerably
simplifying the system into a rigid lattice and fewer states, the Ising model can calculate
transition temperatures for ferromagnetism. Though all the predicted temperatures are
inaccurate, the model correctly and generally predicts their existence (or not) for any
dimension or geometry. If needed, more time-consuming models can then be used frugally
to determine precise, quantitative results.

1.1.1 Coarse-grained proteins

Proteins are an elementary building block of life, participating in nearly every biological
function. However, their ubiquity hinders a single “grand unified theory” of proteins, with
multitudinous shapes, interactions, and functions. In the same vein as above, zooming
out on the problem and taking a more coarse-grained view unravels universal underlying
properties about proteins that would be lost in the noise of detail.
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Protein complexes have four tiers of structure: primary, secondary, tertiary, and
quaternary. Primary structure defines the long, linear sequences of amino acid residues.
Secondary and tertiary structure are the conformations of local segments and the global
three-dimensional fold of the protein subunit respectively. Multiple subunits can then
arrange into a protein complex, which is the quaternary structure. Approximate models
exist for various forms of lower level structure prediction, such as the Garnier-Osguthorpe-
Robson (GOR) method [8] and hydrophobic-polar (HP) lattice folding [9], and their simple
nature has been vindicated by their prediction success.

Primary, secondary, and tertiary structure are largely determined by energetic “folding
funnels”. Quaternary structure still depends on Boltzmann distributions and thermody-
namic stability, but principally emerges from the attractive binding interactions present
between subunits. Different combinations of subunits can form different final structures,
giving rise to the vast observed diversity of proteins. In addition to variability in subunit
size, quaternary structures commonly vary from single subunits to several dozen, although
some such as DNA viruses can contain thousands of repeated subunits.

Using a more coarse-grained perspective, many protein complexes become comparable.
This observation has helped produce a “periodic table of protein complexes” [10], given
evolutionary insight into the commonness of misassembly [11], and provided physical
constraints on cellular function [12]. Polyominoes, geometric structures formed by adjoining
uniformly-sized square tiles, are one such approach to this coarse-graining. Each tile within
the polyomino corresponds to a protein subunit, and two adjacent tiles implies some
attractive potential between the corresponding protein subunits.

Coarse-graining and polyomino representations can handle some of the geometric
variation and size imbalance inherent in proteins. Interaction topologies can reasonably
be detached from structural detail, and thus well-approximated, for many proteins. Some
example proteins and possible polyomino representations are shown in Figure 1.2. However,
polyomino models are not universally applicable. Protein quaternary structures can contain
nuance that is lost when “blockified” to a lower resolution representation. Likewise, multi-
site or cooperative bindings, where interactions can influence the binding affinity of others,
do not translate well. Intrinsically disordered proteins or “fuzzy complexes” [13] are also
outside the remit of lattice polyomino models. Despite these specific limitations, polyomino
models can broadly approximate many classes of proteins and generate worthwhile results.

By carefully considering the approximations made and their impact, any intuition
gained from the coarse-grained model can often be qualitatively applied to physical proteins.
These coarse-grained models, in conjunction with experimental validation, continue to
open new avenues of understanding protein dynamics.
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a) Proteins

b) Polyominoes

Figure 1.2: a) Three examples of protein quaternary structures (PDBids: 6S9T, 6RFV, and
6OF2 from left to right), each composed of four protein subunits of two unique types. Subunits
with similar colours indicate they are of the same unique subunit type (e.g. both blue-ish subunits
have the same primary structure). b) Polyominoes are a coarse-grained model which approximate
proteins, where each square tile in a polyomino imitates a protein subunit. Similar to above,
tiles with similar colours are instances of the same unique subunit type. Some proteins, like
the example on the right, have structures which cannot be reasonably approximated by uniform
square tiles and are not suitable for a polyomino representation.

1.2 Mathematical models of tile self-assembly

Interest in structures formed by self-assembling sets of tiles dates back to at least 1961,
starting with the question: can a set of squares with self-adhesive edges (Wang tiles)
tessellate the plane [14]? Tile self-assembly has undergone substantial generalisations since
then, increasing in scope and modelling potential. In 1973, Bennett established a link
between Turing machines, effectively abstract “computers”, and biomolecules [15], paving
the way for theories of biological computation.

Winfree provided substantial rigour 25 years later, introducing a biologically-flavoured
algorithmic model of DNA self-assembly [16]. Recent work has focused on a complete
computational infrastructure, formally showing how self-assembly spans various levels of
abstraction. DNA-tile boolean circuits can form proof-reading structures, which in turn
can form single-stranded tiles, enabling experimental algorithmic construction of DNA
nanotubes [17]. Although these experiments are currently confined to laboratories, they
conclusively prove that self-assembly is a multiscale phenomenon.

As the popularity of DNA-enabled computation grows, the number of distinct tile
assembly models (TAMs) does as well. Each formal system is slightly tweaked to target a
certain functionality, e.g. the kinetic TAM, reflexive TAM, two-handed TAM, signal-passing
TAM, etc. Evans and Winfree reviewed the ever-growing plethora of TAMs, discussing
how the TAM properties must align to experimental design considerations to have any
meaningful physical realism [18].

Mathematical formalism of TAMs is a great strength, allowing results to be proven with
complete rigour. With the gap bridged between theoretical self-assembling tile systems and
experimentally possible DNA computers, this sound foundation of results is crucial. For
example, a tile assembly system can be represented by T = (T, σ, τ), where T is the set of
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assembling tiles, σ is the starting structure, and τ is the assembly “temperature”. Terminal
assembled structures are given by At [T ]. Grounding TAM results mathematically provides
confidence while experimental validation remains encumbered by technological limitations.

Modelling self-assembly of coarse-grained proteins typically needs far fewer formal
features to completely describe interesting dynamics. In particular, the potential for
arbitrary computation through a set of self-assembling tiles is not currently relevant to
dynamics of protein quaternary structure. As such, the polyomino model is a subclass
of general TAMs, but specifically with relaxed requirements on cooperative binding.
Regardless, results derived in a more relaxed model should not contradict the general
theories established by previous TAMs—without careful consideration of the introduced
approximations.

1.3 Lattice self-assembly in two-dimensions

The particular variation of tile self-assembly used as the foundation for this work is a
minimalistic model. The polyomino model’s core emphasis is on independent binding
interactions that can take place between subunits. By eschewing physical complications of
interaction geometry or thermodynamics, this lattice self-assembly model has enabled the
study of diverse dynamics of protein quaternary structure.

In the decade or so since its inception, the model has found applications in algorithmic
complexity and modularity of proteins [19], evolution of preferred structural symmetries [20],
and genotype-phenotype maps of protein structures [21–23]. Biological applicability was
secondary in most of these studies, as they focused primarily on exploring and growing the
polyomino self-assembly model. Much of the following work results from these pioneering
ideas, allowing greater effort to be spent on developing the conceptual linkage to existing
protein quaternary structure literature.

While this work emphasises connections of the polyomino model to real protein dynam-
ics, it should be underscored that polyominoes are an abstractified and idealised model
of proteins. Some proteins are more amenable to this representation, like haemoglobins
with approximately square geometry and equally-sized subunits, but polyominoes are not
intended to serve as physical models. The purpose of this simplified model is to drill down
on and isolate specific dynamics, and examine the contexts in which the observations can
be translated back to proteins, seen primarily in Chapters 3 and 4.

1.3.1 Genotype representations and assembly graphs

At the most general level, a genotype is sequence of symbols drawn from a fixed-size
alphabet which stores information about some higher level of organisation. For DNA,
the alphabet consists of four nucleotide bases (A,T,G,C), while one possible form of a
protein alphabet consists of twenty amino acids. In the specific context of this model, the
alphabet describes the possible binding site types on the subunits, such that a genotype
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completely describes the set of self-assembling tiles. There are no limitations on what
form the alphabet can take. Self-assembling systems only necessitate two ingredients:
a characterisation of binding sites and an associated method for determining how two
binding sites interact.

All existing uses of the polyomino lattice self-assembly model [19–23] use a set of
integers as the alphabet. Interactions occur between sequential pairs of integers, e.g.
binding site types 1 and 2 interact, 3 and 4, etc. Certain binding sites are definitively
noninteracting, e.g. 0 is always neutral.

Every group of four genotype elements (four faces on a square tile) forms one unique
subunit type, encoding the binding sites with a clockwise convention starting from the top.
Subunits can be represented with the notation (−,−,−,−), where each − is an integer
interface type. Genotypes can encode one or more subunits with the notation {. . .}. A full
genotype encoding two subunits with a single interaction between them might then look
like {(0, 0, 1, 0) , (0, 2, 0, 3)}. Since the 4 interface type does not appear in this example
genotype, the 3 interface type is effectively neutral.

The meaningful information contained within genotypes is the interactions between
subunits, describing how different subunits can bind together. This information is best
captured by an assembly graph, a compact description of all possible binding interactions
between the faces of the subunits. Assembly graphs are the primary genotype representation
used in this work.

In addition to offering a concise visualisation, assembly graphs are also rigorous.
Specifically, assembly graphs can be interpreted as a compressed representation of edge-
labelled pseudographs∗. To preserve chirality, the internal structure of subunits is given by
directed edges of one label, while interactions in the assembly graph are bidirectional edges
of a different label. While the pseudograph representation is not necessary in self-assembly
itself, the link with graph theory provides myriad insights covered in Chapter 2. An
example of constructing an assembly graph and equivalent pseudograph from a genotype
is shown in Figure 1.3.

a) b) c)

0
1

0
0

3
4

0
2

0100 3402
encode

Figure 1.3: a) The genotype {(0, 1, 0, 0) , (3, 4, 0, 2)} encodes two subunits, starting clockwise
from the top of each subunit. b) An assembly graph encapsulate all possible interactions, shown
by grey lines, between and within the two subunits. c) This pseudograph is equivalent to the
assembly graph in b), with bidirectional external edges. There are also internal edges (red)
within each subunit, which maintain the geometric relation of the faces and preserves chirality.

∗Pseudographs are explicitly multigraphs with loops, although some conventions already allow loops
in a multigraph.
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1.3.2 Polyomino assembly from an assembly graph

Genotypes and assembly graphs undergo the same assembly process for building structures.
In the latter case, there is a more interpretable process. Rather than searching for a
genotypic element on a given subunit to bind with, structure growth now essentially
proceeds by walking on an assembly graph. The assembly algorithm is sketched out as:

• Seed the assembly with a random/fixed subunit.

• Assess all binding sites on the structure’s perimeter for “open” interactions, i.e. there
are possible binding partners to that site.

• Randomly select a subunit which matches an open interaction and bind it to the
structure.

• Repeat previous 2 steps until no open interactions remain.

A more detailed algorithmic description is given in Appendix A.3. Subunits bind
irreversibly to the growing structure, with no kinetic or temporal considerations allowing
subunits to become unstuck∗. During assembly, there is an infinite pool of each subunit
type constructed from the genotype, avoiding any limiting reagent or rate-determining
step dynamics.

The resulting lattice structure is a polyomino: a contiguous set of square tiles. Com-
monly, genotypes are assembled multiple times to comprehensively and accurately reflect
possible behaviours. If any assembly does not terminate, i.e. always some open interactions
remain, it is unbound. If the assemblies are not all identical, it is nondeterministic. Both
of these properties can be undesirable in protein complexes or more general self-assembling
structures, due to the inability to consistently produce the same assembly. An example of
a deterministic and a nondeterministic assembly is given in Figure 1.4.

1.3.3 Phenotypes and polyomino equivalence

Judging if any two assemblies are equivalent is highly dependent on the context. Polyomi-
noes have three levels of increasing strictness towards symmetry, where two polyominoes
may be equivalent under one definition but not another. A free polyomino is the least strict
definition, where a polyomino which can be reflected and/or rotated to match another is
not distinct. One-sided polyominoes are only not distinct if there is some purely rotational
operation, i.e. reflected copies are now distinct. A fixed polyomino is the most restrictive
definition, where even a rotated copy of polyomino could be considered a new unique
polyomino.

Regardless of the level of polyomino definition, comparing assembled structures revolves
around grid-based bounding boxes. Each site in the grid details if it is occupied, along

∗This is effectively a zero-temperature limit, and so this assembly approximates proteins that are
thermally stable over long timescales.
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a) deterministic

b) nondeterministic

seed polyomino
assembling

1.

2.

1.

2.

Figure 1.4: Some assembly graphs are deterministic, such as a), where multiple stochastic iter-
ations build the same assembly (two iterations shown on the right). Others are nondeterministic,
such as b), where the two assemblies have the same shape but differ by composition. Assembly
graph subunits and polyomino tiles are colour-coordinated, such that e.g. a black tile placed
during assembly indicates it is of the black subunit type from the assembly graph. Similarly,
assembly graph edges and the open interactions in assembly are coloured.

with the subunit type and orientation. Preparing these grids so they can be compared
for determinism within a single genotype or across different genotypes is challenging, due
to inherent genotype symmetries. Extended details on this procedure can be found in
Appendix B.

In addition to the different levels of polyomino definition, the contents of each grid site
can be tuned to allow stricter comparison of two structures. Shape determinism is the
most basic definition, where each lattice site is either occupied or empty. If the two lattice
structures can be rotated/reflected as appropriate to match, they are shape deterministic.
A stricter level is subunit determinism, where two structures must have the same shape
as well the same subunit type in each lattice site. For an even finer granularity, the
orientation of each placed tile can also be included when comparing structures as subunit
+ orientation determinism.

For example, two polyominoes may both form a two-by-two square, but one is formed
of a single subunit type while the other is made of four distinct subunits. In the context of
proteins, if only one subunit type could bind with an important ligand, these two complexes
could have distinct functional roles. These two tetramers are shape deterministic, but
would be meaningfully distinguishable under subunit determinism as two unique complexes.

The choice of polyomino definition and determinism level can appreciably alter any
simulation or analysis and result in varying number of unique structures(see Figure 1.5).
There is no universally correct choice; instead, the constraints should be appropriately
chosen to best reflect the properties of the system under inquiry.

The phenotype of a genotype is defined here as the observable structure produced
by the assembly algorithm. Bound and deterministic assemblies have an indisputable
phenotype, clearly corresponding to the singularly produced structure. Nondeterministic
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a) reference b) rotation c) chirality d) composition

Figure 1.5: a) An example polyomino made of two distinct subunit types (black and grey). b)
This polyomino is an identical copy to a) but rotated π/2 clockwise. These are two distinct fixed
polyominoes, but are not distinguishable under one-sided or free definitions. c) Similarly, this
reflected copy of a) is the same polyomino under the free definition, but is a different polyomino
under the other two definitions d) Under subunit determinism, this assembly is distinct from a),
b), and c) under any level of polyomino definition, as the red lattice site indicates a different
subunit type.

assemblies can produce multiple polyominoes, ranging from single misassembled variants
to never-repeating irregularity, injecting ambiguity into the definition of the phenotype.
This thesis extensively uses the convention that the polyomino most commonly assembled
from a genotype is assigned as its phenotype. A threshold can be implemented, such
that a deleterious phenotype is assigned if no polyomino occurs above some frequency,
for example 50%. Other methods might include always selecting the smallest or largest
polyomino. Ongoing developments have extended the meaning of a phenotype to include
the set of produced polyominoes, allowing a robust examination of nondeterminism, but
this is still under investigation.

1.4 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 focuses on expanding
an algorithmic approach to the classification of the determinism and boundedness for
a set of subunits in the lattice self-assembly model. These two properties are critically
important for any kind of self-assembly as they can lead to harmful protein aggregation
or proteopathic misassembly. An algorithmic understanding of assembly behaviours also
sheds light on the risks of repeated patterns in assembly and symmetry, which are more
likely to give rise to unboundedness.

Chapter 3 introduces a generalisation to the lattice self-assembly model, with binary
string binding sites that naturally establish an interaction strength. Selection pressures
can drive the evolution of interactions to become stronger or weaker. These pressures arise
when the order of assembly is important, and mirror experimental evidence that the order
of evolution in complexes is reflected in the order of assembly.

Chapter 4 further expands the generalised model to include self-interactions, which
allow greater modelling of symmetric homomeric and heteromeric interactions. Analytic
results suggest symmetric homomeric interactions are quicker to evolve, while boundedness
constraints imply heteromeric interactions are more evolvable. The duplication of homo-
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meric subunits, which can then complementarily evolve into a heteromeric interaction
between two subunits, is thus a highly efficient pathway for evolution. Experimental data
taken from the Protein Data Bank supports several qualitative predictions of the model.

Finally, the conclusion summarises the salient results of this research, as well as
covering some new areas of high potential for further study which may benefit from the
developments of the generalised model.



CHAPTER

TWO

DETERMINISM AND BOUNDNESS OF ASSEMBLY
GRAPHS

Key messages

• A new framework classifies assembly graph boundedness and determinism
faster and more accurately than conventional stochastic assembly.

• Simple extensions to the assembly graph classification scheme expand the
realm of dynamics that can be modelled.

• Assembly graph formalism solidifies existing empirical knowledge and facilitates
further analytic results.

This chapter is based on the publication Determinism and boundedness of self-
assembling structures by Tesoro, Ahnert, and Leonard [24]. Earlier iterations of this
work were developed by Tesoro and Ahnert, and can be found in Chapter 4 of Tesoro’s
thesis [25]. Substantial improvements were made to the earlier work by Leonard and
Ahnert, and unless otherwise stated, the material in this chapter is independent and novel
work by Leonard under the supervision of Ahnert.

2.1 Introduction

Self-assembly is ubiquitous in nature, responsible for complex structures across multiple
branches of science. Recent advances in synthetic biology, where custom sequences and
structures can be made to order, have enabled designing self-assembling systems with
biomolecules. DNA in particular has been proven to be extremely versatile in this regard,
as specifiable DNA tiles can be used to construct complex nanoarchitectures [26]. Exploring
the relationship between the “sticky edges” of these DNA tiles and the assortment of
possible assembled shapes is still undergoing rapid growth [27, 28]. Similar attempts have
been made to generate rule-sets for protein self-assembly [29].

11
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Understanding how these simple units of assembly work together to form larger com-
plexes is paramount to rational design. As established earlier, there are two focal properties
of any general self-assembling system: boundedness and determinism. Boundedness refers
to assemblies which are not unbound, i.e. terminate assembly with a finite size, while
determinism means any genotype can only assembly a single structure. A biological
complex which does not possess these two properties is at risk of potentially deleterious
behaviour. An entire class of diseases, proteopathy, covers proteins with aberrant struc-
tures, e.g. aggregation, amyloid formation, misfolding, etc. Linking assembly dynamics to
proteopathic origins may contribute to treating all manifestations of these diseases rather
than case-by-case therapeutics [30, 31].

Conventionally, classifying these properties occurred through repeated stochastic as-
sembly and checking for finite and identical structures. Developing a general framework
for classifying the boundedness and determinism of arbitrary self-assembling structures
is currently out of reach. In the following chapter, a specific framework for assessing
the boundedness and determinism for assembly on a two-dimensional square lattice is
introduced. Although the rules and analyses are directly applicable only to the polyomino
model, several insights conceptually translate to observations about proteins.

2.2 Assembly graph classification scheme

Assessing the nature of assembly behaviour depends on features present within the
prospective assembly graph: single interacting faces (SIFs), branching points, cycles, and
symmetric subunits. Each of these features contributes known assembly dynamics, and so
a classification scheme can be constructed which sequentially analyses an assembly graph
for opportunities of unbound or nondeterministic growth. Any assembly graph which does
not contain such features can therefore be classed as bound and deterministic.

The assembly graph classification scheme was pioneered by Tesoro and Ahnert [25].
Several improvements were required to streamline the assessment and, in some extreme
cases, eliminate classification errors. Most mitigations focused on treelike SIF pruning,
cycle detection, and nested cycles. These classification algorithm changes are highlighted
in Figure 2.1.

The assembly graph analysis consists of sequentially applied rules which must be
satisfied to classify an assembly graph as bound and deterministic. It does not fully
account for the possibility of spatial conflicts, where two separate parts of an assembling
structure might attempt to bind into the same lattice site. These occurrences are known
as steric effects. Therefore, assembly graphs which are deterministic according to the
classification algorithm rules must be subsequently checked for steric-determinism by
assembling the structure a single time. The assembly graph is steric-nondeterministic
if two distinct subunit types can occupy the same lattice site during this check, and is
otherwise steric-deterministic.
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Figure 2.1: The original assembly graph classification scheme [25] had several problematic
steps which led to misclassifications, indicated by red asterisks. The final classifications possible
are bound and deterministic (BD), nondeterministic (ND), and unbound (UB). Much of the
scheme was reformulated to eliminate these problems and simplify the logic involved in each
classification step. Input for both algorithms is the same, taking in assembly graphs already
tested for connectedness.

Classifying assembly graphs in this manner has theoretical importance, contributing
general insight into sources of irregular assembly. However, the associated gain in clas-
sification speed also has powerful implications on what new systems can be examined,
expanding analysis to larger genotype spaces. As such, refining the logic present in the
initial scheme plays a crucial role in maximising performance in addition to correcting
errors.

2.2.1 SIFs and deterministic treelike graphs

Single interacting faces are a common assembly graph feature, where a subunit only has
one face with interactions and three noninteracting faces. Subunits with this feature tend
to be “ornamental”, binding to the periphery of a growing structure. Once attached to
a growing structure, a SIF subunit has no remaining interactive sides and so terminates
assembly in that particular direction. Unbound growth requires a constant addition of
new interactive faces on the structure’s perimeter, and so SIF subunits cannot induce
unboundness. Similarly, SIF subunits cannot be nondeterministic as they do not introduce
any further assembly choices, let alone multiple. Due to their relative simplicity, SIF
subunits are the most straightforward feature to analyse.

A treelike assembly graph is defined as an assembly graph which does not contain
any cycles or non-SIF branching points. Branching points occur when multiple binding
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partners exist for a given face, e.g. in the genotype {(0, 1, 0, 0) , (2, 2, 0, 2)} where the 1 can
bind with either of the two 2 faces. Such assembly graphs can be re-expressed with SIF
subunits and single-use interactions, as seen in Figure 2.2. A subunit without any binding
interactions is the simplest example of a treelike assembly graph, similar to the simplest
tree graph which is a single node and no edges. Such an assembly graph is evidently bound
and deterministic.

a) b) c) d) e)

Figure 2.2: a) The simplest treelike assembly graph with an interaction is two connected
SIF subunits. b) Assembly graphs with SIF branching points are can still be treelike. c) The
assembly graph from b) can be re-expressed without the branching point using additional SIF
subunits. d) Non-SIF branching points prevent assembly graphs from being treelike, but they do
not necessarily cause nondeterminism. e) Assembly graphs with cycles, highlighted by red edges,
also cannot be treelike.

Adding only a SIF subunit, potentially a SIF branching point, with a new interaction
to the assembly graph cannot impart any non-SIF branching points or cycles. Therefore
adding a SIF subunit to a treelike assembly graph leaves it treelike. Since the smallest
treelike assembly graph is bound and deterministic, and adding SIF subunits cannot
contribute behaviour to the contrary, then by induction any treelike graph must be bound
and deterministic.

During this iterative construction, adding SIF subunits can transform earlier SIF
subunits into subunits with multiple interacting faces. While the induction argument
still holds, in practice this makes identifying an entire assembly graph as treelike difficult.
Removing SIF subunits and their interactions wherever possible, i.e. “pruning” the assembly
graph, can restore these multiple face subunits to being SIF. Eventually, any subunit that
was iteratively constructed as a SIF will have been removed.

After sufficient SIF subunits have been recursively pruned, the assembly graph should
be more obviously treelike or unable to reach a treelike form, thus being bound and
deterministic or needing further analysis respectively. This pruning procedure is shown in
Figure 2.3.

The pruning process is preserved from the initial classification scheme [25], but the
treelike assembly graph definition was expanded. Now a single pruning condition can be
used on all assembly graphs with fewer contingencies. Although a trivial case, a subunit
without any interactions can now also be correctly identified as treelike and thus bound
and deterministic.

2.2.2 Fundamental cycle basis

Cycles are walks on an assembly graph, alternatively stepping between external edges
(subunit interactions) and internal edges (subunit faces), returning to the initial location



2.2. ASSEMBLY GRAPH CLASSIFICATION SCHEME 15

a)

b)

c)

irreducible

Treelike

Treelike

Figure 2.3: Both the assembly graphs in a) and b) are ultimately able to be pruned into a
subunit without any interactions, and so are bound and deterministic. However, the assembly
graph in a) is identifiable as treelike (no cycles or non-SIF branching points) immediately and
could be classified without further pruning. On the other hand, the assembly graph in b) requires
one round of pruning to reach an obvious treelike state. Although the SIF branching point in c)
can be pruned, the assembly graph cannot be reduced to a treelike state as it contains a cycle,
and so must continue into the next round of classification.

without repeating any edges. A key property of an assembly graph cycle is its rank, or how
many times the involved subunits are reused before the cycle completes its assembly [24].
Cycles can take ranks of 1, 2, 4, or∞, with some examples shown in Figure 2.4 highlighting
the correspondence between cycle rank and subunit repetition. Rank ∞ cycles correspond
to directly unbound growth, as that pattern can recur infinitely without terminating.

c) rank 4b) rank 2a) rank 1 d) rank ∞ ...

.

..

Figure 2.4: a), b), and c) all produce two-by-two tetramers, but with varying repetition of
subunit types, which corresponds to the cycle’s rank. Subunits and tiles are coloured as in
Figure 1.4, and re-used subunits are indicated by faded tiles to highlight the nature of the rank.
d) This cycle continues forever using the same subunits (in this case just one subunit), indicated
by the dots, and hence is rank ∞.

Identifying assembly graph cycles is trivial when each edge in a cycle is exclusive to
that cycle. When cycles share edges with other cycles (or branching points), the situation
becomes more complicated. The symmetric difference (union minus intersection) of two
cycles is itself another valid cycle. This induced cycle does not contribute any assembly
behaviour not already contained within the two original cycles; rather it is a mixture of
them. Just as a vector space has a basis formed by a minimal spanning set, an assembly
graph has a cycle basis. Every possible cycle present in an assembly graph is then some
combination of cycles within its basis.

Since only cycles in a basis contribute unique assembly behaviour, only the cycle
basis should be analysed for detecting unbound potential. Unfortunately, constructing a
minimum cycle basis, such that each cycle is as short as possible, is an NP-hard problem
in graph theory. Additionally, not all graphs have a unique minimum cycle basis [32]. Any
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basis is sufficient for detecting unbound growth, but a minimal basis is the most efficient.
There is no general algebra for combining the ranks of the combined cycles. For

example, two rank 2 cycles can join together to form a rank 1 or rank ∞ cycle, depending
on the exact configuration. Only the latter case leads to unbound growth, and so these
two cases contribute completely different behaviour. However, combining a rank R and a
rank 1 cycle always produces another rank R cycle.

The main advancement from these two observations is that rank 1 cycles can always
be cut and pruned without affecting the fundamental behaviour of an assembly graph.
Regardless of whichever edge is cut, the surviving cycles will still form an equivalent cycle
basis. The ranks of the cycles in the basis may change depending on the cut, but their
combinations will preserve the potential of unbound growth if it previously existed. Some
example cycle bases are shown in Figure 2.5, including a rank 1 cycle case.

a) b)+

+

+
cu
t
B
,C
,D

cut
A

A
B D

C

Figure 2.5: a) This assembly graph contains two rank 2 and one rank ∞ cycle, all involving
two edges. There are three choices for the cycle basis, and no one choice is more fundamental.
However, the latter 2 choices containing a rank∞ cycle are easier to directly identify as unbound.
b) Assembly graphs with rank 1 cycles, highlighted with red edges, must be cut and pruned before
selecting the cycle basis. Cutting edges B, C, or D lead to a different basis than cutting edge A.
However, every choice has equivalent behaviour (but not necessarily equivalent efficiency).

2.2.3 Spatially nested cycles

Unbound growth can only occur from continuously reusing some subset of assembly
subunits. This behaviour commonly derives from one cycle completing its assembly,
typically leaving exposed interacting faces belonging to another cycle, which after assembly
leaves new faces belonging to the original cycle exposed and so on. Identifying multiple
irreducible cycles is thus tantamount to identifying unbound growth and classified as such.
However, spatial effects can invalidate the seemingly trivial previous axiom that multiple
cycles assert unbound growth [25].

Multiple cycles can be spatially “nested”, such that the completion of one cycle coincides
with the completion of another cycle, leaving no new exposed interactions. When nesting
occurs, and cycles do not regenerate each other, the assembly remains bounded. An
example of cycle nesting is shown in Figure 2.6, demonstrating that minute differences at
the assembly graph level can have huge impacts on the assembly behaviour.
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a)

b)

. . . . . .
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Figure 2.6: Assembly graphs in a) and b) only differ by where the blue subunit interaction
connects to the yellow subunit. Assembly is unbound in the former but bound in the latter. This
results from the hatched red-orange-yellow (ROY) cycle in the former case exposing new open
interactions for the blue cycle, eventually regenerating exposed faces for the ROY cycle and so
on. In the latter case, all initially exposed faces are bound to by the end of a single assembly
cycle, leaving no possibility for further growth. For clarity, a complete assembly iteration of the
ROY cycle is demarcated by dashed lines in a), which is equivalent to the same ROY cycle in b).
See Figure 1.4 for details on colour notation.

As a spatial effect, cycle nesting cannot be determined solely through assembly graph
analysis. Even cycles of different ranks can be embedded within one another, making
nesting difficult to identify by empirical rules. Instead, returning to the fundamental
definitions of cycles and unbound growth provides the important test. Since, by definition,
a rank R cycle repeats the assembly pattern R times, the maximum expected bound size
B of any polyomino produced from the assembly graph is then:

B =
∑

c∈cycles
Rc · Lc + E

where Rc is the rank of cycle c and Lc is the number of subunits involved in that
cycle. All SIF subunits should be pruned prior to this analysis, but the contribution of
any non-prunable subunits external to cycles is included as E. Should the attempted
lattice assembly exceed this size, or identify a subunit in a cycle being used more than Rc

times, the cycles are not nested and thus growth will be unbound. In principle, B can be
minimised by optimally cutting rank 1 cycles and preserving the minimal cycle basis, i.e.
smallest Lc. In practice however, any time advantage gained through using the optimal cut
is outweighed by the time required to determine the optimal cut, and so greedy algorithms
are more effective.

2.2.4 Cycle detection heuristics

Constructing a cycle basis for an assembly graph is one of the most intensive steps of
the classification scheme. Although there are many interesting exceptions, assembly
graphs with many edges relative to the number of subunits are typically unbound or
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nondeterministic. Most previous polyomino studies [19–21] have focused explicitly on
bound and deterministic assemblies, implicitly lumping unbound or nondeterministic
assemblies into a single generic deleterious phenotype. Merging these categories allows
several probabilistic alternatives to constructing the cycle basis.

Topological graph theory can provide inspiration for one such heuristic. The first Betti
number b1 identifies the number of topological “holes” in a graph. This translates without
modification to assembly graphs, and is calculated as b1 = m − n + 1 for an assembly
graph with m interactions and n subunits. Since branching points are typically either
removed earlier or lead directly to non-determinism, b1 is a useful predictor for the number
of cycles in pruned assembly graphs. Values of zero or one typically correspond to valid
phenotypes, while a value of two is borderline. For values greater than two, assembly
graphs overwhelmingly will correspond to the deleterious phenotype.

Similarly, the Cheeger constant measures the lack of “bottleneckedness” in a graph,
i.e. the resilience that a single cut will not bisect the graph. Estimating a high Cheeger
constant for an assembly graph implies high linkedness and thus likely nondeterminism or
unboundedness, while a low value implies treelikeness and thus determinism.

Converting these tools from graph theory has the additional bonus of being well-studied
and easily available through open-source implementations. Specific studies may have a
contextual basis where analysis speed gain supersedes precision, allowing integration of
one or more heuristic algorithms. For example, with two subunits and eight interface types
in the polyomino model, only 2% of valid phenotypes are misidentified using b1 ≥ 2 as
a rejection criterion but the analysis is nearly a third faster. However, larger genotype
spaces are capable of more intricacy which can disrupt these heuristics, although this has
not been tested in depth.

2.3 Classification scheme extensions

Correctly identifying the boundedness and determinism of self-assembling structures is not
simple, and the classification scheme is correspondingly rigid to ensure accuracy. However,
there are several extensions which augment the range of application without incurring
much, if any, overhead. These extensions overcome the inflexibility of the classification
scheme with regard to many biologically relevant features of self-assembling systems, such
as self-interactions and non-constant interaction pairings.

2.3.1 General interactions

Self-interactions have rarely been considered in polyomino models, only receiving secondary
interest in one previous study [21]. However, the inclusion of self-interactions does not
require any conceptual modification to the classification scheme, and increases the diversity
of phenotypes achievable from a fixed number of subunits. Self-interactions, by definition,
bind to themselves. As such, these interactions are an additional type of intra-tile cycle of
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rank 2. Otherwise, the classification scheme itself is entirely unchanged and proceeds as
usual.

Note that the presence of more than one self-interaction necessarily implies branching
points connected to branching points, overlapping cycles and branching points, or infinite
cycle growth. While it is possible that such assembly graphs build a valid phenotype,
self-interactions generally should appear sparingly. This is not always the case in real
proteins, where multiple self-interactions frequently occur due to more detailed interaction
modes and geometric constraints in higher dimensions, such as chiral binding etc.

2.3.2 Seed dependence

Examining assembly behaviour as a whole rather than depending on seed choice is a
strength of the assembly graph scheme. There are contexts where assembly may always
start from a particular seed tile (or a set of such tiles). It is possible for an assembly
to be deterministic from certain seeds but not from others. If, for example, one genetic
sequence was always transcribed and translated into a protein subunit before other involved
subunits, it may be deterministic despite the overall assembly graph being nondeterministic
or unbound. In the same example, it is also potentially meaningful to understand that the
assembly is vulnerable to the translation order, perhaps giving insight into certain forms
of protein misassembly.

Nondeterminism primarily creeps into assemblies through branching points which
cannot be removed during the SIF pruning procedure, which represent faces that can
bind to more than one other face. However, the assembly process only has this choice
if the seed and initial structure are “upstream” of the branching point. If the assembly
starts “downstream”, the assembly only encounters the branching point after the choice of
binding tile was determined by an earlier assembly step. An example of this behaviour is
shown in Figure 2.7.

a) b)

← upstream

downstream →

∗

† †

seed: ∗ seed: †

Figure 2.7: a) Pruning the SIF branching point in this assembly graph would leave the assembly
graph disconnected and so is nondeterministic. However, this disconnected nondeterminism
does not occur from all seeds, and specifically only the black subunit. b) Assembling with the
∗ or † marked subunits as seeds leads to deterministic assembly, forming a ‘Catherine wheel’
or ‘I’-shaped trimer respectively. Both of these cases are seeded downstream of the branching
point, and so never encounter nondeterministic branching possibilities during assembly. Colour
notation is the same as Figure 1.4.
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This quasi-deterministic behaviour can be generally detected through an additional
step to the SIF pruning procedure. Disconnecting SIF branching points are a sign of
general nondeterminism, but can be exploited to add seed dependence. After pruning the
assembly graph, any disconnected components not containing the chosen seed(s) should
be discarded. The classification on the remaining partial assembly graph will correspond
to the classification of the overall assembly given those fixed seeds.

More complex cases may require a directed trail on the assembly graph starting from
the seed of choice. If no branching points were encountered by the end of the trail, then
that seed is deterministic. Checking for these walks then replaces the “surviving branching
points” assessment step in Figure 2.1.

2.3.3 Variable interaction environments

Another aspect disregarded by the standard classification scheme is phenotype plasticity,
an important contributor to evolutionary adaptations. Plasticity is effectively a phenotype-
environment coupling, where changes in the environmental context are reflected by mapping
to different phenotypes. This can trivially be encapsulated by partitioning or creating
separate interaction rules, e.g. a high pH context where 1 and 2 interact and a low pH
context where 1 and 3 interact. Assessing interactions which are not always active in all
contexts will lead to overly-strict nondeterministic or unbound classification, so considering
environmentally relevant subsets is useful.

Alternatively, interaction rules can be applied sequentially, e.g. cooling an assembly
stabilised at some high temperature before mixing with subunits which can only bind at
lower temperatures. If the assembly graphs formed under each set of interaction rules are
bound and deterministic, and the steric assembly test follows the sequence of interaction
rules without issue, then the overall assembly process is also bound and deterministic.
Assembly graphs can support more interactions before risking unbound or nondeterministic
growth under these regimes.

While these situations may rarely occur in standard protein formation, this concept
of sequential interaction rules could prove useful in contexts such as nanofabrication.
Structures can be assembled over time that would otherwise be nondeterministic or
unbound if all interactions or subunits were active simultaneously. Furthermore, structures
could be designed to assemble the inner core first before appending outer layers. This
process of ordered assembly is returned to in Chapter 3.

2.4 Advantages of assembly graphs

Stochastic assembly approaches, as used in all previous polyomino studies, are generally
acceptable for specific applications. Classification accuracies and speeds are reasonably
high provided the number of repeated builds K is appropriately chosen for a context.
Exact implementation of the self-assembly algorithm rarely impacts classification accuracy
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as well. However, all of these (potentially minor) detractions are entirely allayed by the
assembly graph classification scheme.

2.4.1 Classification accuracy

One of the major problems of classifying properties based on repeated stochastic assembly
is probabilistically missing an assembly which would change the classification. Such an
event is reminiscent of a “black swan” [33] in other fields, where an extremely rare situation
can have extreme consequences. Consider a biomedical engineering context, where a
hypothetical structure should be strongly bound and deterministic. Even though the
probability of misclassifying a self-assembling system may be minimal, the consequences
of unbound aggregation in the heart or brain could be severe.

It is relatively straightforward to construct obvious examples where nondeterministic
or unbound growth might be missed. There are more convoluted cases where the mis-
classification rate is higher, but the principle is the same. The easiest case is a three
subunit system effectively forming a “long” chain with the infinite cycle subunit (1, 0, 2, 0)
that is stochastically terminated by the “caps” (1, 0, 0, 0) and (2, 0, 0, 0). Any finite or
semi-infinite chain can be assembled from any seed, except for chains of length two, which
only form if a cap is used as the seed, as seen in Figure 2.8.

a) b)
∗ † ∗ seed: ∗ seed: †

...
...

· · · · · · · · ·
Figure 2.8: a) The assembly graph for the three subunit system mentioned in the main text,
where the two black subunits have identical assembly behaviour. b) Only two structures cannot
be assembled from any seed, shown in red boxes: the dimer (only seeds ∗), and the infinite chain
(only seed †). Colour notation follows Figure 1.4.

Regardless of initial seed, the probability of forming an N -tile chain with this assembly
graph is P (N) = (1/2)N−1 for N ∈ [3,∞). Generally, probabilities differ per seed, but in
this carefully chosen example the probability is independent of seed over the above range
of N . Hence the probability of getting the same N -tile chain after K repeated builds, that
is to say misclassifying this nondeterministic and potentially unbound structure as bound
and deterministic, is then:

e (K) =
∞∑
N=3

[
(1/2)N−1

]K
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Misclassification of this assembly is negligible, e (10) = 10−6, and becomes exponentially
rare with growing K. However, the chance of failure is inherent in the stochastic approach,
and can only be offset by tediously comparing more and more assemblies. More complicated
assembly graphs, or weaker determinism criteria, can hugely inflate the error rate. This
can only be compensated by increasing K, which is a direct tradeoff with analysis speed.

Seed dependency and lower bound of K

Nondeterminism and unboundedness typically arise from the combined behaviour of a
subset of subunits. Rarely do these behaviours equally involve every subunit within a
genotype. As such, seeding assembly with certain subunits can lead to significantly different
outcomes, as seen earlier in Section 2.3.2. For general genotypes, a structure must be built
at least as many times are there are subunits, K ≥ NS, in order to exhaustively test for
undesirable assembly outcomes. While most genotype lengths of interest are relatively
short, with NS = 4 one of the largest studied so far, such a constraint inherently limits
the exploration of larger genotypes.

In addition, as highlighted in the extensions section, overall nondeterministic or
unbound assembly graphs can display bound and deterministic behaviour from certain seeds.
The reverse implication here is that stochastic assembly can classify overall deleterious
assemblies as valid from certain seeds. More pressingly, the meaningful number of repeated
builds can be significantly less than K. Seeding from any bound and deterministic seed
contributes zero additional classification power, wasting those assemblies. As the effective
K drops for larger assembly graphs, the error rate again can inflate rapidly.

For these genotypes, a reasonable condition on the number of builds is K/Ns � 1, to
ensure that each seed is amply tested for misassembly. Such a condition again directly
introduces a conflict between accuracy and speed, which is not present in the single run of
the assembly graph framework. Without any a priori knowledge of which subunits may
contribute the most classification power, the inelegant solution is just assemble a lot.

2.4.2 Unbound growth identification

Unbound growth can be a highly destructive phenomenon, for example when misfolded
proteins aggregate in an uncontrolled way. Empirically derived bounds have been used in
previous studies [20, 21], where a structure is assigned an assumed unbound classification
if growth extends sufficiently in any one direction. Since most studies were limited to
short genotypes, the upper bounds only had to be found for several genotype lengths.

With the assembly graph formalism, it is trivial to establish an upper bound on bound
polyomino size. In the case of a single subunit, a rank 4 cycle produces the largest
polyomino, with size 4. For larger genotypes, the additional subunits can form (sterically
self-limiting) rank 4 cycles on the growing perimeter, giving a total size of 4N2

S. These
assemblies are typically only seed-deterministic, so have appeared in these previous studies
but are flagged as nondeterministic by the assembly graph scheme.
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A better approximation for bound and deterministic structures uses rank 4 cycles
consisting of multiple tiles. Using all the available subunits in a single cycle leaves a large
hollow centre, so using some subunits as SIFs is beneficial. Using Lc of the NS subunits in
a rank 4 cycle gives a deterministic polyomino of size:

S = 4
(
NS (Lc + 1)− L2

c

)
The optimal split is found through the derivative:

dS

dLc
= 4NS − 8Lc = 0→ L∗c = NS

2
which gives a polyomino of size:

S∗ = N2
S + 4NS − σ where σ =

0 if NS even

1 if NS odd

where σ corrects for L∗ requiring an integer form. Even larger deterministic shapes are
possible, but come highly convoluted assembly graphs of nested branching points which
have no general pattern. However, these two expressions form relatively tight bounds on
the largest deterministic polyomino possible given NS subunits, as shown in Figure 2.9.

upper bound

nested cycle

ED

Figure 2.9: The maximum polyomino size S∗ grows rapidly with increasing subunits. Genotype
spaces quickly grow too large to search exhaustively, and so evolutionary dynamics (ED) were
used to empirically determine maximum size. The analytic form of the upper and lower bounds
are good approximations, and are derived from first principles.

Importantly, as nondeterminism and unbound growth can commonly co-occur, the
assembly graph classification scheme can be used to identify unbound growth through the
cycle analysis. In the stochastic assembly approach, few unbound and nondeterministic
assemblies will hit the threshold for unbound growth through probabilistic self-limiting
growth. As such, they are likely classified as nondeterministic but bound. If unbound
growth and nondeterminism are merged into a single deleterious phenotype, this misclassi-
fication is not problematic. Regardless, genotypes can now be correctly categorised with
finer granularity under the assembly graph scheme, allowing more detailed analyses.
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2.4.3 Classification speed

Self-assembly within the polyomino model is not computationally intensive. A single
assembly may occupy on the order of tens of lattice sites, tracking a similar quantity
of possible bindings. Storing the results for K repeated assemblies likewise requires
inconsequential amounts of computational memory. Stochastic classification of a single
genotype happens near-instantly. However, the genotype spaces are also vast, ranging from
106 to 1012 in previous polyomino studies [21, 23]; accelerating the classification speed can
be critical to exploring larger spaces.

Stochastic assembly and assembly graph classification are two fundamentally different
approaches. The former relies on detecting differences in repeated lattice assembly, while
the later focuses on graph features that are known to generate irregular behaviour. To
compare their relative speeds, the same set of sample genotypes were classified for various
genotype lengths NS. Genotypes which did not form a single connected component were
rejected. Available interaction types scaled with genotype length as 4NS + 2, ensuring
all possible bound and deterministic assembly graphs could form without overly inflating
the genotype space. Classification speeds for both approaches are shown in Figure 2.10,
with both having been efficiently re-implemented in modern C++ to minimise confounding
factors.
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Assembly graph 
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Figure 2.10: Algorithm efficiency depends on the context, e.g. genotype-phenotype maps
have far fewer bound and deterministic assemblies to classify than evolutionary dynamics, but
the assembly graph approach outperforms stochastic classification (with K = 10) over random
genotypes by an average factor of ∼ 3.5. As genotypes lengthen, structures typically enlargen,
asymmetrically affecting stochastic classification while assembly graphs scale better.

Although assembly graph classification handles longer genotypes better than stochastic
classification, the effect can be misleadingly understated. More and more of the genotype
space maps to unbound or nondeterministic phenotypes as genotype length increases. Since
stochastic classification can “short-circuit”, i.e. classify immediately when nondeterminism
or unboundedness is encountered, these longer genotypes rarely last until the last build.
So even with some fraction of assemblies requiring less than 10 repeated builds, assembly
graphs still outperform stochastic classification.
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Evolutionary dynamics, which primarily focus exclusively on bound and deterministic
phenotypes, showcase this issue clearly. Here, most genotypes will require the full K
assembly attempts, entailing maximum compute time. Compared with the general factor
of ∼ 3.5, assembly graphs gain a speedup factor of approximately 10-15 over stochastic
classification in the specific context of evolution simulations. Similarly, speedup gain
continues to grow as genotypes lengthen.

More problematically for stochastic classification in evolutionary dynamics, the number
of builds K is fixed during simulations. These simulations emphasise growing from a
single tile to arbitrarily large structures. However, as discussed earlier, accuracy loosely
requires K/NS � 1 and so K should be chosen with the final genotype in mind. This
means that earlier assemblies will be unnecessarily thorough at the expense of speed.
Since the assembly graph classification scheme does not have any fixed parameters, it
scales automatically alongside the evolving genotypes. These benefits become even more
apparent as the polyomino model finds applications in modelling larger and more complex
evolutions.

Algorithmic scaling

Assigning asymptotic computational complexity, with big O notation O, to the two
approaches is somewhat futile due the inherent heterogeneity of the genotype-phenotype
mapping process. Analysing each interaction contribution in isolation is meaningless, as
interactions are almost always interwoven, generating crosslinking effects. For example,
doubling the number of edges in an assembly graph can double the number of SIFs to trim,
make a single SIF branching point, turn all SIFs into cycles, etc. Despite the variance,
high level approximations of algorithmic scaling can still be quite revealing.

In stochastic assembly, the majority of time is spent growing the assembly, scaling
approximately as O (N2

S). Likewise, any operations comparing two polyominoes for
determinism will also be roughly O (N2

S). This scaling originates from each subunit
contributing to the polyomino’s extent in both dimensions, and hence the quadratic time
to build or compare polyominoes.

Many components of the assembly graph scheme are modified existing graph theory
algorithms, and thus have relatively well-known scaling. SIF pruning checks each subunit
for removal, before recursing and rechecking for ∼ ∑NS checks, hence scaling as O (N2

S).
On the other hand, cycle detection is based on finding minimum spanning trees∗, which
generally scales with the number of edges E as O (E logE). Other stages of classification
might depend on both the number of subunits and edges.

Assembly graph classification time scaled approximately as O (N1.4
S ) when averaged over

randomly generated genotypes. This reduction is significant, particularly for genotypes
encoding many subunits. Certain genotypes can be classified more swiftly through
stochastic assembly over assembly graphs, e.g. strong nondeterminism that is caught

∗Prim’s or Kruskal’s algorithms are the most common for determining minimum spanning trees (MST).
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quickly in assembly versus the final classification scheme step. Overall, however, assembly
graphs and associated analysis offer a superior approach for quickly classifying general
genotypes.

As mentioned earlier, relationships between NS, E, and polyomino size are dependent
on geometric specifics and interplay, so a simple estimate based on NS alone is more
meaningful. Importantly, through considering the partial scaling of algorithmic steps, the
worst-case scaling of assembly graphs appears to be comparable to stochastic assembly
with O (N2

S). This supports the observed speed results, where certain genotypes benefit
less from this analysis but never worse.

2.4.4 Implementation invariance

Self-assembly, as sketched out earlier, can be implemented with multiple possible algorithms.
This work is based on an algorithm which considers all possible interactions concurrently,
and selects from them with equal probability. This implementation matches that used
in a previous study from 2014 [21]. However, earlier polyomino studies [19, 20] focused
on picking random subunits and random locations and seeing if the aligned binding sites
interacted. A 2016 study [23] described the algorithm as growth by random subunits,
implying the same specification as the earlier papers, but references the 2014 algorithm.

Implementation choice leads to subtle differences that mostly manifest in different
classification speed. In the “truth” limit, whereK →∞, any choice of valid implementation
will necessarily give identical classifications for any assembly. With a smaller K value,
however, different implementations can have nuances leading to different error rates for
unbound or nondeterministic assemblies.

A simple example is the genotype {(1, 2, 0, 0) , (1, 0, 0, 0)}. With relaxed restrictions
on mismatched binding sites, the error rate for misclassification ranges from (7/8)K/2 to
(19/27)K/2 for the former and latter implementations respectively, matching cases b) and
c) in Figure 2.11. Clearly the error rates go to zero for both implementations as K →∞,
but the former implementation misclassifies nearly 10 times as many genotypes for K = 10.
Other examples show the inverse, where the latter implementation is less accurate, so no
single implementation is globally better.

As recurringly noted, there may be specific contexts where one implementation algo-
rithm is more physically realistic and thus the appropriate choice. In general though, the
choice of implementation is unintentional and potentially biases error rates unhelpfully.
Removing this axiomatic dependence on implementation and the external parameter
dependence on K is highly satisfactory and increases accuracy and speed across the board.

2.5 Additional benefits of assembly graph formalism

Shifting from thinking about genotypes to assembly graphs as the information carrier has
several benefits. For example, assembly graphs provide information about interactions,
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Figure 2.11: Detection of nondeterminism or unboundedness can depend on the underlying
assembly implementation in a non-general way. This example assembly graph in a) can use the
black subunit as a fixed seed to best demonstrate this effect. The three possible interactions do
not depend on implementation, but their likelihood of being chosen during assembly does. In b),
all interactions are equally likely, while in c) and d) either each new subunit or existing face is
equally likely to be chosen. For the latter two, this biases the interaction usage, as observed by
the different probabilities. Colour notation follows Figure 1.4.

regardless of the exact form the binding sites or interaction rules may take, allowing
extremely general representations. In addition, assorted results previously derived empiri-
cally can be explained with mathematical insight. There are several concepts that the
assembly graph formalism introduce or strikingly expand beyond genotypes, which have
far-reaching impact on the tractability of polyomino models.

2.5.1 Assembly graph isomorphisms

Genotype-phenotype maps revolve around neutral components, a collection of genotypes
connected by point mutations which correspond to the same phenotype. Previously, these
components had to be discovered by stochastic assembly and grouping resultant phenotypes.
Two distinct genotypes may encode the same interactions, and thus necessarily produce
the same phenotype, but this was typically only known a posteriori. Identification of
neutral components can then be done at a lower level with assembly graphs.

Since assembly graphs can be represented as graphs, two assembly graphs are the same
if their corresponding graphs are isomorphic. Isomorphisms are most commonly defined
for simple graphs, but have been generalised to cover other graph variants. Additional
attributes such as directed and weighted edges present in the edge-labelled pseudographs
have bijective mappings [34], and so isomorphisms can be applied to all aspects of assembly
graphs. Most standard graph theory software packages already contain these generalisations
and can be used out of the box. Some example isomorphic assembly graphs are shown in
Figure 2.12. Detecting which genotypes are equivalent through sequence or subunits is
virtually impossible; detecting neutral genotypes through graph isomorphisms is trivial.

Graph isomorphisms remain a current area of development, potentially belonging to
the NP-intermediate complexity class. Recent advances state quasi-polynomial time can
be achieved [35], and in general can be computed quickly. As such, it can be quicker
to construct neutral components through isomorphisms, rather than grouping genotypes
post-assembly. This approach is explored in more depth below.
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{(1, 3, 5, 0) , (2, 5, 0, 4) , (0, 0, 0, 6)} {(0, 2, 6, 4) , (3, 0, 0, 0) , (0, 5, 1, 4)}

{(6, 3, 1, 0) , (5, 0, 0, 0) , (6, 2, 0, 4)}{(0, 1, 0, 0) , (2, 4, 0, 5) , (0, 6, 2, 3)}

isomorphic

distinct

Figure 2.12: Genotypes can have extremely disparate sequences and look like distinct assembly
graphs but ultimately be isomorphic and necessarily correspond to the same phenotype. Here,
assembly graphs appear similar within vertical columns, but are actually isomorphic within the
horizontal rows.

Chirality

The mathematical structure of graph isomorphisms also provides an unintended benefit.
Most polyominoes contain some form of rotational symmetry, but fewer have reflection
symmetry. This leads to many polyominoes having distinct chiral counterparts, e.g. the
“left-handed” and “right-handed” Z-shaped tetramers. If free polyominoes are more relevant
than one-sided polyominoes to the system under study, then identifying neutral genotypes
becomes more challenging as assembly graphs are encoded with a clockwise convention,
making them innately directional.

Reversal of the directed edges of the internal subunit structure corresponds to a
reflection of the assembled structures. Again such an operation is well-known in graph
theory as the transpose or reverse of a directed graph (interactions in assembly graphs are
bi-directional and unaffected), as highlighted in Figure 2.13. This in turn is equivalent to
reversing the order of the genotype, and so is not exclusive to assembly graphs. However,
the language of assembly graphs naturally illuminate this insight, whereas reversing the
genotype to account for reflection symmetry is not as immediately obvious.

a) b)

reflect reverse

Figure 2.13: Chiral counterpart phenotypes correspond to reflections of their assembly graphs
(a). Reflecting assembly graphs is equivalent to reversing the internal edges in their graph
representation (b), now using a counter-clockwise convention.
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2.5.2 Genotype to assembly graph mapping

Similar to most genotype-phenotype maps, which contain many more genotypes than
phenotypes, there are many more genotypes than assembly graphs. Understanding how
many genotypes produce the same phenotype, i.e. are in the same neutral set, can be
highly valuable for the study of evolutionary dynamics and related processes. Quantifying
how many genotypes map to a given assembly graph is thus an important intermediate,
and can be calculated through various assembly graph symmetries and combinatorics.

There are several specific symmetries present in constructing assembly graphs from
integer-labelled genotypes. For example, swapping all 1 and 2 interface types clearly will
not alter assembly behaviour or change the assembly graph but is a distinct genotype.
Similarly swapping all 1s with 3s and 2s with 4s will not change the interactions but
yields a new genotype. The total number of these interaction relabellings possible for
NI-pairs interacting pairs given CI interacting types is a form of enumerative combinatorics,
and is given by:

IR =
NI-pairs∏
n=0

(CI − 2n) = CI !!
(CI − 2NI-pairs) !!

In addition to interaction relabelling, the non-interacting faces can be relabelled and
arranged differently, which are also combinatorial problems. This contribution to the
neutral space for an assembly graph with F noninteracting faces, CN neutral interface
types, and P = CI − 2NI-pairs unused interaction types (total interface types is thus
C = CN + CI) is then:

F∑
U=0

(
F

U

)
CF−U
N︸ ︷︷ ︸

neutral

·
U∑

U ′=0

[ [ U ′∑
D1

· · ·
DL−1∑
DL

L∏
i=1

Di

]
︸ ︷︷ ︸
repeated non-interacting

·

unique non-interacting︷ ︸︸ ︷
U ′∏

U ′′=0
(P − 2U ′′)

]

where L = U ′ − U and the ellipsis in the repeated non-interacting term indicates there
are a total of L − 1 sums to consider. Combining the two expressions gives the total
number of isomorphisms for a specific assembly graphs in a single orientation. Additional
contributions to the neutral space of a genotype arise from general underlying assembly
graph symmetries, including subunit rotations, a factor of 4Ns , and subunit reorderings, a
factor of Ns!.

However, these contributions are not all independent. For example, relabelling the
interacting pair in {(1, 0, 0, 0) , (2, 0, 0, 0)} and then swapping the order of the first and
second subunit leaves an identical genotype to the starting reference. Simply multiplying
all the listed factors above would then over-estimate the number of genotypes mapping to
that assembly graph.

No general form could be found which resolves these genotype symmetry related
conflicts. Rotations and reorderings only depend on Ns, offering a mitigation to this issue.
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A corrective factor which encapsulates the conflicting over-estimation can be empirically
derived by comparing the analytic form and the observed cardinality of the neutral set. This
corrective factor is constant, and so can be calculated from the minimal relevant genotype
space, and then applied to any number of interface types. An example genotype-phenotype
mapping for two subunits is shown in Figure 2.14.

10 100

10-9

10-5

10-1

interface types

UND

Figure 2.14: Fractional phenotype abundance, ρP , for all twelve phenotypes possible in a
two-subunit genotype. Abundance changes significantly with the number of allowed interface
types, to the extent that the rankings can change. For few interface types, fractional abundance
is dominated by configurational combinatorics. In the larger limit, it is mainly fixed by the
number of interacting pairs and non-interacting faces, causing the observed collapses.

Note the calculations introduced above find the size of the neutral set, which is all neutral
genotypes. They do not provide information on neutral components, which are connected
components of the neutral set in the network of point mutations. These two quantities
can be the same for high-dimensional genotypes spaces, where two strongly different
genotypes can be connected by a long sequence of neutral point mutations. However,
neutral sets generally break into multiple smaller neutral components, as observed for
multiple polyomino genotype-phenotype maps [21, 36].

2.5.3 Efficient genotype space sampling

While many genotypes map to the same assembly graph, many assembly graphs uniquely
map to phenotypes. Therefore enumerating assembly graphs allows near perfectly efficient
sampling of a phenotype space. Unfortunately, due to the multiple types of symmetry
present in genotypes, the exact enumeration of assembly graphs remains challenging. There
are, however, multiple intermediate approaches which compress genotype space size while
preserving the assembly graph and phenotype spaces. This compression allows analysis of
significantly larger genotype-phenotype maps than were conventionally possible.

The simplest step is producing subunits which remove meaningless cyclic symmetry;
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these sequences are known as necklaces∗ and have previously appeared in polyomino
models [19]. Necklaces still do not account for interaction relabelling or subunit ordering.

The first element of a genotype can either be neutral or possibly interacting, and so
should only take a value of 0 or 1 respectively. Taking any other value will necessarily
be degenerate, as they will be isomorphic to an assembly graph starting with the above
options. Only once an interface type of 1 exists in the genotype should future elements
take values of 2 (interacting partner) or 3 (new possible interaction). This “unlocking”
of interaction types continues in this fashion, substantially cutting down on generated
genotypes.

Necklaces and interaction unlocking can be combined into a single generator. Recursive
necklace algorithms, such as the FKM CAT (constant amortized time) algorithm [37], can
be modified in this way, only expanding the genotype space as necessary. The only input
required is the maximum value of interface type allowed. This algorithm is highly efficient
in both time and memory, and can quickly generate the entire set of minimal subunits for
a genotype space.

These minimal subunits can be combined to form minimal genotypes. Additional
rejection criteria can be used given a fixed genotype size, such as ignoring any genotype
which contains any non-zero interface types which are not involved in interactions. At
this stage, the genotype space is generally compressed by several orders of magnitude
into the minimal genotypes. Isomorphism tests can winnow out any surviving degenerate
genotypes to produce unique assembly graph topologies. The scale of this compression is
shown in Table 2.1.

Table 2.1: Integer-label polyomino systems can be represented as SNS ,C , for the number of
subunits and interface types. The genotype spaces are strongly degenerate, and symmetries
can be stripped to form necklaces, minimal genotypes, and assembly graph topologies. The
compression factor (CF) measures the reduction factor between the genotype space and topology
space, and scales strongly as larger systems are generally more redundant. The S4,16 case was
previously studied [21], but resorted to sampling the genotype space.

Space size
System Genotypes Necklaces Minimals Topologies Phenotypes CF

S2,8 ∼ 2× 107 ∼ 1× 106 62 41 12 ∼ 105

S3,10 1012 ∼ 2× 1010 21054 9838 148 ∼ 108

S4,16 ∼ 2× 1019 ∼ 7× 1016 ∼ 2× 107 ∼ 3× 106 3887 ∼ 1013

With the substantial compression achieved, the S4,16 phenotype space can be exhaus-
tively constructed. Although there are minor model variations in terms of fixed versus
random seed, it is highly likely the original study [21] on this system underestimated the
quantity of phenotypes. Extremely scarce phenotypes are unlikely to be found by randomly
sampling genotype space. Assuming similar model comparison ratios for the S3,10 system,
the sampling method potentially missed 30% to 50% of phenotypes in S4,16. Even sampling

∗Such sequences are called bracelets if reflection symmetry is also removed.



32 CHAPTER 2. DETERMINISM AND BOUNDNESS OF ASSEMBLY GRAPHS

topology space gives a substantial improvement, as topologies and phenotypes are much
closer to a one-to-one correspondence.

This methodology has been adapted in ongoing work by Jouffrey, Leonard, and Ahnert
for extending genotype-phenotype maps to previously incalculable spaces. Map properties
can be estimated by randomly reintroducing neutral mutations to each reference genotype
in the unique assembly graph topology space. Sampling over a large enough quantity of
these mutated reference genotypes provides a diverse but balanced estimate of the entire
space.

2.6 Conclusion

(Un)boundedness and (non)determinism are fundamental properties of self-assembling
systems. The assembly graph classification scheme has been refined since first intro-
duced [25], rectifying several key flaws in the cycle analysis and SIF treelike arguments.
This framework also enables a more conceptual understanding of proteopathy, where
minor mutations to the assembly graph of a deterministic complex can quickly induce
uncontrolled growth.

The classification of assembly behaviour through assembly graphs is also faster and more
accurate compared to conventional methods of stochastic “consensus”. Issues regarding
the optimal trade-off of accuracy and speed are resolved, particularly in evolutionary
simulations. Axiomatic dependence on the assembly implementation algorithm is similarly
removed.

The strictness of the classification scheme can be reduced through extensions such
as seed dependence and variable interaction environments. Assembly graphs, with their
mathematical fabric, also naturally allow isomorphic genotypes to be detected and genotype
space to be compressed. Previous analyses thought only possible through sampling can now
be tackled exhaustively, e.g. a four-subunit genotype-phenotype map. In general, assembly
graphs provide an organic language for discussing self-assembly and understanding the
nontrivial relationships between interactions and assembled structures.

2.6.1 Universal computing

In computability theory, the halting problem states that it is not possible in general to
determine if an algorithm∗ will terminate or run forever. Amongst other contemporaries,
Turing first showed such a result in 1936 [38], and has since been scrutinised and generalised
without fault.

The polyomino model used in this work is a highly specialised form of a much more
general class of tile assembly models (TAMs), as introduced in Chapter 1. These TAMs
can take on diverse forms, and are of considerable interest to the fields of mathematical
logic and theoretical computer science. Crucially, some TAMs have been shown to be

∗More formally a Turing machine.
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Turing complete (also known as computationally universal), meaning they can emulate
any algorithm with the assembly of subunits. As such, determining the boundedness of
any such assembling structure a priori would be equivalent to overthrowing the halting
problem.

Fortunately, no such claim is made here. Interactions are explicitly defined in this
work as non-cooperative, meaning they do not depend on other interactions occurring
simultaneously. This class of TAMs has been shown to be not Turing complete [39],
and requires substantial modifications not compatible with the presented assembly graph
analysis to be capable of universal computing [40]. While this means that our analysis
cannot be fully generalised to more potent classes of TAMs, it is reassuring that there is
no conflict with the Halting problem.
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CHAPTER

THREE

BINDING STRENGTH DYNAMICS

Key messages

• Binary string binding sites substantially generalise the polyomino model.

• Nondeterministic assembly selection pressure drives interaction strength evolu-
tion away from equilibrium.

• Optimal interaction strength ratios can retrospectively infer likely evolution
pathways.

This chapter is based on the publication Evolution of interface binding strengths in
simplified model of protein quaternary structure by Leonard and Ahnert [41]. All results
are independent and novel work by Leonard under the supervision of Ahnert.

3.1 Introduction

Although the standard polyomino model has proven useful in diverse contexts, the integer
interface types are rather artificial. The number of interface types can strongly affect
phenotype abundances and evolutionary dynamics, as seen previously in Figure 2.14.
Picking a configuration space with 10 interface types compared to 20 has little meaningful
translation to biological systems, and so the impact on observations is impossible to
contextualise. Likewise, having interface types only interact in pairs is limiting and not
something observed in natural self-assembly.

Generalising binding site labels with binary strings is a better coarse-grained approxi-
mation for protein-protein interfaces, and can mitigate the aforementioned issues as well
as enabling the study of a wider range of self-assembly dynamics. Protein binding models
using binary [42] or otherwise simplified residues [43] demonstrate general properties that
agree well with experimental evidence. Such a simple binding site description will never
capture the nuance of amino acids (e.g. aromatic, aliphatic, acyclic, etc.), but can capture

35
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suitable detail while retaining analytic potential.
Although difficult to measure directly, binding affinity, i.e. interaction strength, is

central to understanding assembly dynamics [44]. Binding affinity has been observed to
substantially change through mutations to polar or charged groups [45]. This suggests that
a coarse-grained model with limited states (0/1 states approximating e.g. polar/nonpolar)
may be sufficient to capture broad properties of the evolution of interaction strength.

In addition to measuring changes in interaction strengths, the generalised model can
also explore the relationship between binding strengths and evolutionary pathways. Several
recent studies have revealed connections between evolutionary pathways and assembly
properties such as stoichiometry [46], symmetry [47], interaction topology [10], and binding
strengths [48]. Recreating these observations in a simple model may assist in generating a
high-level perspective on how assembly dynamics are reflected in evolutionary histories.

3.2 Generalised lattice self-assembly model

To generalise the binding site labels, single integers are replaced with binary strings:
sequences of 0’s and 1’s. Binary strings of length L have 2L unique configurations, hence
longer binding sites correspond to more possible genotypes. A genotype encoding NS

subunits is then a long binary sequence of length 4NSL.
Two adjoining binding sites will have a “head-to-tail” alignment, and the strength of

their interaction is related to how many bits complement their opposite entry. Formally,
this is the Hamming distance between one binding site and the reverse of another. The
interaction strength can then be written as:

Ŝ =
(
I1 ⊕ I>2

)
/L

where the > indicates reversing a binary string. Interaction strength is normalised by the
binding site length L such that Ŝ ∈ [0, 1]. Weak interactions do not successfully bind,
as can be defined with a critical interaction strength, such that interactions only form if
Ŝ ≥ Ŝc. An example of the generalised binding site model is shown in Figure 3.1.

Another feature inherently introduced alongside interaction strength is binding prece-
dence. Assemblies can preferentially select stronger interactions to bind over weaker ones,
adding some thermodynamic pragmatism. Explicitly, interaction strength can map to a
binding probability, for example through the relatively simple form:

pb
(
Ŝ
)

=

Ŝ
T if Ŝ ≥ Ŝc

0 otherwise

Where T ∈ [0,∞) is an abstract temperature parameter. This parameter enables
a tunable bias during assembly towards stronger interactions. The expected number
of binding attempts an interaction will take is the reciprocal of the probability, and is
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a) b)

c)

seed assembling
polyomino

Figure 3.1: a) Complementary bits contribute positively to binding strength, indicated by
dotted lines, on two counter-aligned binding sites. b) A detailed example assembly graph contains
two interactions of different strengths: Ŝ = 0.875 (black) and Ŝ = 0.75 (grey). Interaction
width reflects strength. c) Assembly proceeds as standard but now with weighted probabilities,
stochastically growing from a random initialisation to a complete structure. Colourings are as
described in Figure 1.4.

effectively the expected binding time for that interaction. For choices of T > 0, stronger
interactions assembly more quickly than weaker ones on average. More physical forms
of binding probability were also examined with similar qualitative results, like using
exponential Boltzmann factors. However, with the computationally-limited length of
binding sites, the above form provided the most clear dynamics over a wider range of
strengths.

Notably, interactions within the generalised model form a proper superset of integer-
labelled interactions. By taking Ŝc = 1 and picking L ∼ log2 C, there exists a nearly
bijective mapping of labels. For example, two interacting binding sites given L = 4 are
0001 and 1110, which map to allowing an interaction between integer interface types 1 and
14. Therefore any results derived in the integer-labelled model can trivially be recovered
in the generalised polyomino model.

Self-interactions also naturally exist within generalised binding sites, appearing without
special cases or further rules. In all existing implementations of the integer-labelled model,
one interface type interacts with only one other interface type. This could be relaxed in
principle, but would likely lead to ad hoc interaction choices.

Previously, self-interacting interfaces were forced into the model using negative inte-
gers [21], whereas now there is a singular form for all interactions. Self-interactions are
explicitly discounted in this analysis, but form the foundation of Chapter 4.
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3.2.1 Interaction properties

Despite the gain in qualitative realism, the self-assembly model with generalised binding
sites remains largely tractable. Many of the generalised properties are without analogue
in the integer-labelled model, and hence allow for modelling completely new dynamics.
Several of the analytic results can also provide deeper understanding and context to the
underlying dynamics governing biological systems.

Transitivity

One of the most immediate differences to the integer-labelled model is the relaxation on
interaction transitivity. Previously, possessing information on what a binding site interacted
with was sufficient to determine all possible interactions regarding either interface type.
With the notation of ‘↔’ representing interacting partners, integer interface types A,B,C
obey:

(A↔ B) ∧ (B ↔ C)→ (A = C)

Again with the generalised interactions forming a proper superset, the left-hand side of
the above statement is a necessary but not sufficient condition with binary string binding
sites. Knowing two given binary strings interact does not contain much information on
what else they may interact with. As binding site length increases, the mutual information
contained by an interaction asymptotically goes to zero. Opposite to above, binary string
binding sites D,E, F,G have the property that:

(D ↔ E) ∧ (E ↔ F ) ∧ (F ↔ G) 6→ (D = F ) ∨ (D ↔ G)

With less transitivity amongst interactions, more intricate assembly graphs are possible
in the generalised polyomino model. Importantly, now branching points can occur between
non-identical binding sites. In the integer-labelled model, branching points required
frequent repeating of interface types, whereas protein complexes rarely, if ever, repeat
exact binding sites. While the binary string representation is not entirely realistic, it
does minimise another artificiality of the integer polyomino model. An example of a
non-transitive interaction, even with short binding site length, is shown in Figure 3.2.

Interaction radius

As demonstrated above, any given binary string can likely interact with multiple others.
For two arbitrary strings, there is a fifty-fifty chance that any opposing bits will interact.
Enough bits must interact to reach or exceed the threshold in order to form an interaction,
which follows a binomial distribution. The number of interaction partners Ir is then the
sum over all strengths at or over the threshold, otherwise known as the survival function,
as:
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??
Figure 3.2: There are many configurations of binding sites which can produce the two
interaction assembly graph shown. Picking the two binding sites for the left subunit would have
fixed the other binding site labelled ? in the integer-labelled model due to transitivity. However,
here there are 5 possible binding sites allowed even with such a small configuration space of
L = 4, Ŝc = 0.75. The first, marked by ∗, is trivially the transitive option, while the remaining
four are different. The final two marked with † can self-interact, so technically add an interaction
to the assembly graph if they are enabled.

Ir =
L∑

m=dL·Ŝce

(
L

m

)

which is equivalent to considering how many ways there are to distribute mutations
while maintaining the interaction strength. Crucially, the number of interacting partners
grows rapidly as L increases, Ŝc decreases, or both. A similar result can be found for the
likelihood that a random genotype will not have formed any interactions. This proceeds
with the binomial cumulative distribution function for n = 4NS binding sites as:

p(E = 0) =

2−L
dL·Ŝce−1∑
m=0

(
L

m

)
n(n−1)/2

=
[
1− Ir

2L
]n(n−1)/2

Even initialising two subunits without any interactions is difficult for shorter binding
site lengths. Although increasing binding site length increases the number of possibly
interacting sequences, the proportion relative to all sequences decreases∗. This proportional
interaction “radius” shrinking with increasing length or threshold makes it more difficult
for interactions to form. In the extreme limit of long string length and high strength
threshold, the radius is effectively zero and any two random binding sites are unlikely to
interact. Length and threshold should be chosen appropriately for the dynamics under
examination, such that interactions do not appear constantly but also can be eventually
formed by evolution. An example of the nontrivial effect of these parameters on interaction
radius is seen in Figure 3.3.

Attempting to translate L and Ŝc to any biological meaning should be done cautiously,
but the balance between forming interactions too easily and too infrequently could be
of interest in modelling the co-evolution of binding site size. In densely “crowded” envi-
ronments, e.g. outside a cell nucleus, proteins likely require greater binding specificity to
avoid agglomerating, which might correspond to larger binding regions. Such behaviour

∗Technically only if Ŝc > 0.5, which is the case in all presented results.
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Figure 3.3: The probability of forming zero interactions, p (E = 0), quickly decays for short
binary strings or low strength thresholds. For long binary strings or high strength thresholds,
even genotypes with many random subunits will not form any interactions. Constant changes
in parameters do not result in constant changes to radii, seen by both Ŝc = 0.7 lines below
Ŝc = 0.75, but the same is not true for Ŝc = 0.75 and Ŝc = 0.8.

has been observed in the literature for multiple contexts [49–51]. Some ideas to more
generally model these dynamics are expanded on further in Chapter 5.

3.2.2 Weakly nondeterministic assemblies

Uncontrolled nondeterminism is certainly biologically unfavourable, amounting to random
formation of a protein complex. However, it is not atypical for proteins to occasionally
misassemble and then be “recycled” by proteasomes [52, 53]. This behaviour can be
thought of as weak nondeterminism, where the assembly is performed correctly most of
the time but some pathways lead to errors. As such, relaxing the polyomino model to
allow for weak nondeterminism is critical to understanding more complex protein assembly
behaviour.

Similarly, the steric growth constraint employed in the previous chapter is necessary to
ensure guaranteed assembly of the same structure. However, this is also relaxed to model
more general proteins, which can incorporate some aspects of self-limitation or spatial
hindrance to self-assembly [54].

Nondeterministic assembly is still less optimal, and so might still incur some form of
penalty relative to deterministic assembly. This can be introduced via a nondeterminism
penalty parameter γ ∈ [1,∞), which lowers the evolutionary success achieved by how
unreliable the assembly was.

3.2.3 Strength evolution as a Markov process

In order to understand the evolutionary dynamics acting on interaction strengths, it is
imperative to understand how strength changes in the absence of selection pressures.
Interaction strengths can be modelled as states in a Markov process, where mutations
step across these states. With only a few assumptions, an analytic form for the baseline
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evolution of strength is easily achievable.
The key assumptions are:

• Infinite population size.

• Single point mutations.

• Dropping below critical strength is fatal.

• Stronger interactions have no direct evolutionary advantage.

Standard parameterisation of the evolution simulations approximately satisfy all these
assumptions, and so the Markov process estimation provides a meaningful reference. The
last assumption is more subtle. Since selection pressure acts on a phenotype rather than
the underlying assembly, it is realistic that as long as a phenotype is achieved there is no
additional direct reward for its interaction strengths.

Formally, the full transition matrix requires a transition weight to the fatal state
immediately below the strength threshold, and weights to “refill” the fixed-size population
in other states. This would mean the matrix itself would be changing at every iteration
as those state populations changed. Under the approximation that all valid strength
states are equally fit, selection dynamics proportionally redistribute the fatal transitions.
Ultimately, the redistribution dynamics and transition below the threshold can be dropped
without loss of generality as they only affect a normalisation factor that is discarded.

As mutations only allow single steps to adjacent states above or below, the transition
matrix Q only contains non-zero elements in the super- and subdiagonals. Transition
probabilities to move up or down are directly related to the strength state and comple-
mentary weakness as Wi = i/L and W †

i = 1− i/L respectively. Since strengths have to
be at or above the threshold to matter, the lowest allowed state is given by c =

⌈
L · Ŝc

⌉
.

The resulting Markov process for the simplified strength mutation dynamics is shown in
Figure 3.4.

The number of states in a chain, i.e. the number of valid interaction strengths, is given
by N =

⌊
L ·

(
1− Ŝc

)⌋
+ 1, connected by N − 1 steps. The general transition matrix is

thus:

Q =



0 Wc+1

W †
c 0 . . .

. . . . . . WL

W †
L−1 0


︸ ︷︷ ︸

N

Although the strength state transition matrix is not strictly positive, it is non-negative
and the resulting directed graph is strongly connected: all states are reachable from all other
states via some path. This matrix therefore satisfies the Perron-Frobenius theorem, which
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Ŝc
. . . ŜL

Fatal

. . .
Wc+1 WL

W †
c W †

1

∝ pi
Figure 3.4: The simplified Markov chain only involves strength states at or above the threshold,
as states below and the repopulating selection dynamics (faded) can be ignored. An example
L = 4, Ŝc = 0.25 chain is shown here with possible binding sites, where the transition weights are
Wc+1 = 0.75,WL = 1,W †c = 0.5,W †1 = 0.25.

states there exists an all-positive eigenvector πPF which corresponds to the steady-state
distribution. The steady-state expectation of binding strengths is then:

〈Ŝ〉 = πPF · Ŝ

Where Ŝ =
[
Ŝi, · · · , Ŝk

]ᵀ
is a vector corresponding to the valid strengths. Transient

expectations are slightly more complicated, and depend on the rate of mutations µ′ (ad-
justing the mutation probability µ only occurring to this interaction). Initially, interaction
strength occupation density is entirely localised to the lowest state as p0 = [1, 0, · · · ]ᵀ.
After g generations, the expected strength is:

〈Ŝ〉g = (µ′Q + (1− µ′) I)g p0 · Ŝ

Importantly, while the eigenvalues change between the steady-state and transient ma-
trices, the eigenvectors are invariant under the transformation. Expressed more rigorously:

lim
g→∞

(µ′Q + (1− µ′) I)g p0 = πPF

Interestingly, the rate of this asymptotic approach is bounded by expressions containing
the second largest eigenvalue [55]. As stated above, the eigenvalues do change with the µ′

parameter, as is physically expected as higher mutation rates should reach equilibrium
sooner. The bounds are not especially important, but the qualitative connection between
the mutation rate and how quickly a population should equilibriate is a useful reference
for analysing the simulations.
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3.3 Simulated evolution of binding strengths

Evolution is simulated through a minimal mutation-selection process. Individuals are
haploid, meaning they carry only a single copy of their genotype, and reproduce asexually
and then die at the end of every generation. Generations are therefore discrete, similar to
the Wright-Fisher model of genetic drift. Evolution proceeds by mutating the genotype
and then selecting for phenotypes for a fixed number of generations.

Mutations occur with a fixed probability to flip each bit in the genotype during
reproduction, generally tuned so one mutation is expected per genotype per generation.
Selection takes the form of a roulette-wheel, where individuals with higher fitness have a
proportionally higher chance of reproducing. Fitness is an abstract measure of evolutionary
potential, and previous polyomino studies [20] typically relate fitness to phenotype size.
Assembly complexity can increase without necessarily producing a larger polyomino, and
so a slightly more general form of fitness is required. A more algorithmic overview is
provided in Appendix A.3.

Individuals are assigned fitness corresponding to their complexity as they evolve from
monomers to larger structures. In this case, complexity is defined as the number of
interactions, NI , present within that individual’s assembly graph. The fitness is weighted
by the nondeterministic penalty γ, based on the fraction φ of assemblies which matched
the target phenotype for the individual’s assembly graph. The target phenotype for an
assembly graph is defined as the polyomino expected to assembly the most frequently
(see later in Figure 3.6). Less regular assembly of the target phenotype rewards a smaller
portion of the polyomino fitness, with a greater reduction as γ increases. The fitness value
for individual i is then:

fi =
(
2NI

)
· φγi

Fundamentally, fitness rewards more edges in an assembly graph and penalises incon-
sistent assembly. The additional complications in the fitness equation are designed such
that fitness ratios are proportionally the same across transitions. They were chosen to
ensure economical simulations and emphasise the different aspects of binding strength
evolution. Further details on these parameters and others used in these simulations are
given in Table A.1.

Phylogenetic tracking is straightforward under this framework of asexual evolution,
since any newly formed interactions and phenotype transitions can be traced directly to
unique mutation events. All descendants of these individuals can then be tracked, recording
population-averaged interaction strengths from their evolutionary histories. Reconstructing
entire ancestral trees allows pinpoint examination of which dynamics are in play and what
contexts activate them, at any given time for all assembly graphs and phenotypes. An
example evolutionary history demonstrating population-averaged properties is shown in
Figure 3.5.
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Figure 3.5: With complete information on individuals’ assembly graphs and phenotypes, as
well as parentage, specific properties can be tracked over the course of this example evolution.
Here, red and blue circles represent different phenotypes, while hatched circles are deleterious. An
arbitrary property can be tracked across, for example, the red phenotype for the two independently
originating sub-populations, grouped by green or brown dashed lines.

3.3.1 Model subset of phenotypes

The following results are extremely general and have been observed in unrestricted
evolution of general phenotypes. However, viewing these dynamics through the evolution
of a particular fixed subset of six phenotypes provides an informative demonstration. This
phenotype subset contains a range of observed behaviours, with approximately comparable
evolution pathways. Each of the four more complex phenotypes can evolve from two
possible ancestors via point mutations, enabling multiple pathways to reach any terminal
state. The six assembly graphs and dominant phenotypes are shown in Figure 3.6.

homotetramer heterotramer 16-mer

12-meroctomerdimer

Figure 3.6: Evolution starts with a population of subunits without any interactions, i.e.
monomers, which can evolve through multiple trajectories through the six assembly graphs. They
are grouped vertically by number of interactions, which increases from one to two to three moving
left to right. Phenotypes marked with ∗ are nondeterministic, where the displayed polyomino is
the desired assembly.

Within the vertical groups of Figure 3.6, phenotype abundances are approximately equal.
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The only exception is that dimers are twice as common as homotetramers. Phenotype
abundances can be derived through combinatorial arguments regarding interactions or
through sampling random sequences. Ancestry can depend on abundances, where a more
common phenotype can evolve more often over a more fit phenotype, referred to as arrival
of the frequent [56]. As such, evolving through the dimer is a combinatorially favoured
step in any pathway to a higher complexity phenotype.

3.3.2 Interaction properties generate selection pressure

Any deviations from the appropriately justified strength expectations must therefore be
driven by unaccounted additional dynamics. In order to isolate different dynamics at play,
interactions are categorised by two distinct metrics: phenotype and interaction topology.
Selection acts on phenotypes, and so different phenotypes may exhibit different dynamics.
Interaction topology can be further subcharacterised by two properties: is the interaction
inter- or intra-subunit, and are either binding sites used in other interactions (branching
points) or are they exclusive.

Interaction strength evolutions for the six specified assembly graphs are shown in
Figure 3.7. All interactions in the three deterministic phenotypes (top left, bottom
left, bottom middle), approximately follow the transient expectations from the Markov
process, delineated by the dashed line. Conversely, interactions present in the three
nondeterministic phenotypes (top middle, top right, bottom right) mostly diverge from
expectations. However, one interaction in the 16-mer phenotype (top right) does follow
expectations, so the effect cannot be purely related to deterministic versus nondeterministic
phenotypes. This particular interaction is discussed further below.

Ancestry can be directly inferred in all cases by considering the post-transition interac-
tion strengths. New interactions typically only form at the minimum allowed strength,
while older interactions have had time to equilibrate to some higher value. However,
in all four cases of multi-interaction, higher complexity evolutions, interaction strength
steady-states contain no trace of ancestry. Instead, the steady-states are determined only
by the current phenotype’s selection pressure. The time taken to reach this state depends
on the mutation rate and other selection parameters, but ancestry is erased on a much
shorter timescale than evolving to a further phenotype.

Some real proteins do preserve historical strengths, but this is likely due to external
influences such as thermodynamic stability not considered here. Recent work suggests
hydrophobic amino acids form stronger interactions but enhance aggregation risk, and
require long periods of evolution to safely intersperse these potent residues [57]. As such,
older, core interactions can display higher strengths.

One notable unexpected dynamic was that deterministic and nondeterministic assem-
blies adapted at different rates, despite an equal mutation rate. The peak observed rate of
binding strength increase in the 12-mer is approximately triple the rate in deterministic
assemblies. In hindsight, such an observation is fairly intuitive, as mutations which alter
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Figure 3.7: Each panel corresponds to a different phenotype’s evolution, with marker shapes
indicating interaction topology. Line colours of the strengths match the border colour of the
immediate ancestor. The black dashed line represents the Markov chain expectations. Strengths
are averaged across 10,000 simulations to stabilise the stochastic nature of evolution, and tracked
for 250 generations after that phenotype was discovered. Fluctuations for individual simulations
were commonly within ±0.01 of the plotted mean. Strengths for the nondeterministic panels,
indicated again by ∗, diverge rapidly from expectations, while deterministic evolution is well
approximated.

binding strength correctly or incorrectly are more strongly selected or purified respectively
in nondeterministic assemblies. This parallels evolution in real proteins, where unstable
proteins can adapt more quickly to selection pressures [58].

Steric interference and selection ordering

All three nondeterministic phenotypes are nondeterministic due to steric constraints, where
multiple subunits want to bind into the same lattice site. This arises when there are multiple
possible assembly pathways, and picking one ordering of assembly precludes later assembly
steps from occurring. Such behaviour can be thought of as “competing” interactions.
Greater determinism can achieved by minimising this competition: strengthening the
preferred interaction and weakening the others. With the relationship between interaction
strength and binding time, this can be reframed as assembling the “core” of the phenotype
before adding periphery elements to ensure correct assembly.

Selectively strengthening or weakening interactions to maximise determinism exactly
describes the dynamics observed previously in Figure 3.7. In the case of the heterote-
tramer (top middle), the assembly is near deterministic if the inter-subunit binding occurs
before the intra-subunit bindings, i.e. stronger and weaker strengths respectively. The
notion of competing interactions also resolves the mystery of the one interaction in the
nondeterministic 16-mer (top right) that follows expectations. This interaction is not in
competition with any other interaction and thus is not driven stronger or weaker than
steady-state expectations. Regardless of the order of assembly, this interaction is never
sterically blocked, and so evolves independently.
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Universality

The magnitude of selection pressure on interaction strength depends on the choice of
related parameters, e.g. nondeterministic penalty γ and temperature T . Clearly the
maximum determinism could be achieved by fully strengthening one interaction to Ŝ = 1,
and weakening the other to Ŝ = Ŝc, but these states are unstable and cannot be maintained
without equally extreme selection pressure. Instead, the competitive equilibrium is a state
of “good enough”, where the combination of interaction strengths minimises fitness loss
due to the nondeterministic penalty.

Increasing the penalty or decreasing the temperature should promote a larger gap in
strength, while higher temperature or lower penalty lessen the pressure maintaining that
gap. The gap in interaction strengths relates to the differences in binding probability pb
through the temperature parameter. Provided T > 0 and γ > 1, where selective ordering
is rewarded, some magnitude of gap should exist, and is exactly what is seen in Figure 3.8
for the heterotetramer phenotype example. As expected, as selection pressures increase so
do the observed interaction strength gaps.

increasing temperature

increasing nondeterm
inism

 penalty
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generations after phenotype discovery

Figure 3.8: Existence of selection pressure originating from nondeterministic assemblies
preferring a particular order of assembly is not tied to specific parameter values. Provided
T > 0 and γ > 1 (black dashed box), where interaction strength impacts assembly order and
nondeterminism loses fitness, the behaviour is universal. The magnitude of the gap depends
on the selection pressure, which depends on parameters, but the existence only depends on
interactions competing for assembly spots. This example is the heterotetramer evolving from the
dimer (top middle panel of Figure 3.7), but similarly holds for any nondeterministic assembly.

There is a more nuanced version of this effect observed for γ = 1 at higher temperatures,
where small fluctuations to the strengths cause the homotetramer to assembly most
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commonly, and hence change the phenotype. Since producing an incorrect phenotype
causes a total loss of fitness, there is a second-order selection pressure to maintain correct
assembly of the heterotetramer. The population evolves to maintain a strength gap just
large enough to be robust to single mutations and promote the correct assembly ordering.
Beyond that point, the second order selection pressure disappears and interactions are not
driven further away from expectations.

3.4 Phenotype phase space

To thoroughly understand the evolution transition success rates and the nontrivial relation-
ship of parameters observed in Figure 3.8, the competition between interactions must be
explored further. In the case of the heterotetramer, the inter-subunit interaction is the only
assembly step that can produce the correct phenotype, and so increasing the probability of
that step increases the probability of correct assembly. However, this qualitative statement
can easily be codified into an analytic relationship.

For more complex assemblies, such as the 12-mer with multiple competing interactions,
this analytic relationship is central to understanding the more diverse dynamics involved in
the transitions, and thus to the analysis of its evolutionary pathways. The mathematical
description of the relative importance of the interactions is conceptually similar to a phase
space. A given set of interaction strengths (the coordinates) most commonly produces one
polyomino (the phase) while another set might produce something else entirely. These
phase spaces can be challenging to map, but provide a comprehensive overview of the
dynamics of nondeterministic assembly. Deriving the structure of these spaces can be
highly challenging, but is justified by the information they contain for nondeterministic
assemblies and associated dynamics.

3.4.1 Recursive assembly state enumeration

The probability of ending in a final assembly state, i.e. the resulting polyomino, is the
sum of probabilities over all relevant assembly pathways. Each pathway’s probability is
in turn the product of probabilities for each assembly step. Assembly step probability is
the interaction probability leading to that specific step normalised by the sum of all other
relevant interaction probabilities. Assembly is carried out in this manner until termination,
at which point all terms are collected to produce an analytic expression of the desired
phase space.

Direct enumeration of steps is reasonable for smaller, simple phenotypes; unfortunately
it quickly loses tractability. For a situation such as the 12-mer, where there are approx-
imately 3 interactions possible at each step over 11 assembly steps, there are roughly
311 ≈ 106 possible pathways to sum over. Fortunately, many of these pathways are similar
and can be combined to reduce the number of terms involved.

Particularly for non-competing interactions, many assembly steps do not branch apart
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to unique final states, eventually coalescing to the same polyomino. As such, summing over
these branches returns a unit probability for that step. Such a situation is also possible at
different time steps, when branching at step T or T + 1 doesn’t lock off any final state, and
the probabilities similarly sum to one. This realisation allows the exponential explosion of
pathways to be reduced to a possible but probably laborious calculation.

Heterotetramer phase space

The phase space for the heterotetramer phenotype can be easily calculated through
various techniques. After identifying symmetry invariant steps, where different interaction
choices only correspond to an absolute rotation of the phenotype, only nine unique
assembly steps remain. Directly enumerating these steps is perfectly reasonable. Even
more simply, homotetramer formation only occurs when the intra-subunit interaction
is picked three times in a row. Given interaction probabilities A and B for the intra-
and inter-subunit interactions respectively, the probability of homotetramer formation
is Phom =

(
2A

2A+B

)3
/2. Note this can only occur from one seed, hence the factor of 1/2.

Since there are only two phenotypes possible, the heterotetramer probability is then the
complement, Phet = 1− Phom, but this approach does not always generalise well.

Although the overall assembly pathway for the heterotetramer is nondeterministic,
once the grey subunit from Figure 3.9 exists in the growing structure, pathways collapse
to deterministically assembly the heterotetramer. Thus the first partial assembly state
which contains the grey subunit, regardless of time step, can be thought of as a recurrent
state. After entering this state, all possible assembly pathways will have the same known
probability contribution to the final states. This approach is the most general framework
for analysing more complex assembly trees due to the huge reduction in calculations after
exploiting these similarities. An explicit demonstration of this approach and coalescing
assembly steps is shown in Figure 3.9.

1

a) b)

seeds

Figure 3.9: a) The assembly graph has interaction probabilities A and B for the intra- and
inter-subunit interactions respectively. b) Once the grey subunit exists in the growing structure,
assembly deterministically results in the heterotetramer. Intermediate steps can be skipped once
such a recurrent state is identified, designated by the dashed lines. The normalised assembly
tree probabilities are α = 2A/ (2A+B) and β = B/ (2A+B).

Crucially, the actual interaction probabilities and thus strengths do not particularly
matter. Phase space coordinates are naturally expressed in terms of normalised assembly
tree probabilities, which are ratios of interaction probabilities and thus strengths. As
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these ratios change, the likelihood of producing a certain phenotype shifts as well. Linking
interaction strength ratios and assembled phenotype provides a priori knowledge into
evolution transition successes, explored in the subsequent section.

12-mer phase space

With more assembly steps and even more branchings at each level, the 12-mer phase
space cannot be directly enumerated. There are also three possible polyominoes as final
states: the homotetramer, 10-mer, and 12-mer. Calculating the simplest probability is
thus insufficient to solve the entire system. Instead the recursive tree approach must be
employed, making use of similar arguments as in the heterotetramer case to find recurrent
states.

There are two main recurrent states for the 12-mer phase space, containing two and
three tiles respectively. The second recurrent state is actually the first recurrent state
plus an additional tile. These states are encountered when two interactions become
non-competitive and all the potentially nondeterministic placed tiles become irrelevant.
Assembly effectively “reverts” to an earlier stage, but that branch of the assembly tree
keeps its probability factor. Both recurrent states and the complete tree leading to all
three possible polyominoes are shown in Figure 3.10.

seeds

1
1

a) b)A

B

C

recurrent state

recurrent state

Figure 3.10: a) The assembly graph for the 12-mer has one interaction more than the example
in Figure 3.9, but has a much more complex assembly tree. b) There are two recurrent state,
identified with † and ∗. When these steps are reached, the assembly tree essentially jumps back
to the recurrent state, but keeping the existing probability factors. Again the dashed lines again
indicate lack of any competition, allowing intermediate steps to be fast-forwarded to the final
polyomino. The normalised assembly tree probabilities are α = 2A/ (2A+B), β = B/ (2A+B),
γ = B/ (2C +B), δ = 2C/ (2C +B), ε = A/ (A+ 2C), and ζ = C/ (2C +B).
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Solving the homotetramer probability is straightforward, and is actually exactly the
same calculation as the homotetramer from the heterotetramer example. This equivalence
highlights the importance of analysing mesoscopic interaction competition rather than
macroscopic phenotypes. On the other hand, even with the recursive tree, the calculations
for the other two polyominoes involve over twenty-five terms in their most condensed form.
Despite this complexity, only two interactions ever compete in a given step. This means
the probabilities for forming any given polyomino can be expressed in terms of two ratios
of the interaction probabilities, e.g. A/B and A/C or A/B and B/C etc.

While the heterotetramer phase space is quite easy to picture, with only two possible
polyominoes, the 12-mer space is not. Since two ratios are sufficient to express the proba-
bilities, and there are three polyominoes, the phase space can fortunately be represented
in two-dimensional space using three channels of information, one per polyomino. A
Red-Green-Blue (RGB) plot can encode the relative abundance of each polyomino for
any given coordinate describing interaction strengths, shown in Figure 3.11. Appreciating
the finer structure of the phase space unlocks insight into evolutionary dynamics on this
landscape, as demonstrated later.

0-2 2

0

2

-2

heterotetramer

10-mer

12-mer

Figure 3.11: The 12-mer phase can be visualised with an RGB plot, with one colour channel
per polyomino. Black lines indicate transitions where a different polyomino becomes the most
common, and thus the phenotype. Individual channels are shown on the right for their respective
polyomino, with frequency contours. Each polyomino’s contours differ substantially, and so there
is not an obvious outcome to altering interaction ratios in a particular way.

3.4.2 Phase space dimensionality

While the dimensionality of a standard phase space is determined by the degrees of freedom,
it is not so simple in the phenotype case. Only interactions which compete in individual
assembly steps add a dimension, and generally that dimension is a ratio of two strengths.
Adding additional interactions, even competing interactions, would not necessarily increase
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the dimensionality.
Although such an assembly would be highly complex, it is plausible to imagine a

situation where there are multiple sets of competing interactions that do not compete
across the sets. In such a situation, the phase space could be two-dimensional despite
having four competing interactions. Subsequently, there is no simple rule for determining
dimensionality. Instead, the dimensionality must be determined by directly considering
the minimum number of strength ratios required by the assembly tree. Provided any
competing interaction ratio is somehow expressible, i.e. they span the phase space as a
complete basis, the choice of ratios is arbitrary.

Additionally, there is no known general relationship between the number of interactions
present in an assembly graph and the number of producible shapes. In strongly nonde-
terministic cases, where unbound growth is possible, just three interactions between two
subunits are necessary to form an infinite number of polyominoes. While the number of
producible polyominoes probably increases with more interactions in weakly nondetermin-
istic assemblies, hence correlating dimensionality and phase count, it must be evaluated
on a case-by-case basis.

This is precisely the situation for the 16-mer phase space, which is the largest polyomino
assembled in this phenotype subset. Despite also having three interactions and even more
assembly steps than the 12-mer, the phase space is in fact identical to that of the simple
heterotetramer. As discussed earlier, one interaction in the 16-mer does not compete, and
so does not contribute any dimensionality.

3.5 Evolutionary transitions

Individual transitions to more complex phenotypes are easy to identify, but defining the
overall success rate is less so. Transitions in a population can be grouped into two main
forms: fixations and failures. Fixating transitions are when a transition to a more complex
phenotype survives, with descendants (who potentially evolve further) lasting the entire
evolutionary history. Failing transitions, on the other hand, are when individuals of a more
complex phenotype struggle to permeate the population and quickly go extinct despite
a higher fitness potential. Some transitions fall between these two definitions, but are
primarily artefacts of the finite population size and can be ignored explicitly.

Transition success rates, i.e. the fraction of fixating transitions, for the subset of six
phenotypes are shown in Figure 3.12, calculated from the same evolutionary simulations
as before. Successful transitions depend not only on the descendant’s properties, but
also on immediate ancestry. The transition to the heterotetramer from the dimer has
a much higher success rate than the transition from the homotetramer, despite broad
similarities. Both ancestors had one bond strengthened to the Markov expectation and
one new minimally strong interaction, but their success rates are nearly a factor of three
different.
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homotetramer heterotramer 16-mer

12-meroctomerdimer

Figure 3.12: Transitions to deterministic assemblies have high success, with only a few failures
due to stochastic effects of a finite population. Transitions to nondeterministic assemblies range
from terrible to equally high, depending on interaction strength properties of their ancestors.
Interactions widths highlight the optimal ordering of interaction strengths. Transitions to the
heterotetramer (blue) and 12-mer (green) are explored in more detail in Figure 3.13.

3.5.1 Phase spaces and transition dynamics

This discrepancy can only be understood by considering the location of these transitions
in the descendant’s nondeterministic phase space. As seen earlier, competing interactions
strengthen or weaken to maximise determinism according to selection pressures, which
yields an equilibrium location in the phase space. Proximity to these coordinates determines
the fate of newly transitioned phenotypes. If the ancestor’s strength coordinates are too
far from the optimal state of the descendant, the associated nondeterminism is more
detrimental than the new phenotype is beneficial and overall the transition fails.

For all three nondeterministic cases, phase space transition locations suffice to explain
every observed success rate. Explicit phase space transition locations are shown for the
heterotetramer and 12-mer in Figure 3.13. In both cases, the ancestor which transitions
nearer to the optimal descendant had better transition success.

Ancestors which are “pre-optimised” according to their interaction strengths at the
moment of transition are those with the highest evolutionary success. Effectively, the
nondeterminism is already partially minimised, and hence individuals get a greater portion
of fitness which allows more successful transitions. This is most strongly observed in
the case of transitioning from heterotetramer to 16-mer. The heterotetramer is already
optimised by evolution to be as deterministic as allowed by the selection pressure. The
heterotetramer and 16-mer have the same phase space, and so the transition occurs in the
most optimal location and is quasi-deterministic. This explains the high transition success
rate, which is in fact indistinguishable from truly deterministic pathways.

Alternatively, transitions from the octomer to the 16-mer are also mostly successful
but to a lesser degree. After ignoring the interaction known to not compete, the transition
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Figure 3.13: The phase location of transitions from ancestors are marked by diamonds. Their
assembly graphs contain ancestral (black) and newly formed (red) interactions. The evolutionary
optimum state for the descendent phenotype is marked by a star. a) The dimer is substantially
higher up the determinism gradient φhet than the homotetramer, and has correspondingly better
transition success. b) The octomer transitions in a much better location to make the 12-mer
compared to the heterotetramer. In fact, the heterotetramer most commonly assembles the
10-mer post-transition, as it is on the wrong side of the phenotype boundary.

of octomer to 16-mer is identical to the transition of dimer to heterotetramer. Both of
these transitions have similar successes, at ∼ 80%.

Transitions to the 12-mer are once again more complex due to the higher dimensional
phase space, but are still completely explainable. The octomer’s interaction strengths
are ordered more optimally compared to the heterotetramer, but still transitions down
a steep determinism gradient with mediocre success. Conversely, the selection pressures
operating on the heterotetramer drive the strengths in an sub-optimal direction, leading
to frequently failed transitions. Generally the heterotetramer strength ratios commonly
misassemble the 10-mer phenotype. It is only by fluctuations away from equilibrium, i.e.
higher states in πPF, can it produce the correct 12-mer phenotype, giving it a meagre 3%
success rate.

Parameter invariance

Although there are many parameters involved in generating these results, the majority
have simple qualitative effects. Changing any simulation parameter would likely impact
the transition success rates in different ways. However, the numerical values of success
rates are relatively unimportant, as the general dynamics behind them are known.

For example, changing the binary string length or strength threshold would change the
steady state distribution πPF. This distribution determines the fraction of the population
fluctuating away from equilibrium, which may be needed so the fitness reward overcomes
the nondeterminism resulting from the interaction probabilities. Alternatively, increasing
the fitness reward would allow more individuals with greater nondeterminism to still have
a net fitness advantage and successfully transition.
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Transition success rates vary close to predictions for multiple parameter combinations,
indicating any choice of parameter would produce results that are equally captured by
the simple conceptual framework. Extended details on this can be found in Appendix C.
This model can therefore be used to derive results about the evolution of nondeterministic
self-assembly which are robust with respect to parameter choice. While not perfect, this
assists translating insights from the model to how general forms of nondeterminism may
have influenced evolution of interactions in biologically relevant contexts.

3.5.2 Predicting evolutionary pathways

The subset of phenotypes examined here was chosen due to the overall balance of abun-
dances, interaction properties, and mutation accessibility. Even in general, armed only
with combinatoric abundances and assuming arrival of the frequent [56], the likelihood of
evolutionary pathways for any phenotype can be estimated. However, these two elements
are often insufficient to explain the evolution of protein quaternary structure. For these
simulations, likely pathways can be predicted a priori based on transitions where ancestors
favourably reflect the assembly requirements of descendants. For example, the most likely
pathway to the 16-mer is monomer → dimer → heterotetramer → 16-mer, while for the
12-mer is monomer → dimer/homotetramer → octomer → 12-mer.

The ordering of assembly steps in physical proteins can also be integral to producing
the correct complex. This occurs on vastly different length scales, from misassembly
induced from cotranslational protein folding [59] up to entire quaternary structures [48].
While some protein structures are guided by chaperones [49], others have evolved strong
core interactions and weaker peripheral interactions [57].

In addition to strengthening interactions, gene fusion is another opportunity for proteins
to cement a particular assembly order. Directly fusing subunits is similar to having an
infinitely strong interaction which binds instantly, and hence can minimise the risk of
misassembly in a similar manner [48].

Understanding evolutionary pathways and order of assembly is important to generally
understanding complex formation, and is an active area of in silico [60] and bioinfor-
matic [61] research. While evolutionary pathways and assembly pathways seem distinct
concepts, there is strong evidence that assembly pathways are reflective of evolutionary
pathways [47, 62], and so might be best considered concurrently.

3.5.3 Dynamic fitness landscapes

Much of the existing polyomino model literature and results have so far centred around
evolving on a static fitness landscape. However, phenotype plasticity is a widespread
phenomenon, where a genotype may be influenced by an environmental change resulting
in some morphological adaptation. Nondeterministic assemblies can be interpreted as a
form of plasticity, where multiple phenotypes can be produced from slight variations to
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the same interactions.
By incorporating a time-varying fitness landscape, alternatively rewarding fitness

to different phenotypes, interaction strengths can continuously adapt. For the 12-mer
example phenotype, one of its other assemblies, the 10-mer, is now also rewarded. Fitness
is dynamically assigned as the sum of sinusoidal curves for these two polyominoes as

fi =
∑
p∈P

sin2 (Ωt+ ϕP)

The two curves were set to be in antiphase, with ϕ10-mer = π, and had a static oscillation
period of Ω = 50 generations. However, fitness could easily be assigned with a smaller
phase gap or unequal periods if one phenotype was more important. As the fitness peaks
change over time, selection pressure adjusts interaction strengths to follow, as seen in
Figure 3.14. The population quickly settles into an optimal circuit, and is able to maximise
dynamic fitness. Controllably modifying a phenotype in order to minimise nondeterminism
is hugely advantageous to survival. The time scale for altering interaction strengths is
linear in interface size, while forming new interactions requires quasi-exponential time.

b)a)

Figure 3.14: a) Slowly and smoothly alternating the fitness landscape to reward the 12-mer
(red) and 10-mer (blue) allows evolution to optimally adjust interaction strengths. Any initial
state eventually converges to the optimal closed cycle. b) Average trajectories follow the global
determinism gradients closely, but some individual paths follow less efficient local gradients.

Populations generally followed the optimal determinism gradient. In the case of the
10-mer to 12-mer switch, the quickest route is to lower the A/C ratio, i.e. to move left in
the phase space. Occasional interaction strength fluctuations lead some populations to an
alternative route, first increasing the C/B ratio and then inverting the A/C ratio. This
pathway took longer to achieve and thus had a lower average population fitness, but again
highlights the nuanced role these phase spaces can play in understanding the evolution of
interaction strengths.

The impact on evolution of plasticity through conformational change is uncertain,
but emerging work suggests such behaviour imposes strong constraints on sequence
evolution [63, 64]. Moreover, since assembly is commonly sensitive to adding or removing
new interactions [11], merely modifying the strengths of existing interactions is likely to
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be a much safer avenue of adaption.
Interaction strengths themselves are also not the only opportunity to induce such

changes. Stable complexes have been observed to form alternative structures when
surrounded with an abundance of catalysts [65] or ligands [66]. The presence of these
additional products modifies how the subunit interactions align, immediately resulting
in different assembly. So plasticity enables much more rapid adaption to environmental
changes, through conformational changes or reprioritising interactions.

Constant or immediate adaption in the polyomino model, as described above, barely
scratches the surface of the interplay between plasticity and evolution. Multiple additions
to the polyomino model would likely be required in order to explore plasticity generally,
but it is conceivable to recreate these dynamics through a coarse-grained perspective. Such
work remains an open avenue for further research discussed later in Chapter 5.

3.6 Conclusion

Polyomino self-assembly models have previously proven their worth in deepening the
understanding of self-assembly phenomena and genotype-phenotype maps. Generalising the
model’s binding sites with binary strings retains tractability while extending applicability
to other complex biological questions. Modelling the evolution of binding interaction
strengths is one such example of qualitative insights beyond the reach of integer-labelled
polyomino models.

In the absence of selection pressure, a Markov process approach provides an analytic
expectation for the evolution of interaction strengths with minimal assumptions. These
expectations agree well with simulations for deterministic phenotypes, but strongly diverge
when time-ordering is important in nondeterministic assemblies. Such interactions are
driven by selection pressure to strengthen or weaken, and thus assemble earlier or later,
to maximise determinism. Certain evolution pathways are enhanced or inhibited based
on relative strength ordering of interactions between ancestor and descendant, allowing a
probabilistic reconstruction of most likely evolutionary histories.

Results taken from this model align with existing observations from experimental
studies [46–48], as well as suggesting that nondeterminism as exemplified in the polyomino
model could be a useful proxy for studying other manifestations of protein misassembly.
Although the assembly kinematics are extremely simplified in the model, where stronger in-
teractions tend to bind sooner, many proteins fall under this qualitative umbrella. However,
protein complexes which rely on additional kinematic dynamics, such as chaperone-assited
assembly [67], may have separate selection pressures resulting in different relationship
between evolution order and assembly order.

Further study on topics briefly touched on, such as phenotype plasticity as well as
other more complex genotype-phenotype mappings are imaginable within the generalised
model.
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CHAPTER

FOUR

DUPLICATION DRIVEN EVOLUTION PATHWAYS

Key messages

• Binary string self-interactions form much quicker than pairwise-interactions.

• Duplication-heteromerisation pathway enables self-interactions to transition
to a more evolvable pairwise-interaction state.

• Examination of the Protein Data Bank validates several key qualitative model
predictions.

This chapter is based on the manuscript in preparation under the working title
Duplication is a pathway for accelerating evolution of structural complexity [68] by Leonard
and Ahnert. All results are independent and novel work by Leonard under the supervision
of Ahnert.

4.1 Introduction

Gene duplication, where a segment of existing genetic material is copied again, was first
discussed in the 1970s, and has since been recognised as an indispensable process for
biological evolution [69–71]. However, uncertainty still remains over the precise role that
duplication plays, with many possibilities proposed over the years: creator of new genetic
material [72], distributor of subfunctions [73], safeguard against extinction [74], or even
just a passive passenger [70]. Whatever duplication’s purpose, its prevalence is well-known
on scales ranging from single genes to whole genomes.

Gene duplication appears more commonly in complex, eukaryotic organisms, whereas
prokaryotes mainly evolve through other genetic mechanisms such as horizontal gene
transfer [75]. Eukaryotes exhibit ample evidence of duplication driven evolution [71], with
many ancestry-sharing homologous proteins, e.g. the kinetochore [76]. These homologous
proteins can vary substantially in how robust they are against negative mutations [77]

59
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or evolvable towards positive ones [78], suggesting that duplication is not responsible for
these properties by itself.

Symmetry is observed in the majority of multimeric protein complexes [79], and recent
advances indicate that pseudosymmetric proteins may be more common than previously
expected [80]. These pseudosymmetric protein complexes display strong homology between
different subunits. Such a situation can readily occur under subfunctionalisation, specifically
a form of duplication-degeneration-complementation [81].

4.2 Duplication driven pathways

Gene duplication does not directly introduce novel material; instead it merely copies
existing genetic sequences. Any beneficial result of duplication should then come from
subsequent evolution driven by neutral drift and selection pressures. Comparing properties
and potentials of these evolution pathways when duplication is and is not allowed can tease
out advantages that duplication may provide and help explain its prevalence throughout
evolutionary history.

Duplicating a subunit which can interact with itself or other subunits increases the
likelihood of that subunit binding during assembly. This shift in likelihood can distort
the polyomino frequencies of nondeterministic assemblies, but this generally is a minor
effect. However, mutating gene dosage in proteins can lead to deleterious stoichiometric
imbalances [82], to the extent of requiring compensatory mechanisms in regulating some
gene dosages [83].

Strikingly, subunit dosage naturally self-limits under the evolution simulation framework
implemented here, without any direct fitness penalty. Excessive copies of a given subunit
impart such a high robustness against negative mutations that they struggle to evolve
through positive ones. Individuals with too few (zero) or too many (generally five or more)
copies of a given subunit regularly are out-evolved by genotypes with an intermediate copy
number. As such, genotypes with stronger dosage imbalances are selected against, while
those with more balanced stoichiometry reproduce successfully.

Only genotypes with an intermediate number (more than zero, generally less than five)
of duplicated subunit copies can then reliably evolve.

Before further considering the impact of duplication, it is crucial to understand the
different nature of symmetric homomeric and heteromeric interactions, where a binding
site interacts with itself or a different site respectively. There is a marked difference in
interaction formation time, as well as in their effect on evolvability and robustness. Such
differences drive the evolutionary advantage of duplication, as discussed later, with other
associated dynamics only offering minor benefits.
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4.2.1 Additional Markov chain interaction dynamics

The Markov chain formalism used for interaction strength evolution, detailed previously
in Chapter 3, can be adapted much more broadly to model other interaction properties.
Similar random walks approximate the time required for an interaction to form given
random initial conditions or to be lost given a steady-state distribution. Much of the
mathematical machinery remains unchanged, with the exception of the boundary condition
at the critical strength. Interaction formation and loss is modelled by an absorbing Markov
chain, as opposed to the stationary variant previously used. A schematic of this modified
setup is shown in Figure 4.1.

Ŝ1
. . . Ŝi

. . . Ŝc

Formation

. . .
Wi

W †
i

W ′†
i

W ′
i

Figure 4.1: Interaction dynamics are still modelled by a Markov chain of strength states, with
transition weights based on interaction strength. However, now interactions are formed or lost
when they walk past the strength threshold and are “absorbed” (cf. Figure 3.4). Previously, only
heteromeric (orange) interactions were considered. Symmetric homomeric (blue) interactions
behave similarly, albeit larger steps.

Mutations to a symmetric homomeric interaction move by two strength states on the
chain per step, as any point mutation affects the actual site and its partner counter-aligned
site. Equivalently, symmetric homomeric interactions have an effective binding site length
of L′ = L/2, or half as many chain states. Otherwise their interaction strength dynamics
are indistinguishable from heteromeric interactions.

Interaction formation expectation

Interactions are formed when two initial binary strings exist below the strength threshold,
and then eventually mutate above it. Transition matrix weights are as previously defined,
withWi andW †

i relating to the strength and complementary weakness of a given state. The
critical strength state is still given by c =

⌈
L · Ŝc

⌉
, but now the matrix has N =

⌈
L · Ŝc

⌉
+1

terms. Once an individual first drifts above the strength threshold and forms an interaction,
selection dominates and there is no drifting back below the threshold, i.e. it is absorbed,
indicated by the emphasised 0 transition weight.
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F =
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︸ ︷︷ ︸

N

The properties of absorbing Markov chains can be calculated using the fundamental
matrix N, which captures the probability of transitioning between states i and j after
exactly k steps, summed over all k. Using the result for the infinite sum of a geometric
series, the fundamental matrix can be expressed as N = (I− F)−1, where I is an identity
matrix. The number of expected steps to reach an absorbing state from any initial state is
given by t = N1ᵀ, where 1 is a vector of ones.

Reasonable choices of model parameters, i.e. sufficiently long binary strings and
moderately high strength threshold, imply that any randomly initialised genotype will
have strength states below the threshold. The probability to be in any given state is given
by a binomial, and so the initial condition strength vector B is defined as Bi =

(
L
i

)
(.5)L.

The expected forming time is thus:

〈τform〉 = B · t = B · (I− F)−1 1ᵀ

Although the transition matrix appears simple, there is no general closed-form solution
to the equation above. However, an approximate form was found through performing
nonlinear regression on simulated interaction formation times. First, the L dependence
was estimated over L ∈ [50, 150]. After the form of L was fixed, the Ŝc dependence was
estimated over Ŝc ∈ [.6, .8]. The resulting empirical form, providing a useful approximation
over the relevant parameter window, is:

〈τform〉 ≈ exp
((

0.7L−1/2 + 0.08
)
· L1.35Ŝc

)
Regardless of the exact form, there is strong dependence on both L and Ŝc which appears

quasi-exponential. Formation times quickly explode as these two parameters increase.
Since symmetric homomeric interactions have an effective length of L/2, they routinely
form significantly quicker than a heteromeric interaction with equivalent parameters.

Interaction loss expectation

Due to the simplicity of binary string binding sites, interaction loss can be modelled
analogously to interaction formation. Completely reversing the Markov chain and modifying
which state is the critical state produces a different transition matrix that is used identically
to above. Now the absorbing state corresponds to when the interaction is lost and is
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assumed to never reform∗.
Interaction strength Markov chains can be “reversed” with the anti-diagonal identity

matrix†, J, as Frev = J−1FJ. Regardless of reversing the chain, the number of states now
relates to how many strengths are above the threshold, unlike in formation. The matrix
then takes the size of N =

⌊
L ·

(
1− Ŝc

)⌋
+ 1, which is identical to the expression for N in

Chapter 3.
Initial population states are not longer binomially distributed, but are driven by

selection dynamics. The steady-state distribution is again given by πPF from the previous
Markov chain applies here, and can be assumed to be the initial distribution. The expected
time to first drift below the strength threshold, and thus lose an interaction, is then:

〈τloss〉 = πPF · t′ = πPF · (I− Frev)−1 1ᵀ

While the formalisms to calculate the expected formation and loss times share math-
ematical similarity, the resulting values differ greatly. For all relevant parameters used
in this chapter, the expected time of formation is magnitudes greater than that of loss.
Additionally, while heteromeric interactions are slower to form, they are also slower to be
lost. This is despite the steady-state strength distribution for heteromeric interactions
skewing closer to Ŝc (〈Ŝ〉L < 〈Ŝ〉L/2).

4.2.2 Genotype complexity ceiling

Complexity can be difficult to define in biological contexts. Kolmogorov complexity [84]
is defined as the length of the most concise algorithmic description of a given output.
Self-assembling structures can naturally use such a definition, measuring the minimum
genotype information necessary to build some structure. This has already been successfully
applied to the polyomino model and protein complexes [19].

As outlined in Chapter 2, bound and deterministic assembly graphs can only support
a limited number of interactions relative to the number of subunits, estimated by the
first Betti number (see Section 2.2.4). This limit can be recast in terms of the maximum
complexity an assembly graph can support, as more interactions require more information
to encode. Beyond this complexity, misassembly dominates.

This is particularly applicable to assembly graphs with cycles, as multiple cycles
readily misassemble. Since the most likely evolutionary pathway starts with forming a
symmetric homomeric interaction—a rank 2 cycle—most genotypes then rapidly reach
their complexity “ceiling”. At this point, a large portion of possible additional interactions
will induce deleterious behaviour. In order for a structure to evolve further, this ceiling
has to be overcome.

∗This is a comparably significant assumption, as the probability for the interaction to reform is
approximately µ′

(
1− Ŝi

)
if the less-fit individual survives even one round of selection.

†Some conventions refer to this as the exchange matrix.
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4.2.3 Duplication-heteromerisation process

Duplication can occur through multiple biological mechanisms, e.g. replication slippage,
unequal crossing-over, etc. [85]. Certain mechanisms may be more likely to copy entire
chromosomes or just short sequences, but ultimately can still only duplicate existing
genotypic segments. In this model, duplication copies an entire subunit, similar to gene-
level duplication, including all its interactions. Immediately after duplication there are
then two identical copies of a subunit.

The original and duplicated subunits can then evolve and accumulate mutations
independently. Importantly, duplicating a subunit containing a symmetric homomeric
interaction results in at least three interactions: two duplicate symmetric homomeric and
one heteromeric interaction between the two copies. Only one of these interactions is
required to maintain the phenotype, allowing the other interactions to neutrally drift,
potentially out of existence.

There are numerous pathways of different surviving interaction configurations and
their strengths, but not all are equally robust or evolvable. As shown in Figure 4.2,
pathways ending with only a heteromeric interaction can most advantageously evolve a
new symmetric homomeric interaction, and so have the highest evolutionary potential.
Oppositely, forming the additional symmetric homomeric interaction while the original
symmetric homomeric interaction still exists can lead to unbound or nondeterministic
assembly.

a)

b)

c)

genotype: 1010. . . 1010. . . 1010. . .

assembly graph:

· · ·

· · ·

Figure 4.2: a) Duplication events replicate regions of the genotype encoding a single subunit,
duplicating any interactions involving that subunit. b) There are many configurations in which
mutations can accumulate on the existing interactions, with interaction width indicating strength.
All possible drifts which preserve at least one interaction are neutral. c) Forming a new interaction
breaks the neutrality. From left to right, the fitness change is highly negative (unbound & strongly
nondeterministic), slightly negative (weakly nondeterministic), neutral (same phenotype), and
positive (bound & deterministic, larger phenotype).

Duplication-heteromerisation allows a genotype to circumvent the complexity ceiling
by transforming an assembly cycle into multiple single-use interactions. Such a genotype
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can now accept almost any new interaction, rather than being stuck at the bottleneck
needing certain heteromeric interactions only. Few individuals successfully complete this
process, as there is no direct selection pressure and many configurations of mutations
ending in different states. Since the time scales involved in drift are minuscule compared
to interaction formation, there are sufficient chances for a member in a population to
evolve this way.

Crucially, this pathway is not limited to a single iteration, but can be repeatedly
exploited by evolution. Duplication-heteromerisation on larger genotypes becomes more
challenging as multiple subunits need to drift and subfunctionalise near simultaneously.
Overall the pathway fades in advantage, but can still occur over longer time scales.

4.3 Evolution simulations

Evolutionary histories are simulated with a similar framework to that described in Chapter 3.
A fixed-size haploid population reproduces asexually, with fitter individuals proportionally
more likely to reproduce. Mutations again occur with a fixed probability per bit in the
genotype. However, now duplication of an entire subunit can occur between reproduction
and mutation with a fixed probability per subunit. In addition, any subunit can be
deleted from the genotype with a probability comparable to the duplication rate, ensuring
approximately constant genotype size. Details on these simulation parameters are provided
in Table A.2.

Duplication and deletion introduce dynamic genotype length and potentially rapid turn-
over of subunits, and so tracking individual interactions over time is no longer meaningful.
Instead, “degenerate” interactions should be viewed as an ensemble, e.g. a symmetric
homomeric interaction and a duplicated copy are fundamentally related, and should be
considered together in order to capture the entire dynamics acting on their evolution.

A simple approach to defining an ensemble is by the geometric position of the interac-
tions on their subunits. For example, any interactions which occur between the top of a
subunit and the top of a subunit are grouped together, or the left of one and the bottom
of another. Any interactions which share geometric specifications are likely to be related
through duplication of some shared ancestral interaction, which may have been lost to
drift or deletion many generations ago.

This grouping strategy eliminates the vagueness of when duplicated interactions have
diverged enough to be differentiable, or if an interaction drifts below and then back
above the strength threshold which interrupts continuous tracking. Since simulations are
constrained to evolving a small number of interactions, the chance that two independent
interactions would evolve with the same geometric configuration is low and is an insignificant
source of noise compared to the signal. Some examples of degenerate topologies are shown
in Figure 4.3.

Interactions can be broadly grouped in three main groups: symmetric homomeric,
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a) b)

Figure 4.3: Two example assembly graphs with three and two interaction ensembles respectively
in a) and b), where all interactions in an ensemble have the same colour. Two interactions can
be degenerate even if one is intra-subunit and another is inter-subunit, due to the duplication-
heteromerisation process. Any interaction properties, such as interaction strength or sequence
similarity, should be considered over an entire degenerate ensemble, e.g. all purple-coloured
interactions.

homologous heteromeric, and non-homologous heteromeric. Classifying between the two
heteromeric interactions is based on ancestry, where homologous heteromeric interactions
have shared history on the involved binding sites. Such history can only occur through
subunit duplication. Non-homologous heteromeric interactions are the opposite, where
there is no shared history between the binding sites and the interaction was formed de
novo. Understanding the evolution and frequency of these three groups plays a crucial
role in uncovering the purpose and impact of duplication.

4.3.1 Interaction homology and classification

Sequence similarity is a critical tool in identifying protein homology, measuring how many
amino acids match or nearly match between two protein sequences. In the context of
binary strings, interaction sequence similarity measures how identical two binding sites
are through the Hamming distance, as the bits either match or are opposite. Sequence
similarity shares conceptual overlap with interaction strength, as both related to the
Hamming distance but with one string reversed in the latter case. As such, sequence
similarity also can be predicted with a binomial distribution.

Two arbitrary binding sites rarely have strong sequence similarity, especially as length
increases. Arbitrary sequence similarity actually directly follows a binomial distribution,
B (L, .5), yielding an average of 50±

√
1/4L % sequence similarity. Symmetric homomeric

interactions always have maximum sequence similarity, by definition, as they interact with
themselves. Heteromeric interactions do not have such a constraint, and can take any
possible value. However, finding a heteromeric interaction with high similarity (� 50%)
suggests they are not two arbitrary binding sites but instead have some shared evolutionary
origin.

Tracking the ensemble distribution of interaction sequence similarities provides a
simple marker of the duplication-heteromerisation pathway. Each interaction topology
can be easily distinguished, allowing the evolution of similarities to be pinpointed for
each ensemble. A specific topology ensemble which was initially observed with maximum
similarity may later be observed fluctuating around ∼ 50% similarity, indicating an initially
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symmetric homomeric interaction is now heteromeric. This transition is precisely predicted
by the pathway, classifying the interaction as homologous heteromeric.

Alternatively, an ensemble may originate with medium similarity (indicating two
arbitrary strings), classifying the interaction as non-homologous heteromeric. In this way,
interactions can be assigned into the classes defined above. Two distinct example evolutions
are shown in Figure 4.4, with all three possible interaction classes clearly identifiable.

time →
100%

50%

0%

IS
S

a) b)
SH

SH

SH

SH

SH

HH

HH

HHSH+HH

SH+HH

SH+HH

SH+HH SH+HH

n-HH

Figure 4.4: Interaction sequence similarity (ISS) can change over the course of evolution, shown
here for three sequentially formed interactions (I1, I2, and I3) over two independent simulations
in a) and b). Each colour represents a unique interaction topology (see Figure 4.3). Lighter
elements indicate that relatively few interactions of that topology across an entire population
have that level of ISS at a given time, while darker elements indicate a higher population density
in that state. Both simulations initially form a symmetric homomeric interaction (SH), which
later coexists with its duplicate-drift homologous heteromeric interaction (HH). Forming a new
symmetric homomeric interaction fixes the purely homologous heteromeric state. Note in b),
forming a non-homologous heteromeric interaction (n-HH) as I2 does not break the neutral
symmetry of the SH+HH state, which continues to duplicate and drift until I3 forms.

Duplication probabalistically occurs at all times, but is most noticeable after a sym-
metric homomeric interaction forms. Immediately after duplicating a subunit containing a
symmetric homomeric interaction, heteromeric copies appear. As these heteromeric copies
accumulate mutations and neutrally drift, their sequence similarity correspondingly drifts
towards heteromeric expectations of 50%. These interactions can also be lost by drifting
below the strength threshold, provided at least one interaction copy survives. This pattern
of drift results in “smears” in sequence similarity, as heteromeric interaction differentiate
themselves but then are lost to interaction or population dynamics.

Only when a new symmetric homomeric interaction forms is that neutral symmetry
broken. At this stage, the heteromeric copy of an originally symmetric homomeric
interaction quickly fixates in the population and fluctuates around the expected mean.
The recently formed symmetric homomeric interaction then undergoes smearing drift, and
the process can repeat. Note that forming an non-homologous heteromeric interaction
(Figure 4.4b, I2) has minimal impact on symmetric homomeric interactions which continue
smearing drift.
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4.3.2 Assembly graph interaction composition

Evolutionary simulations are highly stochastic, and the identification of single events is
informative but insufficient to understand the diversity of dynamics at play. Averaging
over multiple independent simulation provides a more comprehensive picture. For ex-
ample, the composition of interaction types in the terminal evolved assembly graphs is
relatively constant regardless of duplication; there is an approximately equal breakdown
of symmetric homomeric and heteromeric interactions. However, the proportion of het-
eromeric interactions with shared evolutionary history is substantially larger in the event
of duplication.

Interaction types, averaged over many assembly graphs, can easily be captured at
every phenotype transition step, providing time-resolved tracking of composition. Without
duplication, interactions are static and have no ability to change types, while with
duplication only symmetric homomeric interactions can heteromerise. Although possible
at any time, duplication only meaningfully influences subunits with existing interactions.
Therefore, any consequences of duplication are only expected to arise after an interaction
has formed.

Interaction compositions reflect this prediction, with symmetric homomeric interactions
equally dominating the first interaction formation in both cases, seen in Figure 4.5. For
later stages, however, they diverge significantly in behaviour. Most symmetric homomeric
interactions undergo duplication-heteromerisation when possible, such that the second
evolution step is again driven by symmetric homomeric formation and the original interac-
tions become homologous heteromeric. Alternatively, without duplication, evolution can
only proceed by forming non-homologous heteromeric interactions.

T1 T2 T3

No duplication

Duplication

homomeric homologous heteromeric non-homologous heteromeric

I1

I2

I3

Evolution step

Figure 4.5: Assembly graph composition was recorded at each phenotype transition for the
first three interaction (I1, I2, and I3) formed at three sequential times (T1, T2, T3 respectively),
averaged over 1500 simulations. Without duplication, interaction types are static and do
not change throughout evolution; later periods of evolution are predominantly driven by non-
homologous heteromeric interactions. When duplication is allowed, symmetric homomeric
interactions can transition to homologous heteromeric to facilitate evolvability, as strongly
observed for the I1 interaction at time T2 and likewise I2 at T3.
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After evolving through three phenotypes, the average assembly graph is comprised of
about one symmetric homomeric and two heteromeric interactions regardless of duplication.
As mentioned earlier, however, when duplication is allowed the heteromeric interactions are
overwhelmingly homologous. The exact breakdowns depend on parameterisation, which
shifts the relative advantage of the duplication-heteromerisation pathway over forming
non-homologous heteromeric interactions. In general though, an abundance of homologous
heteromeric interactions is a strong hallmark of duplication directed evolution.

4.3.3 Accelerating evolution of complexity

Tracking the number of interactions over time offers a reliable proxy to measuring the
evolution rate of structural complexity, C. Again due to the stochasticity inherent in single
evolutions, averaging over many simulations provides a more stable trend that is suitable
for interpretation. Although the Markov chain predictions for interaction formation have
enormous variance, at times comparable to the mean, these expressions yield approximate
checkpoints for the complexity quantity. The quicker symmetric homomeric interaction
formation time, 〈τL/2

form〉 should coincide with 〈C〉 = 1. The second interaction to form
should be heteromeric, and so 〈C〉 = 2 is expected around 〈τLform〉.

As mentioned previously, duplication only realistically impacts evolution after the
formation of the first interaction, and so the initial rates of evolving complexity should
be comparable. Once duplication-heteromerisation comes into play, however, evolution
should be accelerated with 〈C〉 growing faster than expected. That means for a given
period of evolution, simulations with duplication allowed should be at comparatively higher
complexity. This is precisely observed in Figure 4.6.
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Figure 4.6: Structural complexity, C, can be approximated by the number of interactions in an
assembly graph. Trends are stable after averaging over 1500 simulations, up to a computationally
imposed limit of three interactions. Note that a visually parallel line but at larger log g corresponds
to a smaller slope due to logarithmically scaled generations. Duplication accelerates growth of
complexity, measured by the gap between evolution ability with and without duplication, ∆〈C〉.
Evolution receives a greater boost as the duplication-heteromerisation becomes increasingly
advantageous.

Evolutionary runs were restricted to a maximum of three interactions due to finite
simulation resources, which is why the complexity asymptotically levels off at long time
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scales. As both sets of simulations converge to the imposed limit, the complexity gap
diminishes to zero. However, smaller samples corroborate that the gap continuously widens
when no constraint is placed, implying that duplication pathways repeatedly outpace
standard evolution. Furthermore, comparable simulations using insertion of random
subunits rather than duplication do not display any such acceleration. As such, the benefit
appears localised to duplication-heteromerisation pathways rather than additional genetic
length.

Importantly, as can be seen in the bottom right panel of Figure 4.6, the observed
evolutionary advantage increases with binding site length L. This arises from the scaling
“size” of the heteromeric bottleneck λ, where the time difference between forming a
symmetric homomeric and heteromeric interaction diverges quasi-exponentially. Again
there is no closed-form solution for formation times, but the ratio of the empirical form
from Section 4.2.1 gives:

λ = 〈τ
L
form〉
〈τL/2

form〉
≈ exp

(
0.2L(1.35Ŝc−0.5)

)

As L or Ŝc increase, the duplication pathway bypassing the bottleneck offers greater
and greater gain. There is also dependence on duplication rate and effective population
size, but these are approximately only linear effects.

With the nontrivial dependence on L and Ŝc, different model parameters can have
similar expectations for one interaction type but not the other. It is critical to analyse them
separately, with the first formed interaction being overwhelmingly symmetric homomeric
and the second heteromeric. Rescaling the required generations to form an interaction by
these expectations provides a rough measure of “evolutionary epochs”, which can be more
directly compared across parameterisations.

Even after collating many simulations, the distribution of formation times has massive
variance and makes histogram binning difficult. Since interaction formation is essentially
a Bernoulli trial, the number of attempts before it forms can be approximated with
a geometric distribution. As interaction formation typically takes many generations,
this geometric distribution can be replaced with its continuous version: the exponential
distribution. Fitting an exponential to the data agrees well with the noisy binned data, and
so is a good approximate representation that simplifies interpretation. These exponentials
are shown in Figure 4.7 for unscaled and rescaled generations.

As predicted earlier, duplication only accelerates evolution through the heteromerisation
of symmetric homomeric interactions and no gain is observed in forming the first interaction.
Once rescaled, all the different parameters approximately collapse onto a single line,
substantiating the theoretical expectations and providing a general principle independent
of parameter choice. Similarly for the second interaction, there is a collapse of simulations
without duplication. However, simulations with duplication do not collapse at all, and
take significantly less time to form, showing the evolutionary acceleration gained.

While the second interaction exponentials with duplication do not collapse, their
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Figure 4.7: Fitted exponentials approximate the distribution of formation times well for
various model parameters both without and with duplication, δ = 0 and δ = 0.05 respectively.
Unscaled generations (top) can span many orders of magnitudes for the first (left) and second
(right) interactions. After rescaling by the symmetric homomeric or heteromeric expectation,
the majority of simulations collapse. However, the second interaction with duplication does
not collapse, and is steeper than their without duplication counterparts—equivalent to faster
formation.

ordering has analytical roots. Heteromeric bottleneck size λ, part of the advantage to
duplication-heteromerisation, is the ratio of interaction formation expectation times as
defined previously. As this ratio increases, duplication offers greater advantage. The
second term involved in determining the evolutionary advantage is how frequently the
results of the duplication-heteromerisation pathway survive genetic drift. This corresponds
to when both symmetric homomeric interactions are lost but the heteromeric copy survives.
Markov chains could be used again, with three correlated random walks: two of length
L/2 and one of length L. An analytical result is difficult to derive, so these survival rates
are most easily found empirically through separate simulations as ε.

The product of these two terms, λ · ε, is an estimate of the evolutionary advantage of
the duplication-heteromerisation pathway. Values for these terms are provided in Table 4.1,
showing how they depend nontrivially on choices of L and Ŝc. The colour gradients in
Figure 4.7 are determined by this product, with lighter colours corresponding to larger
products and thus more advantage. Fitted exponential ordering reflects this, with lighter
colours being steeper and thus forming the next interaction and evolving sooner.

Since the second interaction to form when duplication is allowed is typically symmet-
ric homomeric, it is more appropriate to rescale these times by symmetric homomeric
expectations. Expectations should be weighted by the survival rate ε, as not all duplication-
heteromerisation attempts survive. The “fully” rescaled exponential fits are shown in
Figure 4.8 for the second formed interactions.

Now all simulations collapse onto a single general line, regardless of binding site
or interaction strength parameters or if duplication is allowed. While the theoretical
expectations and empirical factors do not perfectly match simulations, the proposed
pathway and underlying mechanisms reasonably explain all observations in the simulations.



72 CHAPTER 4. DUPLICATION DRIVEN EVOLUTION PATHWAYS

Table 4.1: The bottleneck size λ varies significantly for different parameters of L and Ŝc.
Similarly, the heteromeric drift survival rate ε depends on both parameters, but it primarily
increases with decreasing Ŝc.

Simulation parameters
L 60 80 100 120 140
Ŝc 0.83 0.75 0.74 0.70 0.71
λ-ratio 1923 246 537 184 1023
ε-factor 0.017 0.033 0.032 0.045 0.037
λ · ε 32.7 8.1 17.2 8.3 37.9
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Figure 4.8: Rescaling the second interaction in the duplication simulations by the symmetric
homomeric expectation and an empirical pathway survival factor ε collapses the distributions
onto the previous collapse when for when duplication is not allowed. Colours and line properties
are the same as from Figure 4.7.

As such, it is clear that the evolutionary advantage gained through duplication in these
simulations originates from this specific proposed pathway.

4.4 Protein data bank

The lattice self-assembly model is a limited representation of real protein complexes.
However, the simulations detailed above generate several qualitative hypotheses that can
be compared to complexes taken from the Protein Data Bank (PDB) [86]. This data can
be used to corroborate the hypotheses, even without access to the specific evolutionary
histories of individual proteins.

Protein domains have been an important way to classify related proteins since their
inception in 1973 by Watlaufer [87]. Domains are evolutionary conserved regions or
compact units of folding that can form part of a larger protein subunit. Two distinct
proteins sharing domains thus implies some evolutionary relationship between them.

CATH [88] is a major domain database which produces information on these evolution
relationships. Protein subunits are assigned a designating CATH domain code for each
domain present within them. Subunit can be assigned multiple different codes as well
as multiple of the same code, depending on how many domains or copies of a domain
the subunit has. If two unique protein subunits are assigned the same CATH domain
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Table 4.2: There were 3658 heteromeric interactions present in the refined dataset. Homologous
or non-homologous labels were assigned if there were or were not any overlapping CATH domains
present on both interacting subunits. Subunit domain information was then randomly shuffled and
labels reassigned, confidently showing homologous heteromeric interactions are over-represented.

Domains
Homologous Non-homologous

Pairing CATH 1528 2130
Shuffled 342 3316

code(s), they are in the same homologous superfamily and broadly overlap in terms of
their evolutionary ancestry. Similar to the simulations, heteromeric interactions in protein
complexes can be categorised as homologous or non-homologous if there is any overlap in
domain information on the binding subunits.

The set of proteins analysed here is derived from a previously curated dataset [10]. All
entries with at least one symmetric homomeric or heteromeric interaction are included
from the original and extended sets of bijective protein complexes. Proteins that had
missing or incomplete bioinformatic data, e.g. FASTA amino acid sequence, PDB atomic
coordinates, CATH domains, etc., are removed. Redundant proteins interactions are
filtered out using precompiled BLASTClust clusters (90% subunit sequence similarity,
unless stated otherwise) available from the PDB. Only one representant interaction per
combination of cluster IDs is allowed, picked randomly if multiple exist, to mitigate any
abundance bias of proteins recorded in the PDB.

Similarly, protein complexes which contain many repetitious interactions, conceptually
cycles in an assembly graph, have all interactions between identical subunits relabelled
into a single interaction. If interaction sizes were slightly different between subunits, e.g.
impacted by different conformations etc., an average value is taken. While there are many
inherent biases and flaws that cannot be excluded within the databases, curated dataset,
and data scrubbing methods, any overall trends present are reasonably robust enough to
instil confidence in any conclusions.

4.4.1 Domain co-occurrence statistics

One of the simplest observations is the excessive correlation of domains across heteromeric
interactions, i.e. the overabundance of homologous heteromers. A permutation test,
randomly shuffling the domain assignments on each subunit and recalculating the quantity
of homologous and non-homologous heteromeric interactions, is shown in Table 4.2. Fisher’s
exact test yields an overwhelmingly significant confidence, p ∼ 5× 10−235, that subunits
involved in heteromeric interactions are more commonly homologous than naively expected.
Additionally, only about 4% of domains in homologous heteromeric interactions did
not also exist in a symmetric homomeric interaction, while it was double that for the
non-homologous case.
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In addition, many protein complexes are comprised of a mixture of interaction types.
Approximately one quarter of complexes containing at least one heteromeric interaction
also had a least one symmetric homomeric interaction. Out of 594 complexes with multiple
heteromeric interactions, 73% of them contained a homologous heteromeric interaction.
The average composition for these 594 proteins was about 2.0 homologous and 1.5 non-
homologous heteromeric interaction, with p = 6.6× 10−12 that any complex has a greater
likelihood to have more homologous than non-homologous interactions. Such results
qualitatively agree with the model simulations, showing that homologous heteromers are a
significant contributor to the evolution of larger complexes.

Several assumptions in the model do not realistically reflect physical proteins. Specifi-
cally within the model, the number of possible heteromeric interactions scales quadratically
with genetic length, compared to linearly for symmetric homomeric interactions. This
relationship is combinatorially true for proteins as well. However, these two quantities are
comparable when model genotypes only contain a handful of subunits, whereas proteins
generally have magnitudes more possible pairwise combinations. So while the duplication-
heteromerisation pathway can be orders of magnitude faster, non-homologous heteromeric
interactions can still readily form given the quadratically scaling number of protein-protein
interactions possible in close proximity, e.g. outside a cell nucleus etc. Non-homologous
interactions outnumbering homologous in the data therefore is not in disagreement with
the simulations, but reflective of a more varied environment.

4.4.2 Interaction buried surface area

One clear trend from model simulations is that longer binding site lengths L and higher
strength threshold Ŝc result in a higher proportion of homologous heteromeric interactions.
While the physical binding of protein subunits is likely based more on kinematics and
interaction energies of their buried surface area (BSA), the two model parameters L and
Ŝc controlling interactions are reasonable as a first-order approximation. BSA is influenced
by many additional factors, such as steric exclusion or cooperative binding, but correlates
well with binding affinity [89].

Without the ability to rerun evolution, the protein data cannot show that larger protein
binding sites more frequently evolved via homologous heteromeric interactions. However,
assessing the homology and BSA of heteromeric interactions taken from the protein data
allows the converse question to be asked: are larger BSA heteromeric interactions more
commonly homologous or non-homologous? Although the arguments seem similar, this
question does not isolate the influence of BSA size to interaction binding, and results should
be interpreted cautiously. Nonetheless, the gathered results clearly display a statistically
larger BSA (“∝ L”) for homologous compared to non-homologous heteromers seen in
Figure 4.9, supporting a key prediction from the model.

The data contains many homologous heteromeric interactions related to immunoglobulin
proteins with high BSA, present in the upper peak. This immunoglobulin domain (CATH:
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Figure 4.9: a) Homologous heteromeric protein interactions have statistically larger buried
surface area than non-homologous interactions according to a Brunner-Munzel test: p ∼ 10−47.
The common language effect size (CLES) is .64, i.e. the homologous BSA will be larger in 64
out of 100 random pairs. b) Heteromeric interactions from in silico simulations skew towards
homologous ancestry as L increases, similar to the dataset results. Non-homologous heteromeric
interactions can still form at long interaction lengths, but quickly become rare.

2.60.40.10) is the most common recorded domain, both in the dataset as well as in
CATH. Statistical significance is still retained after removing any protein subunits with
immunoglobulin domains (p ≈ 7× 10−10, CLES=.59), filtering at a 70% cluster similarity
threshold (p ≈ 5× 10−9, CLES=.57), as well as combinations of these filters.

Not all factors can be accounted for, nor is BSA a direct analogue to binding site length.
Regardless, the statistical significance is strong supporting evidence for the abundance of
heteromeric interactions which likely evolved through duplication. Care should also be
taken that the evidence is based on correlation rather than causation. However, these results
are sufficient to justify a more direct method of testing for duplication-heteromerisation
driven evolution.

4.4.3 Subunit binding sequence alignment

Alongside the structural and atomic coordinate data from the PDB and interaction
homology from CATH, residue-level details from a database of crystallographic interactions
(PDBePISA [90]) are critical to substantiating the duplication-heteromerisation pathway.
Examining the specific residues involved in heteromeric interactions, where two subunits
may have an excessive similarity, yields more incontrovertible proof that the interaction
was once symmetric homomeric and has since duplicated and diverged.

There are two separate components in the interaction comparison: sequence alignment
and binding residues. Sequence alignment is straightforward, using the Needleman–Wunsch
algorithm as implemented by EMBOSS needle [91] with default parameters. Binding
residues are taken from the macromolecular interfaces from PDBePISA and converted to
an intermediate format to track binding residues by subunit. The two datastreams are then
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overlaid, such that binding residues are aligned according to optimal sequence matching.
A diagrammatic overview of this Subunit Binding Sequence Alignment (SuBSeA) process
is shown in Figure 4.10.
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Figure 4.10: a) A trimeric protein where subunits A and B have a homologous heteromeric
interaction while A and C have a non-homologous one, according to their example CATH domains
in grey. b) After sequences are aligned, residues are clearly marked if they are involved in an
interaction with another subunit. Identical, similar, and unrelated residues are indicated by ‘|’,
‘:’, and ‘.’ respectively. c) Aligned binding residue partners are counted, e.g. how many times a
‘C’-interacting residue is opposite an ‘A’-interacting residue, or a ‘B’-interacting residue opposite
a non-interacting residue (denoted ‘∅’). The results are stored in the matrix M.

Co-occurrences of binding residues are then tracked in a matrix M, where each element
is the number of aligned residues between two given subunits. In the common situation
where one residue is not aligned opposite another target-interacting residue, it is tracked in
a catch-all null column/row, ∅. The co-occurrence counts and the marginal distributions
approximate the probability that the alignment of an interaction could happen by chance.
The probability for an element in the matrix is given by:

pij = F

Mij; δL,

∑
j
Mij ·

∑
i
Mij

L1 · L2


where F is the cumulative binomial distribution, L1 and L2 are the sequence lengths

of the first and second subunits, and δL is the length of the overlapping alignment region.
If only null column and rows are present, the interaction is trivially assigned a unit

p-value. Otherwise, the lowest probability (inferring the strongest likelihood of two
interfaces being related) is stored and the relevant row and column are removed from the
matrix. This process continues iteratively until there are no surviving rows or columns
to sustain the matrix. The series of stored p-values is then combined using the Fisher
method, although other methods can be used, e.g. Stouffer’s, to determine the overall
probability of interaction homology between two heteromerically linked subunits. Although
the two interactions demonstrated comparable sequence similarity in Figure 4.10, the
A-B interaction has more specific matching of residues compared to A-C, giving it higher
SuBSeA confidence and validating the homologous label.

Confidences are assigned for each heteromeric interaction, which are grouped into
homologous or non-homologous if they do or do not share domains, as previously. Survival
functions for the distributions of these two groups are shown in Figure 4.11. These func-
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tions measures how much of a population is above some confidence level, and are related
to cumulative distribution functions as SF = 1−CDF. Crucially, homologous heteromeric
interactions display substantially stronger confidences, giving credence to ancestral sym-
metric homomeric interactions which explicitly underwent duplication-heteromerisation.

100%

10%

1%

0 5 10

HomologousNon-homologous

SuBSeA confidence

Figure 4.11: SuBSeA confidences calculated for 1528 homologous and 2130 non-homologous
heteromeric interactions from the dataset. Homologous interactions displayed stronger confidences,
evidenced by the slower decaying survival function, i.e. more homologous interactions had
confidences greater than any arbitrary p∗ compared to non-homologous interactions. The survival
functions can be approximated with a power law for − log p∗ > 0 using the form ∝ p∗−ξ, with
exponents of 0.15 and 0.34 respectively.

Fewer homologous heteromeric interactions failed to find any alignment, which results
in log p∗ = 0, compared to non-homologous interactions, 42% and 75% respectively. In
addition, the power law approximation shows the SuBSeA confidence in homologous
heteromeric interactions decays roughly twice as slowly as the non-homologous case.
Nearly a third of the homologous alignments were more significant than the common
threshold of p∗ = 0.05 (− log p∗ ≈ 1.3), compared to only about 10% for non-homologous
interactions.

Several interactions in the non-homologous distribution tail highlight the uncertainty
in any classification scheme. For example, the largest outlier, PDBid: 3F3P, has single
digit sequence similarity between subunits J and L but substantial structural similarity
around the interacting region and a SuBSeA confidence of 10−23. These subunits may
have duplicated and diverged too far in the past to be assigned homologous domains, with
subunit J and L having “propeller” and “sheet” domain architectures respectively. While
domain assignments always on rely on incomplete knowledge, these observations suggest
that the derivation of evolutionary ancestry can benefit from the combination of multiple
sources of information [92].
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4.4.4 Symmetric homomeric precursors

Additional confirmation of duplication-heteromerisation comes from comparing symmetric
homomeric and heteromeric interactions. This indirect approach, which is more difficult
to configure consistently, is based on whether heteromeric interactions have symmetric
homomeric precursors. If a heteromeric interaction did evolve from a duplicated symmetric
homomeric interaction, the symmetric homomeric version could still exist in another
recorded protein complex. Unfortunately, it is also possible the symmetric homomeric
version is nonextant or has not yet been recorded in the PDB.

Similarly, it is ambiguous when an interaction between two subunits should be classified
as symmetric homomeric or heteromeric. An interaction with high sequence similarity
could indicate “recently” duplicated subunits or two identical subunits with slight measur-
ing/recording errors. Distinguishing between these two cases is not straightforward due
to inherent experimental uncertainty and lack of a unified data standard, but should be
manageable background noise to a stronger signal.

Comparisons are generated using the heteromeric interactions classified as homologous
or non-homologous. Both subunits in each heteromeric interaction are compared against
all symmetric homomeric subunits in the dataset which share domains. This produces an
order of magnitude more comparisons than the direct heteromeric alignments. Overall,
homologous heteromeric interactions still exhibit better alignment against symmetric
homomeric complexes, shown in Figure 4.12.
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Figure 4.12: Subunits with heteromeric interactions can be compared against symmetric
homomeric complexes which share CATH domains. As in Figure 4.11, binding alignments which
are homologous are statistically more confident. Since there are many more symmetric homomeric-
heteromeric comparisons possible, the survival function is stable down to a lower percentage and
higher p∗. The ξ fits (see Figure 4.11) are approximately 0.22 and 0.33 respectively.

Despite the differences in the heteromeric and symmetric homomeric precursor and the
direct heteromeric comparison, the results of the binding alignment are quite similar. The
percentages of interactions failing to find any alignment were nearly identical to before,
as 46% and 73% for homologous and non-homologous respectively (cf. 42% and 75%).
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The power law approximations were also similar with 0.22 and 0.33 (cf. 0.15 and 0.34),
although the homologous case has a more pronounced difference.

The non-homologous comparisons are almost the same, perhaps arising from some
common short residue sequences that occur in many proteins or as a limit of how correlated
sequences might be. Reassuringly, the homologous alignments are definitively better in
the direct heteromeric comparison case. So while the precursor comparison provides an
additional contribution to the likelihood of duplication-heteromerisation, the indirect case
does indeed accumulate more noise in the alignments.

4.4.5 Duplicating arbitrary protein complex symmetry

Symmetric homomeric interactions are an incredibly widespread type of interaction [93],
and have been the sole focus of the duplication-heteromerisation pathway thus far. These
interactions impart the protein complex with C2 symmetry; however, the concepts outlined
here apply far more generally. With the direct relationship between assembly graph
cycles and potential symmetry, reducing or eliminating an assembly graph cycle effectively
reduces a complex’s symmetry. Hence heteromerising the symmetric homomeric cycle
(C2 → C1 symmetry) improves evolvability, since cycles are a dominant contributor to the
risk of unbound growth and strong nondeterminism [24].

Duplication-heteromerisation can act generally on any cyclic assembly to reduce
the inherent symmetry through subfunctionalisation of the involved interactions. A
homotetramer complex (C4) can transition to a homodimer of heterodimers (loosely
C2 × Cpseudo

2 ), where the heterodimer is comprised of homologous subunits. This complex
can transition even further to an asymmetric complex of four homologous heteromeric
subunits.

Such behaviour can conceptually be extended to three dimensions and other symmetries,
e.g. dihedral groups. As the duplication-heteromerisation pathway relies on neutral drift,
these more complex cycles and symmetries almost certainly reach the evolvable heteromeric
state less frequently. However, this is just a rescaling factor of the time spent in the
drifting phase rather than any mechanistic difference.

Thousands of likely candidates are easily identified through browsing the PDB by
pseudosymmetries. One example case is the complex PDBid: 3WJM, with two unique
subunits forming a heterohexamer with D3 pseudosymmetry. Both unique subunits share
the same two CATH domains and have just below 80% sequence similarity. These subunits
have SuBSeA confidences between the different subunit interaction conformations of
4× 10−7 to 2× 10−34. As such, this “dimer of trimers” probably evolved through cyclic
interactions which have since duplicated and diverged into heteromeric states. This “X of
Y” composition of complexes has been widely observed [94, 95], and the proposed pathway
is entirely complementary to these existing studies.

Another example is the complex PDBid: 2IX2, which forms a heterotrimer from three
unique subunits but with C3 pseudosymmetry. The three subunits average around 50%
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sequence similarity between them. This does imply homology, typically taken above
30% similarity, but is relatively weak evidence [96]. Comparing the interactions directly
gives SuBSeA confidences of around 10−7, providing stronger evidence of shared ancestry.
Furthermore, this is an example of an asymmetric homomeric interaction and a symmetry
that is not possible in square geometry. Both of these examples are shown in Figure 4.13.

a) b) c)

Figure 4.13: Two example protein complexes found through the PDB’s pseudosymmetry
browser. a) PDBid: 2IX2 has C3 symmetry, with heteromeric interactions between three distinct
subunits. However, sequence similarity and SuBSeA confidences suggest this was originally
an asymmetric homomeric interaction. b) PDBid: 3WJM has D3 symmetry, where two C3
homotrimers form a dimeric complex. c) Side view of PDBid: 3WJM with only one subunit
from each homotrimer. The heteromeric interaction forming the dimer again has strong SuBSeA
confidences, implying it was once symmetric homomeric.

4.5 Conclusion

Genetic duplication is involved in evolution across all domains of life, but is especially
pervasive in more complex eukarya. There are various proposals on why duplication is
so widespread, with many being complementary and possibly all part of the larger truth.
Without being able to replay the evolution of life, it is challenging to examine these
reasons in depth. However, the duplication-heteromerisation pathway discussed here aligns
well with existing theories [70, 81, 85] and provides an evolutionary advantage outside of
selection pressure with minimal assumptions.

Symmetric homomeric interactions form much more quickly but are more susceptible
to misassembly than heteromeric interactions, recovering dynamics observed in other
more biologically oriented models [42, 43]. Duplication-heteromerisation allows evolution
to cherry-pick the best aspects of both types of interaction, transforming fast-forming
symmetric homomeric interactions into evolvable heteromeric interactions. The duplication
pathway is only indirectly beneficial, by enhancing the evolvability through heteromerisa-
tion. This matches the prognosis that duplication by itself doesn’t confer an advantage [70].

Duplication accelerates the evolution of larger phenotypes and is a repeatable pathway,
as seen in in silico simulations. Several qualitative predictions made by the model can be
recovered from experimentally recorded proteins in the PDB. Heteromeric interactions have
an excessive correlation of domains, i.e. more homologous heteromeric interactions than
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expected by chance. Homologous heteromeric interactions also robustly have larger buried
surface areas than non-homologous ones. Perhaps the strongest piece of evidence is that
subunit binding sequence alignment is substantially better for homologous interactions.
Together, these results show that duplication is a significant contributor to the observed
evolution of complexity in protein complexes.



82 CHAPTER 4. DUPLICATION DRIVEN EVOLUTION PATHWAYS



CHAPTER

FIVE

CONCLUSION

Proteins play fundamental roles in innumerable biological processes, and appear in a
diverse range of shapes and sizes. The dynamics governing the interactions between
protein subunits, or even higher-order interactions between complexes, are influenced by
geometric and other external factors. Coarse-graining proteins into a simpler representation
allows general characteristics of protein complexes to be modelled and explored. Lattice self-
assembly models, conceptually linked to protein quaternary structure, facilitate qualitative
predictions and novel insights into protein complex self-assembly.

The research presented in this thesis is progress towards a more general understanding
of interactions between protein subunits. Each segment can stand alone, but together they
form a coherent whole. Crucially, these results highlight the intricate relationship between
immediate assembly dynamics and long-term evolutionary dynamics. In particularly,
understanding the dynamics acting in one of these scales contains insight on the other.

Chapter 2 focuses on the continuation and completion of an algorithmic approach
to the classification of the boundedness and determinism of an arbitrary set of self-
assembling subunits. The revamped classification scheme remedies multiple deficiencies
and extends the range of allowed interactions, including self-interactions. This general
framework provides a link between self-assembly behaviour and proteopathic risk, where
proteins containing repeated patterns (cycles) are typically only a few mutations away
from uncontrolled aggregation (unbound).

A comparison between implementations of the previous stochastic assembly classifica-
tion scheme and the complete assembly graph formalism conclusively shows a material gain
in speed. While the stochastic assembly scheme was occasionally incorrect, the new scheme
maintains flawless classification. Multiple extensions can also be applied to the assembly
graph approach. For example, seed dependence or variable interaction environments can
be considered, if relevant to a target system’s context. Other mathematical relationships
natural to assembly graphs, such as isomorphisms, assist in genotype-phenotype maps
currently under research.

Chapter 3 generalises the polyomino model by introducing binary strings as the
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genotypic elements which encode binding sites. This generalisation greatly expands the
scope of the self-assembly model, allowing new dynamics to be studied without sacrificing
model tractability. Interaction strength evolution can then naturally be modelled, in
parallel with analytic predictions from a suitable Markov chain approximation.

Deterministic phenotypes, which can assemble with any possible ordering of steps,
obey these strength approximations, while nondeterministic phenotypes diverge rapidly
and nontrivially. Interactions which contribute to nondeterminism, i.e. inherently impose
a preferred order to assembly, are driven by selection pressures to strengthen or weaken
depending on whether the subunits needed to respectively bind earlier or later in the
assembly process. This “core” and “periphery” assembly is ingrained into preferred
assembly pathways. Evolutionary pathway also reflect this assembly preference, as the
order of the evolutionary transitions corresponds to the optimal ordering of interaction
strengths. These qualitative observations match small-scale experimental observations
found in the literature [47, 62].

Chapter 4 focuses on a well observed but less well understood genetic event: duplication.
In addition, self-interactions are explicitly allowed in the full model unlike in previous
polyomino studies. An analytic pathway through duplication-heteromerisation allows
evolution to optimally exploit the fast-forming nature of symmetric homomeric interactions
as well as the greater evolvability of heteromeric interactions. This pathway is sufficiently
repeatable, enabling a much faster increase of structural complexity than possible without
duplication.

Multiple qualitative predictions generated by in silico simulations have been tested
against experimental data taken from the Protein Data Bank. Proteins from the dataset
display a significant overabundance of homologous heteromeric interactions, suggesting
origins through duplication. Likewise, homologous heteromeric interactions have larger
buried surface areas, conceptually similar to binary string binding site length, compared
to their non-homologous counterparts. Most conclusively, homologous heteromeric inter-
actions have statistically more confident alignments at the binding residue level when
comparing subunit binding regions. Collectively, these results strongly suggest that the
duplication of symmetric homomeric interactions play a meaningful role in the evolution
of heteromeric protein complexes.

5.1 Avenues for further investigation

As a result of the main findings presented in this thesis, various research offshoots have
emerged. These additional avenues likely require an extended period of time to aptly
explore and address, and so are described here for future investigations.

Fixed interaction geometry is inherent in the lattice description of self-assembly. How-
ever, it does not apply to proteins, which can bind in a wide variety of configurations.
Shifting to a more “free-form” concept of subunits could model dynamics that cannot
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be modelled with fixed interaction geometry. With circular subunits, interactions could
occur between any genotypic segments on the perimeter, rather than between four inde-
pendent and isolated faces. While this approach raises many additional questions on steric
complications, it may also provide an opportunity to explore how proteins overcome them.

Similarly, rigid interaction geometry dictates that the size of binding site is fixed. Intro-
ducing an ability to handle binding sites of different sizes, possibly through the framework
mentioned above, will allow the sizes themselves to evolve. Dynamic binding sites could
explore the evolution of interaction strengths from a different angle, exploring how interface
size grows alongside structural complexity. In addition, it could be used to examine under
what context might interactions evolve to be symmetrically or asymmetrically sized.

General polyomino model studies thus far also do not address many thermodynamic
considerations. Probabilistic decoupling of previous bindings establishes new dynamics
which may provide additional capacity to explore the evolution and maintenance of
interaction strengths. All of these extensions to the model are relatively unexplored, and
could provide a way to redress some of the more unrealistic simplifications of proteins.

In addition to proposed studies above, there are several topics that have already been
probed. These studies on modular interactions and genetic regulation have been conducted
with the integer-labelled polyomino model. The binary string generalisation introduced
in Chapter 3 overcomes multiple drawbacks of this previous model, allowing graduated
interaction strengths as well as relaxed transitivity, which enables smoother evolutions. As
such, these previously unsuccessful studies will almost certainly benefit from the generalised
polyomino model.

Modularity, a measure of reusing the same components in multiple circumstances, has
been shown to play a role in efficient evolution by Kashtan and Alon [97], amongst others.
This was applied to polyominoes by evolving on a fitness landscape which alternated
between two phenotypes with a common subset of interactions. However, due the strong
risk of deleterious assembly when multiple interactions are repeated, little modularity
emerged.

As discussed previously, interactions in the generalised model are not necessarily
transitive. With a more complex web of interactions possible, modular structures have
a better chance to emerge while remaining bound and mostly deterministic. This newer
framework might then be able to replicate earlier claims that modular evolution can
outpace independent evolution. Such a result was hinted at in the plasticity of Figure 3.14,
but should be examined in a more focused study.

Genetic regulation, loosely the ability to switch on and off parts of a genotype, plays
a huge role in the control of genetic transcription and translation of genes into proteins.
Regulation can be imposed in the self-assembly model by additional genotypic elements
which control whether the subsequent encoded subunit is produced. Abstract but multiscale
models have shown promising incorporation of regulation into protein assembly [98]. Early
attempts with the polyomino model used randomly mutating binary switches, but they
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could not adapt to their local fitness landscape.
With binary string binding sites leading to a greater number and diversity of interactions,

it would be easier for subunit and regulatory interactions to coexist and potentially co-
interact. Recoupling subunit and regulatory interactions through using the generalised
model may reveal the spontaneous emergence of regulatory networks.

5.2 Final thoughts

Modelling the self-assembly of protein quaternary structure as polyominoes leaves a
fair amount to be desired. Protein conformation and cooperative binding dynamics
are disregarded, together with other important specifics of protein structures and their
interactions. However, through these simplified approaches, we can gain insights that are
otherwise difficult to model, precisely because of the details that are omitted here. We
finally can see the wood for the (approximated) trees.

The polyomino model has already provided additional reasoning on the risk of protein
aggregation, asymmetric interaction strengths, and why duplication may be so potent.
While there are plenty of dynamics that cannot be explored using this model, there are
many left that can. Hopefully this model will continue to serve a role in understanding
the general nature of protein interactions and their resultant complexes.
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APPENDIX

A

SOFTWARE AND SIMULATION DETAILS

Pertinent details to evolutionary dynamics or algorithm implementations are provided in
the main text. However, there are additional, ancillary details provided here regarding lesser
simulation parameterisations. A core theme of this work is that the dynamics generally
transcend any specific parameterisation. For completeness though, all parameters are
detailed below.

A.1 Simulation parameters

Most units of presented results were specialised on slightly different aspects of evolution-
ary dynamics, and correspondingly needed slightly modified simulations. The common
parameters, as well as those unique to certain simulations, are discussed below.

One of the key results repeatedly emphasised in the main text was the generality of
observations. Most parameters took on arbitrary values, chosen through initial estimation
or adjusted in response to simulated data. Their final values were primarily chosen to
balance clarity of results and the limitations of computational power.

In all simulations, the population size was fixed at 100 individuals. This value was large
enough to minimise stochastic fluctuations in selection dynamics and risk of extinction,
but maintain the ability to collect data over many generations. Other common parameters,
which varied for different simulation were the number of generations G, the mutation
rate µ, and the previously stated repeated number of assemblies K. There is also the
nondeterminism threshold χ, which is the minimum fraction of assemblies required to be
a valid phenotype.

The binding strength evolution dynamics shown in Chapter 3 used parameters shown
in Table A.1. Importantly, these simulations used a fitness function relating to assembly
graph edges rather than phenotype size.

Duplication simulations from Chapter 4 contained mostly similar parameters, except
the new addition of duplication and deletion, given by δ. These rates were set by the same
parameter to ensure approximately stable genotype size, rather than growing or shrinking
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Table A.1: All assembly graphs were fixed at two subunits, as indicated by the given subset in
the main text. Binding site lengths were L = 64 with a critical strength of Ŝc = 0.6875. Subunit
+ orientation information was used, again indicated by the coloured assembly tiles. The dynamic
landscape evolutions rewarded fitness alternatively to the 12-mer and 10-mer with a period of
Ω = 50, and fitness was the weighted sum for all polyominoes, hence χ = 0, γ = 1.

Phenotype relation Simulation parameters
System Polyomino Composition K χ µ G γ T

〈Ŝ〉 evolution free S+O 25 1/3 0.125/L 2000 5 25
Dynamic free S+O 150 0 0.125/L 750 1 10

too rapidly. These simulations returned to the standard size based fitness function. In
addition, these simulations required less phylogenetic reconstruction, and hence could
simulate more generations. Simulations generally terminated early, as they were set with
a three stable interaction limit.

Table A.2: Simulations varied for L and Ŝc, with values explicitly provided in relevant figures.
All simulations had variable genotype length, with a dynamically regenerating neutral space of
three subunits. Anytime an interaction formed with a neutral subunit, a new randomly generated
neutral subunit was added to the end of the genotype.

Phenotype relation Simulation parameters
System Polyomino Composition K χ µ G δ

Duplication free shape 20 1/3 0.25/L 106 0.05

A.2 Code availability

All of software used in producing the data and analyses presented in the main text are
publicly available online. Each have flexible licenses, designed to easily allow modification
and repurposing provided the new uses are also freely available. Projects are not all
actively maintained, but should be usable with currently available software versions.

The assembly graph classification scheme discussed in Chapter 2 is implemented at
https://github.com/ASLeonard/SLAM, titled Square Lattice Assembly Model (SLAM).
Although the assembly graph classification scheme can be most generally implemented
in terms of edges, this program is optimised to use integer labels directly. There are
additionally various scripts that can animate polyomino assembly according to different
implementation models.

Many individual aspects of polyomino models were subsumed by assembly graphs,
such as the stochastic assembly algorithm. Provided a unique model had a description
for forming an assembly graph, the subsequent assembly took on a global form. As
such, a generic framework was created to allow rapid prototyping of different genotypic
descriptions for new models. The core of this framework is implemented at https:
//github.com/ASLeonard/polyomino_core.

https://github.com/ASLeonard/SLAM
https://github.com/ASLeonard/polyomino_core
https://github.com/ASLeonard/polyomino_core
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The generalised polyomino model extends this framework by providing the binary string
binding site genotype elements. This was initially implemented specifically for the evolution
of binding strengths in Chapter 3, but was later adopted in multiple projects. The initial
implementation is found at https://github.com/ASLeonard/polyomino_interfaces,
where binary strings are restricted to fixed width integers (8, 16, 32, and 64 bits, with
experimental support for 128 bits).

A more flexible model was used for Chapter 4, allowing arbitrary length binary string
binding sites. This model is found at https://github.com/ASLeonard/duplication.
The PDB analysis was initially modified code provided by Ahnert, and later extended into
SuBSeA. The ongoing development of SuBSeA can be found at https://github.com/
ASLeonard/SuBSeA.

The general framework laid out above has also been used in studies beyond those
presented here. The briefly discussed advanced genotype-phenotype sampling method
from Chapter 2, central to forthcoming work by Jouffrey, Leonard, and Ahnert, has been
extended and implemented at https://github.com/vatj/gpmap_integer_polyomino.

A.3 Pseudocode implementations

Although all the code used across this work is freely available as described above, several of
the key algorithms are expressed below. In particular, the assembly algorithm is outlined
as introduced in the text, as exact assembly implementation has been demonstrated to
have consequences.

The assembly algorithm is outlined below in Algorithm 1. This general form of edges
and weights removes the need to re-implement a polyomino assembly algorithm for every
new form of genotypic element and interaction matrix. Similarly, other forms of unbound
threshold can be used, if larger or smaller assemblies are desired, or just pure spatial
constraints.

Algorithm 1: Polyomino assembly overview
Input: assembly graph edges E
Result: polyomino structure P

1 initiate structure P with seed // random or fixed seed
2 identify possible_bindings interactions using E
3 while possible_bindings is not empty:
4 new lattice binding site bij = choice(possible_bindings)
5 /* can weight choice if E contains interaction probabilities */
6 P← bij // add new tile to structure
7 ; remove bij from possible_bindings
8 update possible_bindings for new interactions to bi
9 if size (P) > 4N2

s : // Upper bound for Ns subunits
10 return unbound
11 return P

https://github.com/ASLeonard/polyomino_interfaces
https://github.com/ASLeonard/duplication
https://github.com/ASLeonard/SuBSeA
https://github.com/ASLeonard/SuBSeA
https://github.com/vatj/gpmap_integer_polyomino
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Similarly, phenotype comparison is crucial to phylogenetic reconstruction and many
other population tracking features used to generate results. An algorithmic overview is
provided below in Algorithm 2, and more complete details on the composition relation I
and mapping strategyM can be found in Appendix B. This process provides objective
representations of phenotypes, so different model simulations at different times will produce
equivalent numeric strings.

Algorithm 2: Phenotype representation overview
Input: polyomino structure P
Parameters : polyomino composition relation I
Result: invariant phenotype representation P

1 ∆X,∆Y = extent(P) // spatial width and height
2 fill lattice details L = I (P)
3 if ∆Y > ∆X: // convention choice
4 rotate clockwise π/2
5 /* Next step depends on polyomino definition and inherent symmetry of P */

6 for each unique symmetry operations Ô:
7 apply L′ = Ô (L) // e.g. rotate or reflect L
8 relabel L′ with mapping strategyM append relabelled L′ to minimals list
9 return min (minimals) // lexicographic sort

Simulating evolution is fairly straightforward, just repeatedly mutating and selecting
individuals as shown in Algorithm 3. The same general form is used in all simulations,
allowing a high degree of reusability. Specific functions can be inserted into the framework,
normally after assembly, which then captures any desired dynamics, e.g. interaction
strengths, sequence similarity, etc.

Algorithm 3: Evolution framework
Parameters : fitness function F
Result: evolutionary history

1 Initialise genotype population G // randomly or with fixed sequence
2 for k → kmax: // iterate for kmax generations
3 for genotype g ∈ G:
4 mutate g given rate µ
5 determine phenotype P = assemble (g)
6 /* extract any simulation specific information */
7 population_fitnesses← F (g,P) // assess individual g’s fitness

8 G ′ = choices (population_fitnesses)
9 // roulette wheel selection

10 repopulate new generation G ← G ′
11 return evolutionary history
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B

POLYOMINO COMPARISON

Two-dimensional lattice self-assembly results in polyominoes, sets of continuously connected
square tiles. Determining if two self-assembling structures are equivalent can be highly
nontrivial. Different polyomino definitions allow or forbid certain symmetries, while
supplemental information from the assembly process can also be meaningful.

Polyomino comparison determines if two assemblies are equivalent and correspond
to a single phenotype. This occurs in two distinct situations. The first is comparing
repeated assemblies from the same genotype, either with fixed or random seeds. This case
is fairly simple, as if the assemblies are the same, they can only differ up to some easily
detectable absolute rotation. The second situation is comparing assemblies from different
genotypes. This is much harder, as equivalent assemblies are not necessarily separated by
just symmetry operations. An invariant representation, introduced below, connects the
desired properties of genotypes to observable properties of phenotypes.

B.1 Assembly structure details

There are two levels on which structural information is captured during self-assembly:
macroscopic shape and microscopic detail. Macroscopic shape is the polyomino, determined
by the configuration of tiles glued together, while microscopic details cover the subunit
type and orientation. Depending on the context of the investigation, as much or little of
this information can be used to determine what stipulates the equivalence relation.

B.1.1 Polyomino definitions

Polyominoes can be defined under three main levels, with decreasing strictness: fixed,
one-sided, and free. Shapes which are rotations of each other are distinct under fixed
polyominoes, but are not under one-sided. Shapes which are reflections of each other are
distinct under one-sided, but are not under free. There is no “correct” choice of definition,
but rather it should be selected to best match the constraints and considerations of the
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target system under study.
For a fixed polyomino, shapes can be compared directly, while for one-sided, there are

four potential orientations to check for equivalency. Finally, for a free polyomino, there
are four rotations for each chirality, making a total of eight potential orientations. Not all
of these will be distinct, i.e. a two-by-two polyomino may have C4 rotational symmetry,
but distinct reflections, and so only two unique configurations to check.

B.1.2 Structure composition

In addition to the hierarchical polyomino definitions, the composition of the assembly can
be used to distinguish identical shapes with different tiers of strictness. If composition
does not contribute meaningfully, all subunits are treated equally, and comparison acts on
standard polyominoes. However, if it does play a role, e.g. a homodimer and heterodimer
have different functions or properties, this information can “adorn” the polyominoes.

Supplementing polyominoes with composition information breaks the symmetry be-
tween genotype and phenotype. All polyomino studies, excluding fixed-seed considerations,
do not impose any special conditions that the genotype order matters, e.g. two subunits can
swap order with no observable effect. This meaningless swap would change the composition
information of the assembly, as the subunit types have swapped as well. To correct this,
composition information must be representable in a manner which does not depend on
any specific genotype order. Any isomorphic assembly graph is, by definition, equivalent,
and so must be mappable to a single composition.

B.2 Polyomino encoding

Polyominoes can be characterised as numeric strings to facilitate comparison. First, an
r-tile tall and c-tile wide polyomino is bounded by an unpadded box, such that the lattice
shape matches an r×c matrix. Each element in the matrix is concatenated into a numeric
string, from top left to bottom right, moving row-wise.

Occupied lattice sites are labelled according to the chosen comparison relation, as a
function of the placed subunit type and rotation, I (Ti, θi) that were used during assembly.
Empty lattice sites are denoted by 0. The three currently used labelling systems are

• Shape only: I (Ti, θi) = 1

• Subunit: I (Ti, θi) = Ti

• Subunit + orientation: I (Ti, θi) = 4 · Ti + θi − 3

By convention, subunit types start from 1, while θ counts the number of π/2 clockwise
rotations from the vertical, starting from 0. Additional labelling systems can easily be
constructed, depending on what information is pertinent to the model. An example
of subunit + orientation labelling is shown in Figure B.1. Although numeric strings
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generated in this fashion are straightforward to compare, they still do not possess the
desired genotype symmetries.

a) assembly graph b) polyomino c) bounded box

↑ ↑ ↑

↑
↑ 0 0 2

0 0 6

1 5 9

assembly encode

Figure B.1: a) An assembly graph with three subunits and three interactions, using the same
colour scheme as Figure 1.4. b) The assembly polyomino is a backwards ‘L’-shape, where the
arrows indicate the direction of placed tiles. c) This polyomino requires a three by three bounding
box with four empty elements. Occupied sites are labelled using the subunit + orientation
relation, forming the string “0 0 2 0 0 6 1 5 9”.

B.2.1 Minimal representation

Desired phenotype symmetries are restored in polyominoes by removing the specific
genotype derived information. Relabelling the numeric string achieves this, under a
consistently constructed mapM : I → I ′. The first occupied site is assigned the smallest
possible label, with T ′1 = 1, θ′1 = 0. Other rotations of the same subunit are correspondingly
labelled, according to

I ′ (Ti, (θi + n) (mod 4)) = I (T ′1, θ′1 + n)

for n ∈ [1, 3]. After these changes propagate throughout the entire string, the process
moves to the next occupied site which has not been relabelled. This site is assigned
T ′j = 2, θ′j = 0, and so on, until all sites have been relabelled. An example of relabelling a
numeric string is shown in Figure B.2, for the polyomino in the previous figure.

a) b) c)

0 0 2

0 0 6

1 5 9

original

0 0 1

0 0 5

4 8 9

minimal

M

M : I → I′

1 → 4
2 → 1
5 → 8
6 → 5
9 → 9

Figure B.2: a) The directly encoded numeric representation is relabelled according to the
mapping strategy, M. The exact mapping is shown in b), where the mapping is constructed
sequentially, as discussed in the text. c) Occasionally, the direct encoding can be the minimal
representation, as for this assembly graph. Notably, this assembly graph is isomorphic to that in
Figure B.1, finally connecting genotype and phenotype equivalence through relabelling.
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B.3 Lexicographical comparison

Two numeric strings can easily be ordered lexicographically. If every element of the
polyominoes’ strings were single digits, the comparison would correspond to the size of
the number, e.g. the smaller number is the smaller representation. For larger structures
potentially containing multiple-digit labels, the comparison relation must proceed one
element at a time. Trivially, if the dimensions of the bound box are different, or contain
different numbers of nonzero elements, the two polyominoes cannot be equal.

Given two distinct numeric strings A and B (A 6= B), A is more minimal than B if
the earliest larger element (compared pair-wise) is found in B. More formally, this can be
expressed as

∃ argmin
k

(Ak < Bk) S.T. (Ai ≤ Bi)∀i ∈ N[1,k)

Depending on the polyomino definition used and a specific polyomino’s symmetry, there
can be anywhere from one to eight possible rotations/reflections to test. Relabelling should
occur after each symmetry permutation, with reflections implemented before rotations.
This set of symmetry-related numeric strings is then compared lexicographically. The best
representation for a polyomino is thus taken as the smallest minimal encoding, as shown
in Figure B.3. Any polyomino represented this way will always equal a similarly processed
equivalent assembly, regardless of any genotypic differences.

12 7 0

0 4 0

0 5 10

original

1 5 0

0 9 0

0 7 3

0 0 1

5 9 7

3 0 0

0 1 5

0 9 0

7 3 0

1 0 0

5 9 0

0 0 3

M
R̂ ◦M F̂ ◦M

F̂ ◦ R̂ ◦M

150090079 001597300 015090730 100597003

Figure B.3: The original polyomino encoding can be minimised, rotated and minimised,
flipped and minimised, or flipped and rotated and minimised. This polyomino has C2 symmetry,
so only 2 rotations and the flipped versions are necessary to check. The second case, rotated and
minimised, is the fundamental representation after lexicographical comparisons, with other cases
faded out.

Note that this process is not always necessary. For example, if the metric of interest
is the population-averaged size, phenotypic equivalence is not necessary. However, once
phenotypes need to be tracked over evolving populations with multiple genotypes, then
this process becomes mandatory to appropriately group individuals.
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PHASE SPACE TRANSITION SUCCESSES

The generality of evolutionary dynamics and phenotype transitions are extensively discussed
in Chapter 3. This appendix provides additional details that underpin these dynamics,
complementing the bigger picture painted in the main text.

Tractability is a great strength of the generalised polyomino model, but many derivations
apply to equilibrium or population trends. Simulations are inherently stochastic, at the
levels of both population and assembly dynamics. As such, the following derivations are
valid, but should be interpreted cautiously when comparing against individual numerical
results. With this in mind, the explanations of observed transition successes are expounded
further below, along with approximations for the observed nondeterministic equilbria.

C.1 Direct transitions

Predicting if a phenotype transition will fixate is—on average—straightforward. If there
is a net increase in fitness for an individual, it is more likely to reproduce than any
other member of the population, and thus eventually dominate the population. Finite
populations introduce stochasticity, where fitter individuals are sometimes lost to drift,
but in general the above statement is true. As such, determining if a transition leads to
an increase in fitness is generally equivalent to determining if the transition is successful.

Fitness depends on multiple terms involving different parameters. There is the pro-
portional fitness increase due to complexity, which can be represented generally as F.
In the main text, F = 2, such that each transition doubles the fitness relative to the
ancestor. There is also the nondeterminism penalty γ, and the fraction of correct assemblies
φ = φ

(
T, Ŝ

)
, which depends on the temperature parameter and the relevant interaction

strengths.
Phase spaces provide a general form for φ, such as for the heterotetramer in Figure 3.9.

Exponentiating φ with γ provides the total penalty applied to nondeterministic assemblies.
Multiplying the fitness factor by this total penalty yields the final fitness of some individual.
These stages are outlined in Figure C.1, demonstrating the effect of different parameters.
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0.0

0.2

0.4

2

1

0

a) Phase space b) Nondeterministic penalty c) Fitness advantage

Figure C.1: The heterotetramer phase space depends on intra-subunit and inter-subunit
interaction strengths, ŜA and ŜB respectively. a) Increasing T , i.e. making the binding probability
pb more sensitive to Ŝ, leads to steeper determinism gradients. In the extreme limit, the fraction
of assemblies producing the heterotetramer, φhet, becomes a sharp transition. b) Increasing the
nondeterminism penalty γ further modulates the curves, only shown for T = 25 for simplicity.
c) Adding the proportional phenotype fitness factor F, which is two in the simulations, gives
the expected fitness post-transition. Anything below the grey line at unit value would not be
expected to survive.

Crucially, if any curve in the rightmost panel of Figure C.1 is above consistently above
the grey line, then any transition is expected to survive. Final fitness values much greater
than one are more likely to overcome stochastic drift and fixate, but any values above
one should have moderate transition success rates. Conversely, if any part of a curve is
below one, then these transitions would be expected to outright fail in those regions. For
example, for T = 25 and γ = 2 or γ = 5 in the region ŜA > ŜB, transitions are less fit
than their ancestors and should have maximum failure rates.

The above relationship between the product of the fitness factor and φ being greater
than one can be inverted. The fitness factor can be picked such that some transition is
expected to occur, choosing the value F > φ−γ. Different phenotypes generally will have
different φ, such that a constant fitness factor may allow some transitions and not others.
Only transitions which satisfy that condition will succeed. Most transitions in Figure 3.12
satisfy this condition, excluding the heterotetramer→ 12-mer pathway. The homotetramer
→ heterotetramer and octomer → 12-mer transitions have lower successes because of a
smaller fitness advantage (F & φ−γ), which is easier to lose through stochastic drift.

C.1.1 Selection driven steady-state

The transition criterion can also be adapted to partially explain the steady-state distribution
of strengths driven by nondeterministic selection pressures. As noted in the main text, the
ideal steady-state would involve maximally strong and weak interaction. However, these
states are highly unstable, and so evolution optimises a balance. This balance was shown
to depend on different parameters in Figure 3.8, such as T and γ.

Fitness is weighted by the fraction of correct assemblies φ, so maximising this quantity
is crucial. However, only a limited number of assemblies are built, typically repeated
K = 10 times. As such, interaction strengths only need to be optimised such that the
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chance of any misassembly out of K attempts is minimal. This relates to the binomial
distribution, as B (K,φγ (T )). The effect of K on the steady-state distributions is much
smaller than T or γ. Still, increasing K increases the observed strength gaps, as there are
more opportunities to lose fitness and so assemblies have more pressure to avoid such a
situation.

C.2 Indirect transitions

The direct transition analysis is conducted using well-defined measures such as the deter-
minism fraction φ or expected interaction strengths. However, interaction strengths are
per individual, and populations will have a distribution of strengths. As such, indirect
transitions are also possible. These transitions involve strength fluctuations which shift
the balance of the transition criterion to be more favourable.

In the ten possible phenotype transitions from Figure 3.12, only the heterotetramer
→ 12-mer step meaningfully displayed an indirect transition. As discussed in the main
text, the average strength states for this transition leads to the misassembly of the 10-mer,
hence the abysmal transition rate. However, transitions would still be possible if the
averages were perturbed enough, such as:

φ12
(
Ŝ ≥ Ŝ∗ (T )

)
> F−1/γ

Where Ŝ∗ is the minimum perturbed strength state, which has T dependence. The
probabilities of these fluctuations are directly related to the steady-state distribution
πPF, from the Markov chain analysis. The sum over the states greater than Ŝ∗, i.e.
P
(
Ŝ ≥ Ŝ∗

)
, gives the total probability an individual has to successfully transition on

average. An example is shown in Figure C.2, where the transition criterion is only satisfied
if Ŝ > Ŝ∗ = 0.775.

PM
F

L=80

L=40

Figure C.2: The probability mass function (PMF) for the steady-state distribution of in-
teraction strengths, πPF, at Ŝc = 0.65 for L = 40 and L = 80. For larger L, there are more
states (N =

⌊
L ·
(
1− Ŝc

)⌋
+ 1), and hence the probability of each state tends to be reduced.

Fluctuations above Ŝ∗ enable indirect transitions.
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The probability quickly decays, especially for longer binding sites, and so indirect
transitions are rare. In the case of the only observed indirect transition, the probability of
being in a sufficient strength state was approximately 5%. Some of these transitions still
failed as the transition criterion was only lightly satisfied with a small fitness advantage.
Hence the observed 3% success can be tied directly to the out-of-equilibrium strength
states of some individuals.
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