12 research outputs found

    Counting induced subgraphs: a topological approach to #W[1]-hardness

    Get PDF
    We investigate the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) of counting all induced subgraphs of size kk in a graph GG that satisfy a given property Φ\Phi. This continues the work of Jerrum and Meeks who proved the problem to be #W[1]\#\mathrm{W[1]}-hard for some families of properties which include, among others, (dis)connectedness [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17]. Using the recent framework of graph motif parameters due to Curticapean, Dell and Marx [STOC 17], we discover that for monotone properties Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard for #W[1]\#\mathrm{W[1]} if the reduced Euler characteristic of the associated simplicial (graph) complex of Φ\Phi is non-zero. This observation links #IndSub(Φ)\#\mathsf{IndSub}(\Phi) to Karp's famous Evasiveness Conjecture, as every graph complex with non-vanishing reduced Euler characteristic is known to be evasive. Applying tools from the "topological approach to evasiveness" which was introduced in the seminal paper of Khan, Saks and Sturtevant [FOCS 83], we prove that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is #W[1]\#\mathrm{W[1]}-hard for every monotone property Φ\Phi that does not hold on the Hamilton cycle as well as for some monotone properties that hold on the Hamilton cycle such as being triangle-free or not kk-edge-connected for k>2k > 2. Moreover, we show that for those properties #IndSub(Φ)\#\mathsf{IndSub}(\Phi) can not be solved in time f(k)no(k)f(k)\cdot n^{o(k)} for any computable function ff unless the Exponential Time Hypothesis (ETH) fails. In the final part of the paper, we investigate non-monotone properties and prove that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is #W[1]\#\mathrm{W[1]}-hard if Φ\Phi is any non-trivial modularity constraint on the number of edges with respect to some prime qq or if Φ\Phi enforces the presence of a fixed isolated subgraph

    Counting Induced Subgraphs: {A}n Algebraic Approach to \#{W}[1]-hardness

    Get PDF

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result.Comment: 33 pages, 2 figure

    Homomorphisms are a good basis for counting small subgraphs

    Get PDF
    We introduce graph motif parameters, a class of graph parameters that depend only on the frequencies of constant-size induced subgraphs. Classical works by Lov\'asz show that many interesting quantities have this form, including, for fixed graphs HH, the number of HH-copies (induced or not) in an input graph GG, and the number of homomorphisms from HH to GG. Using the framework of graph motif parameters, we obtain faster algorithms for counting subgraph copies of fixed graphs HH in host graphs GG: For graphs HH on kk edges, we show how to count subgraph copies of HH in time kO(k)n0.174k+o(k)k^{O(k)}\cdot n^{0.174k + o(k)} by a surprisingly simple algorithm. This improves upon previously known running times, such as O(n0.91k+c)O(n^{0.91k + c}) time for kk-edge matchings or O(n0.46k+c)O(n^{0.46k + c}) time for kk-cycles. Furthermore, we prove a general complexity dichotomy for evaluating graph motif parameters: Given a class C\mathcal C of such parameters, we consider the problem of evaluating fCf\in \mathcal C on input graphs GG, parameterized by the number of induced subgraphs that ff depends upon. For every recursively enumerable class C\mathcal C, we prove the above problem to be either FPT or #W[1]-hard, with an explicit dichotomy criterion. This allows us to recover known dichotomies for counting subgraphs, induced subgraphs, and homomorphisms in a uniform and simplified way, together with improved lower bounds. Finally, we extend graph motif parameters to colored subgraphs and prove a complexity trichotomy: For vertex-colored graphs HH and GG, where HH is from a fixed class H\mathcal H, we want to count color-preserving HH-copies in GG. We show that this problem is either polynomial-time solvable or FPT or #W[1]-hard, and that the FPT cases indeed need FPT time under reasonable assumptions.Comment: An extended abstract of this paper appears at STOC 201

    Counting Small Induced Subgraphs with Edge-monotone Properties

    Full text link
    We study the parameterized complexity of #IndSub(Φ\Phi), where given a graph GG and an integer kk, the task is to count the number of induced subgraphs on kk vertices that satisfy the graph property Φ\Phi. Focke and Roth [STOC 2022] completely characterized the complexity for each Φ\Phi that is a hereditary property (that is, closed under vertex deletions): #IndSub(Φ\Phi) is #W[1]-hard except in the degenerate cases when every graph satisfies Φ\Phi or only finitely many graphs satisfy Φ\Phi. We complement this result with a classification for each Φ\Phi that is edge monotone (that is, closed under edge deletions): #IndSub(Φ\Phi) is #W[1]-hard except in the degenerate case when there are only finitely many integers kk such that Φ\Phi is nontrivial on kk-vertex graphs. Our result generalizes earlier results for specific properties Φ\Phi that are related to the connectivity or density of the graph. Further, we extend the #W[1]-hardness result by a lower bound which shows that #IndSub(Φ\Phi) cannot be solved in time f(k)V(G)o(logk/loglogk)f(k) \cdot |V(G)|^{o(\sqrt{\log k/\log\log k})} for any function ff, unless the Exponential-Time Hypothesis (ETH) fails. For many natural properties, we obtain even a tight bound f(k)V(G)o(k)f(k) \cdot |V(G)|^{o(k)}; for example, this is the case for every property Φ\Phi that is nontrivial on kk-vertex graphs for each kk greater than some k0k_0

    Counting Small Induced Subgraphs with Hereditary Properties

    Get PDF
    We study the computational complexity of the problem #IndSub(\Phi) of counting k-vertex induced subgraphs of a graph G that satisfy a graph property \Phi. Our main result establishes an exhaustive and explicit classification for all hereditary properties, including tight conditional lower bounds under the Exponential Time Hypothesis (ETH): - If a hereditary property \Phi is true for all graphs, or if it is true only for finitely many graphs, then #IndSub(\Phi) is solvable in polynomial time. - Otherwise, #IndSub(\Phi) is #W[1]-complete when parameterised by k, and, assuming ETH, it cannot be solved in time f(k)*|G|^{o(k)} for any function f. This classification features a wide range of properties for which the corresponding detection problem (as classified by Khot and Raman [TCS 02]) is tractable but counting is hard. Moreover, even for properties which are already intractable in their decision version, our results yield significantly stronger lower bounds for the counting problem. As additional result, we also present an exhaustive and explicit parameterised complexity classification for all properties that are invariant under homomorphic equivalence. By covering one of the most natural and general notions of closure, namely, closure under vertex-deletion (hereditary), we generalise some of the earlier results on this problem. For instance, our results fully subsume and strengthen the existing classification of #IndSub(\Phi) for monotone (subgraph-closed) properties due to Roth, Schmitt, and Wellnitz [FOCS 20]

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore