80,396 research outputs found

    Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks

    Full text link
    In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender. We evaluated uPIT on the WSJ0 and Danish two- and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures

    Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation

    Full text link
    We propose a novel deep learning model, which supports permutation invariant training (PIT), for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem. Different from most of the prior arts that treat speech separation as a multi-class regression problem and the deep clustering technique that considers it a segmentation (or clustering) problem, our model optimizes for the separation regression error, ignoring the order of mixing sources. This strategy cleverly solves the long-lasting label permutation problem that has prevented progress on deep learning based techniques for speech separation. Experiments on the equal-energy mixing setup of a Danish corpus confirms the effectiveness of PIT. We believe improvements built upon PIT can eventually solve the cocktail-party problem and enable real-world adoption of, e.g., automatic meeting transcription and multi-party human-computer interaction, where overlapping speech is common.Comment: 5 page

    Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction

    Full text link
    The availability of a large amount of electronic health records (EHR) provides huge opportunities to improve health care service by mining these data. One important application is clinical endpoint prediction, which aims to predict whether a disease, a symptom or an abnormal lab test will happen in the future according to patients' history records. This paper develops deep learning techniques for clinical endpoint prediction, which are effective in many practical applications. However, the problem is very challenging since patients' history records contain multiple heterogeneous temporal events such as lab tests, diagnosis, and drug administrations. The visiting patterns of different types of events vary significantly, and there exist complex nonlinear relationships between different events. In this paper, we propose a novel model for learning the joint representation of heterogeneous temporal events. The model adds a new gate to control the visiting rates of different events which effectively models the irregular patterns of different events and their nonlinear correlations. Experiment results with real-world clinical data on the tasks of predicting death and abnormal lab tests prove the effectiveness of our proposed approach over competitive baselines.Comment: 8 pages, this paper has been accepted by AAAI 201

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia
    corecore