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Abstract

We study the problem #INDSUB(@) of counting all induced subgraphs of size k in
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1 Introduction

The study of the computational complexity of counting problems was initiated by
Valiant’s seminal work about the complexity of computing the permanent [24]. In
contrast to a decision problem which requires to verify the existence of a solution,
a counting problem asks to compute the number of solutions. Counting complexity
theory is particularly interesting for problems whose decision versions are solvable effi-
ciently but whose counting versions are intractable. One such example is the problem
of finding/counting perfect matchings, whose decision version is solvable in polyno-
mial time [10] and whose counting version is at least as hard as every problem in the
Polynomial Hierarchy PH with respect to polynomial-time Turing reductions [23,24].
In this work, we consider the following problem which was first introduced by Jerrum
and Meeks [13]: Fix a graph property @, given a graph G and a positive integer k,
compute the number of all induced subgraphs of G with k vertices that satisfy @. We
denote this problem by #INDSUB(@®) and remark that, strictly speaking, #INDSUB(®)
is the unlabeled version of the problem p-#INDUCEDSUBGRAPHWITHPROPERTY(Q)
as defined in [15, Section 1.3.1]. In particular, our properties only depend on the
isomorphism type of a graph and not on any labeling of the vertices.

We study the parameterized complexity of #INDSUB(®) depending on the prop-
erty @. The underlying framework, known as parameterized counting complexity
theory, was introduced independently by Flum and Grohe [11] and McCartin [18],
and constitutes a hybrid of (classical) computational counting and parameterized
complexity theory. Here, the method of parameterization allows us to perform a multi-
variate analysis of the complexity of #INDSUB(®): Instead of the distinction between
polynomial-time solvable and NP-hard cases, we search for properties @ for which
the problem is solvable in time f(k) - n?", where n is the number of vertices of
the graph and f can be any computable function. If this is the case, the problem is
called fixed-parameter tractable. Unfortunately, the only known cases of @ for which
#INDSUB(@) is fixed-parameter tractable are trivial in the sense that there are only
finitely many k such that @ is neither true nor false on the set of all graphs with k
vertices. On the contrary, it is easy to see that #INDSUB(®) is most likely not fixed-
parameter tractable if @ encodes a problem whose decision version is already known
to be hard. An example of the latter is the property of being a complete graph. In this
case, the problem #INDSUB(@) is identical to the problem of counting cliques of size
k, for which even the decision version, that is, finding a clique of size k in a graph with
n vertices, cannot be done in time f (k) -n°®, unless the Exponential Time Hypothesis
fails [5,6].

The first non-trivial hardness result of #INDSUB (@) was given by Jerrum and Meeks
for @ the property of being connected [13]. Note that, in this case, the decision version
of the problem can be solved efficiently as, on input G and k, one only has to decide
whether there exists a connected component of G of size at least k. This result initiated
a line of research in which Jerrum and Meeks proved fixed-parameter tractability of
#INDSUB(@) to be unlikely for the property of having an even (or odd) number of edges
[15], for properties that induce low edge densities [ 14] and for properties that are closed
under the addition of edges and whose (edge-)minimal elements have large treewidth
[19]. More precisely, all of those results established hardness for the parameterized
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complexity class #W[1], which can be seen as the parameterized counting equivalent
of NP. In a recent breakthrough result [8], Curticapean, Dell and Marx have shown,
that for every graph property @, the problem #INDSUB(@®) is either fixed-parameter
tractable or hard for #W[1], that is, there are no cases of intermediate difficulty. On the
downside, they did not provide an explicit criterion for #W[1]-hardness that allows to
pin down the complexity of #INDSUB(@®), given a concrete property @.

However, combining the framework of [8] with tools from the “topological approach to
evasiveness” by Kahn, Saks and Sturtevant [16], two of the authors of the current paper
established #W[1]-hardness for a wide range of properties, including, for example, all
non-trivial properties that are closed under the removal of edges and false on odd
cycles [22]. Taken together, the above results suggest the following conjecture.

Conjecture 1 Let @ be a computable graph property satisfying that there are infinitely
many positive integers k such that @ is neither true nor false on all graphs with k
vertices. Then #INDSUB(®) is #W[1]-hard.

Unfortunately, a proof of this conjecture seems to be a long way off. In this work
however, building up on [8,22], we introduce an algebraic approach that allows us to
resolve the above conjecture in case of all non-trivial monotone properties on bipartite
graphs. In particular, we obtain a matching lower bound under the Exponential Time
Hypothesis.

Results and techniques  We call a graph property monotone if it closed under the
removal of vertices and edges and edge-monotone if it is closed under the removal of
edges only. Furthermore, we write ISy, for the graph consisting of k isolated vertices and
K, ; for the complete bipartite graph with ¢ vertices on each side. Our main theorems
read as follows.

Theorem 1 Let @ be a computable graph property and let IC be the set of all prime
powers t such that @ (1Sy;) # D (K, ;). If K is infinite then #INDSUB(QP) is #W[1]
hard. If additionally K is dense then it cannot be solved in time f (k) - n°® for any
computable function f unless ETH fails. This holds true even if the input graphs to
#INDSUB(@) are restricted to be bipartite.

In the previous theorem, a set K is dense if there exists a constant ¢ such that for
every m € N, there exists a k € IC such that m < k < ¢m. While the hypotheses
of Theorem 1 sound technical, the theorem applies in many situations. In particular,
it is applicable to properties that are neither (edge-) monotone nor the complement
thereof: Let @ be the property of being Eulerian. The graph K, ; contains an Eulerian
cycle if t = 2° for s > 1. Hence we can apply Theorem 1 with I = {2° | s > 1},
which is infinite and dense.

Corollary 1 Let @ be the property of being Eulerian. Then #INDSUB(®@) is #W[1]-hard
and cannot be solved in time f (k) - n°® for any computable function f unless the
ETH fails. This holds true even if the input graphs to #INDSUB(®) are restricted to be
bipartite.

In case @ is monotone, that is, closed under the removal of vertices and edges,
a short argument implies that the set K from Theorem 1 is infinite if and only if @
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and —@ hold on infinitely many bipartite graphs. Thus we can state the criterion for
hardness more concisely as follows.

Theorem 2 Let @ be a computable monotone graph property such that @ and —®
hold on infinitely many bipartite graphs. Then #INDSUB(®) is #W([1]-hard and cannot
be solved in time f (k) - n°® for any computable function f unless the Exponential
Time Hypothesis fails. This holds true even if the input graphs to #INDSUB(®) are
restricted to be bipartite.

Let us illustrate further consequences of the previous theorems with respect to
(edge-) monotone properties. First of all, most of the prior hardness results [13—
15,19,22] are shown to hold in the restricted case of bipartite graphs. We provide three
examples:

Corollary 2 The problem #INDSUB(®), restricted to bipartite input graphs, is #W[1]-
hard and cannot be solved in time f(k) - |V(G)|°® for any computable function
f unless ETH fails, if @ is one of the properties of being disconnected, planar or
non-hamiltonian.

One example of a monotone property @ for which the complexity of #INDSUB(®)
was unknown, even for general graphs, is given by the following corollary of Theo-
rem 2.

Corollary 3 Let F be afixed bipartite graph with at least one edge and define @ (G) = 1
if G does not contain a subgraph isomorphic to F. Then #INDSUB(®) is #W[1]-hard
and cannot be solved in time f (k) - |V (G)|°® for any computable function f unless
ETH fails. This holds true even if the input graphs of #INDSUB(®) are restricted to be
bipartite.

As the number of induced subgraphs of size k that satisfy @ equals ('V{®"') minus

the number of induced subgraphs of size k that satisty =@, all of the previous result
remain true for the complementary properties —®.

In proving the previous theorems we build up on the approach in [8,22], where it
was shown that, given a graph property @ and a positive integer k, the number of
induced subgraphs of size k in a graph G that satisfy @ can equivalently be expressed
as the following sum over all (isomorphism types of) graphs H:

Za(b(H) - #Hom(H — G), )
H

where ag is a function from graphs to integers with finite support and, furthermore,
#Hom(H — G) isthe number of graph homomorphisms from H to G. Itis known that
computing a linear combination of homomorphism numbers, as in the above expres-
sion, is precisely as hard as computing its hardest term with a non-zero coefficient
( [8], also implicitly proved in [4]). We refer to this property as complexity mono-
tonicity. In [22] two of the authors of the current paper used a topological approach
to analyze the coefficient ag (Ky) of the complete graph on k vertices. If this coef-
ficient is non-zero then complexity monotonicity implies that computing the number
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of induced subgraphs of size k in a graph G that satisfy @ is at least as hard as com-
puting the number #Hom(K; — G). This, in turn, is equivalent to computing the
number of cliques of size k in G, the canonical #W[1]-complete problem [11]. While
this approach led to hardness proofs for a wide range of properties @, it seems that
resolving Conjecture 1, even restricted to monotone properties, requires a significant
number of new ideas. Without going too much into the details' of [22], our analysis
of ap (K ) is complicated by the fact that the number of edges of the complete graph
on k > 4 vertices is not a prime power. In this work, we hence focus on the coeffi-
cient of agp (H) for graphs H that have a prime power number of edges and for which
computing #Hom(H — G) is hard. One example of such graphs is the biclique K; ;
for some prime power ¢. Here a biclique K; ;, also called a complete bipartite graph,
has ¢ vertices on each side and contains every edge from a vertex on the left side to a
vertex to the right side. Hence the number of edges is > which is a prime power if ¢
is.

In analyzing the coefficient ag (K; ;) of the complete bipartite graph, we invoke
the results of Rivest and Vuillemin [21] who considered transitive boolean functions
over a domain of prime power cardinality to resolve the asymptotic version of what is
known as Karp’s evasiveness conjecture (we recommend Miller’s survey [20] for an
excellent overview).

Given a property @ and a graph H, the alternating enumerator of @ and H is defined
to be

(@ H):= Y ®HS) (-DF,

SCE(H)

where H[S] is the graph with vertices V (H) and edges S. Roughly speaking, it will
turn out that the value of ag (H) is closely related to x (@, H). We furthermore point
out that, in case @ is closed under the removal of edges, the alternating enumerator
X (@, H) equals what is called the reduced Euler characteristic of the simplicial com-
plex on E(H) associated to @ [20,22]. In Sect. 3 we study the alternating enumerator
in case of edge-transitive graphs, that is, graphs whose automorphism groups act tran-
sitively on the set of edges. We give a self-contained proof of the following fact, which
implicitly follows from [21].

Lemma 1 Let & be a graph property and let H be an edge-transitive graph with p*
edges such that p is a prime and @ (H[#]) # @ (H). Then it holds that x(®, H) =
(£1) mod p.

Observe that Lemma 1 provides a strong motivation for the study of edge-transitive
graphs with a prime power number of edges: Following the aforementioned strategy,
we will be able to show that counting the number of induced subgraphs of size k in a
graph G that satisfy @ is at least as hard as counting homomorphisms from any edge-
transitive graph H with k vertices and a prime-power number of edges that satisfies

I Readers familiar with [22] might recall that fixed points of group actions have been used to derive a
simpler formula to compute the number a¢ (K;) modulo a prime p for positive powers ¢ of p. This formula
would simplify greatly if the group had a p-power number of elements and acted transitively on the edges of
K. Unfortunately, this can never happen for r > 4, since the number of edges of K is not itself a p-power.
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@ (H[J]) # @ (H). Ultimately, we will then obtain intractability of #INDSUB(@®) by
relying on the complexity classification for counting homomorphisms due to Dalmau
and Jonsson [9].

In the second part of Sect. 3, we will thus fully classify those graphs as subgraphs
of bipartite graphs or vertex-transitive subgraphs of wreath graphs; consult Sect. 3
for the formal definitions. The proof of the following theorem, which might be of
independent interest, relies on a non-trivial application of Sylow’s theorems.

Theorem 3 Let G be a connected edge-transitive graph with p' edges for some prime
p and positive integer t. Then either G is bipartite or G is vertex-transitive and can
be obtained from the wreath graph W x for k = 1 by removing edges (or both).

With the analysis of x and edge-transitive graphs completed, we turn to the reduc-
tion from counting homomorphisms in Sect. 4. More precisely, given a class H of
edge-transitive graphs with a prime power number of edges and a graph property @
such that for every H € H we have that @ (H[/]) # ® (H), we construct a parameter-
ized Turing reduction from #HOM(H) to #INDSUB(@). Here, the problem #HOM(H)
is defined as follows: Given as input a graph H € ‘H and a graph G, compute the num-
ber of homomorphisms from H to G. For technical reasons, we cannot immediately
transform the number of induced subgraphs that satisfy @ to a linear combination of
homomorphism numbers as in Eq. (1). We solve this technical issue by introducing
color-prescribed variants of those problems in an intermediate step. In this context
we consider H-colored graphs. Recall that a graph G is H-colored if it comes with a
homomorphism ¢ from G to H. A homomorphism from H to G is then called color-
prescribed if it maps every vertex v of H to a vertex u of G satisfying that c(u) = v.
We demonstrate that, given an H-colored graph G and oracle access to #INDSUB(®),
the following linear combination can be computed in time f(|V(H)|) - |V (G)| oM,

Z ae(S) - #cp-Hom(H[S] - G). 2)
SCE(H)

Here cp-Hom(H[S] —py G) denotes the set of color-prescribed homomorphisms
from H[S]to G and a¢ is a function of finite support only depending in @. In particular,
ae(E(H)) and 3 (P, H) are proved to agree up to a factor of — 1. Finally, we establish
complexity monotonicity for linear combinations of color-prescribed homomorphisms
as in Eq. (2), which in combination with Lemma 1 yields the desired reduction.
Combining the previous results, we invoke the reduction on graph properties that are
non-trivial on bipartite graphs and prove Theorems 1 and 2, in Sect. 5. Furthermore,
we illustrate in the Sect. 6 that our algebraic approach readily extends to modular
counting by proving that both, Theorems 1 and 2 remain true in case counting is done
modulo a fixed prime.

2 Preliminaries

Given a positive integer k, we write [k] for the set {1, ..., k} and given a set A we
write (’2) for the set of all subsets of size k of A. Furthermore, assuming that A is
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finite, we write #A or | A| for its cardinality. Given a function g : A x B — C and an
element a € A, we write g(a, ») for the function which maps b € B to g(a, b).

2.1 Graph Theory

Graphs in this work are considered simple, undirected and without self-loops. More
precisely, a graph G is a pair of a finite set V(G) of vertices and a symmetric and
irreflexive relation E(G) € V(G)?2. If a graph H is obtained from G by deleting a
set of edges and a set of vertices of G, including incident edges, then H is called a
subgraph of G. Given a subset V of V (G) we write G[V ] for the graph with vertices 1%
and edges E N V2. The resulting graph is called an induced subgraph of G. An edge-
subgraph of a graph H is a graph obtained from H by deleting edges. Given a set
S C E(H) we write H[S] for the edge-subgraph (V(H), S) of H.

Homomorphisms and embeddings A homomorphism from a graph H to a graph G
isamapping h : V(H) — V(G) that preserves adjacencies. In other words, for every
edge {u, v} € E(H) it holds that {h(u), h(v)} € E(G). We write Hom(H — G) for
the set of all homomorphisms from H to G. A homomorphism inducing a bijection
of vertices and satisfying {u, v} € E(H) if and only if { f (1), f(v)} € E(G) is called
an isomorphism and we say that two graphs H and H are isomorphic if there exists
an isomorphism from H to H. We write Sub(H — G) and IndSub(H — G) for the
sets of all subgraphs and induced subgraphs of G, respectively, that are isomorphic to
H.

An isomorphism from a graph to itself is called an automorphism. The set of
automorphisms of a graph, together with the operation of functional composition con-
stitutes a group, called the automorphism group of a graph. Slightly abusing notation,
we will write Aut(H) for both the set of automorphisms of a graph H as well as for
the automorphism group of H.

An embedding is an injective homomorphism and we write Emb(H — G) for the
set of embeddings from H to G. If an embedding / from H to G additionally satisfies
that {h(u), h(v)} € E(G) implies {u, v} € E(H), we call it a strong embedding.
We write StrEmb(H — G) for the set of strong embeddings from H to G. Observe
that the images of embeddings and strong embeddings from H to G are precisely the
subgraphs and induced subgraphs of G that are isomorphic to H.

Colored variants  Given graphs G and H, we say that G is H-colored if G comes
with a homomorphism ¢ from G to H, called an H-coloring. Note that, in particular,
every edge-subgraph of H can be H -colored by the identity function on V (H), which
is assumed to be the given coloring whenever we consider H-colored edge-subgraphs
of H in this paper. Given an edge-subgraph F of H and a homomorphism 4 from F' to
a H-colored graph G, we say that & is color-prescribed if for allv € V(F) = V(H)
it holds that c(h(v)) = v. We write cp-Hom(F — gy G) for the set of all color-
prescribed homomorphisms from F to G. cp-StrEmb(F — p G) is defined similarly
for color-prescribed strong embeddings. We point out that a definition of cp-Emb is
obsolete as every color-prescribed homomorphism is injective by definition and hence

@ Springer



Algorithmica

an embedding. Furthermore, we write cp-Sub(F — g G) and cp-IndSub(F — g G)
for the sets of images of color-prescribed embeddings and strong embeddings from
F to G, respectively. Elements of cp-Sub(F — g G) and cp-IndSub(F — g G) are
referred to as color-prescribed subgraphs and induced subgraphs.?

Graph properties and the Alternating Enumerator A graph property is defined to
be a function @ from graphs to {0, 1} such that for any pair of isomorphic graphs H
and H we have that @ (H) = <D(PAI ). Adapting the notation of Rivest and Vuillemin
[21], we define the alternating enumerator of a property @ and a graph H to be the
function

@ H)y:= Y ®HIS) (-DF.

SCE(H)

A graph property @ is called edge-monotone if it is closed under the removal of edges. It
is called monotone if it is closed under the removal of edges as well as vertices.? Given
a graph property @, a positive integer k and a graph G, we write IndSub(®, k — G)
for the set of all induced subgraphs of size k of G that satisfy @. Furthermore, given
a graph property @ and an H-colored graph G, we write cp-IndSub(® — gy G) for
the set of all color-prescribed induced subgraphs of size |V (H)| in G that satisty
@. Observe that cp-IndSub(® — gy G) can be expressed as a (disjoint) union over
edge-subgraphs of H satisfying @:

cp-IndSub(® — 5 G) = U cp-IndSub(H[S] > G).

SeE(H)
& (H[SD)=1

2.2 Parameterized Counting Complexity

The field of parameterized counting was introduced independently by McCartin [18]
and Flum and Grohe [11] and constitutes a hybrid of classical computational counting
and parameterized complexity theory. A parameterized counting problem is a pair
of a function P : X¥* — N and a computable parameterization ¥ : X* — N. It is
called fixed-parameter tractable (FPT) if there exists a computable function f and a
deterministic algorithm that computes P(x) in time f(k(x)) - |x|0(1) for every x €
2*. A parameterized Turing reduction from (P, k) to (13, k) is a deterministic FPT
algorithm with respect to « that is given oracle access to P and thaton input x computes
P (x) with the additional restriction that there exists a computable function g such that
for any oracle query y it holds that £ (y) < g(x(x)). We write (P, k) fflf)t (ﬁ, k) ifa
parameterized Turing reduction exists.

2 The reader might notice that the sets cp-Sub(F —p G) and cp-Hom(F —py G) as well as
cp-IndSub(F — g G) and cp-StrEmb(F — g G) are essentially the same as a color-prescribed homo-
morphism is uniquely identified by its image. However, we decided to distinguish those notions in order to
make the combinatorial arguments in Sect. 4 more accessible.

3 To avoid confusion, we remark that in some literature, e.g. in [19] a property is called monotone if it is
closed under addition of vertices and edges.
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Given a graph G and a positive integer k, the parameterized counting problem
#CLIQUE asks to compute the number of complete subgraphs of size k in G and is
parameterized by k, thatis k (G, k) := k. Itis complete for the class #W[1], which can
be seen as a parameterized counting equivalent of NP [11]. Evidence for the fixed-
parameter intractability of #W[1]-hard problems is given by the Exponential Time
Hypothesis (ETH), which asserts that 3-SAT cannot be solved” in time exp(o(m))
where m is the number of clauses of the input formula. Assuming ETH, #CLIQUE
cannot be solved in time f (k) - n°® for any function f [5,6] and hence #W[1]-hard
problems are not fixed-parameter tractable.

Given a recursively enumerable class of graphs H, the problem #HOM(H) asks,
on input a graph H € H and an arbitrary graph G, to compute the number
#Hom(H — G). Its parameterization is given by x(H, G) := |V (H)|. The prob-
lems #CP- HOM(H) and #CP- INDSUB(H) are defined similarly. Further, we define
#CP- INDSUB(@) to be the problem of, given a graph G that is H-colored for some
graph H, computing #cp-IndSub(® — g G) and parameterize it by «(G) :=
|V (H)|—note that the H-coloring of G is part of the input and hence « is well-defined.
Finally, the problem #INDSUB(@) asks, given a graph G and a positive integer k, to
compute #IndSub(®, k — G) and the parameterization is given by « (G, k) := k.

3 Alternating Enumerators and p-edge-Transitive Graphs

In this part of the paper we will provide a rough exposition of the work of Rivest
and Vuillemin [21] who studied transitive boolean functions to resolve the asymptotic
version of Karp’s evasiveness conjecture. We will then apply their result to graphs
H that are both edge-transitive and have p¢ many edges for some prime p. This will
enable us to conclude that the alternating enumerator of @ and H is (+1) modulo p
whenever @ (H[#]) # @ (H). We start by introducing some required notions from
algebraic graph theory.

The automorphism group of a graph H induces a group action on the edges of H,
given by h{u, v} := {h(u), h(v)}. A group action is transitive if there exists only
one orbit and a graph H is called edge-transitive if the automorphism group action
on the edges is transitive, that is, if for every pair of edges {«, v} and {i, 0} there
exists an automorphism 4 € Aut(H) such that i{u, v} = {i, v}. If additionally the
number of edges of an edge-transitive graph is a prime power p’ we call the graph
p-edge-transitive.

Lemma 1 Let @ be a graph property and let H be an edge-transitive graph with p*
edges such that p is a prime and @ (H[?)) # ® (H). Then it holds that 3 (®, H) =
(£1) mod p.

Lemma 1 is implicitly proven in [21, Theorem 4.3], but for completeness we
will include a short and self-contained proof, demonstrating a first application of
the machinery of Sylow subgroups that we will need later.

4 We point out that this includes deterministic and randomized algorithms.
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For the proofs in this section, let us recall some key results from group theory.
Given a prime number p, a finite group I'’ is called a p-group if the order #I'' is a
power of p. The following is a well-known and central result from the theory of finite
groups.

Theorem 4 (Sylow theorems) Let I" be a finite group of order #I" = p*m for a prime
p and an integer m > 1 coprime to p. Then I" contains a subgroup I"" of order p*.
Moreover; every other subgroup I'" of I of order p* is conjugate to I'', that is there
exists g € I' with I'" = gI''g~'. In particular, the groups I'', I""" are isomorphic
(via the conjugation by g).

Finally, every subgroup I' C I which is a p-group is actually contained in some
conjugate gI"' g~ of the group I"'.

A subgroup I'" C I as above is called a p-Sylow subgroup of I'.
The following result is a first important application of the Sylow theorems. It can
be found as Exercise (E28) in [1]; we include a proof for completeness.

Lemma 2 Let I be a finite group acting transitively on a set T such that #T = p* for
some £ > 0. Then the induced action of any p-Sylow subgroup I'' € I" on T is still
transitive.

Proof Let fy € T be any element, then T is the orbit of 7o under I". Let Stabj () =
{g € I" : gty = 1y} be the stabilizer of #y under the action of I". Then by the Orbit-
Stabilizer theorem, we have

#I' = (#I'ty) - (#Stab(t9)) = (#T) - (# Stabr (t0)). A3)

As in the Sylow theorems, let k, m be the unique nonnegative integers such that
#I' = p*m with m not divisible by p and let I’ C I' be a p-Sylow subgroup of I,
which is of order p*. The stabilizer of 7y under the induced action of the subgroup
I'" C I is given by

Stabr(tg) = {g € I’ : gty = to} = Stabr(tp) N I"".

Clearly this is a subgroup of the group I"” and by Lagrange’s theorem, the order of
Stab(to) divides the order p* of I'’. Thus it is itself a power of p, say # Stab (tp) =
p".

On the other hand, Stab(#p) is also a subgroup of Stab(#p). Inserting the order
of I" and the size of T in Eq. (3) we obtain

p'm = p* - (#Stabr(10)). )
and thus # Stabr(fg) can at most contain a factor of p*~¢. Again, by Lagrange’s
theorem, the order p” of the subgroup Stab(#g) divides the order of Stabj (#) and
thus n < k — £. Finally, by the Orbit-Stabilizer theorem applied to the action of I"” on

to, we have

Pk =#I" = #I19) - (#Staby(10)) = #I'1g) - p". 5)
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Thus, on the one hand we obtain #I'tg = pk=" > pk=*k=0O = pt On the other
hand we obtain I"'fo C T and thus #1"'to < #T = p‘. Hence we have the equality
#I''ty = p' = #T and thus Ity = T. In other words, the action of I’ on T is
transitive, finishing the proof. O

This result allows us to give a short proof of Lemma 1 above.

Proofof Lemma 1 Let I' = Aut(H) be the automorphism group of the graph H, then
by the assumption that H is edge-transitive, the action of I" on on the set E(H) of
edges of H is transitive. Since #E (H) = p* for some £ > 0, we see that by Lemma
2 any p-Sylow subgroup I’ C I still acts transitively on E(H). Now consider the
sum

(@ H)y= Y ®H[S)- (D",

SCE(H)

The action of I"” on E(H) induces an action of I on the set of subsets P(E(H)) :=
{S§ C E(H)}of E(H).Indeed, for S C E(H) and g € I"’ we define gS = {gs : s €
S}. For this action, the set P(E(H)) can be written as a disjoint union of the orbits
I''Sy of aset S € P(E(H)) of representatives Sp. (Recall that for a group action two
orbits are either disjoint or equal.) This allows us to write the sum above as

@ H)=Y" > @HSH (D

SoeS Sel’ Sy

Until now we have just reordered the summands above, combining all summands for
S in the same I orbit.

Now since all elements g € I’ C Aut(H) act by graph automorphisms on H, we
have that the graphs H[gSo] and H[Sp] are isomorphic, so in particular @ (H[gSo]) =
@ (H[So]). Applying this to the formula for x (&, H) above, we get

XD, H) =Y #I'Sy) - d(H[So]) - (=1 (6)
SoeS

Now by the Orbit-Stabilizer theorem, the size #I''Sy of the orbit of Sy divides the
order pX of I'', so #I"' Sy is itself a power of p. Further, unless Sop € E(H) is invariant
under I'’, the size of its orbit #1"' S is a positive power of p and thus congruent to 0
mod p. However, the only two sets Sy € E(H) invariant under I"" are Sy = @ and
So = E(H): Indeed, assume that Sy is invariant under I’ and nonempty. Then Sy
contains an element eg, and since Sy is I"’-invariant, Sy also contains the entire orbit
of ep under I'’. But since I"’ acted transitively on E (H), So must equal the whole set
E(H).

To summarize, when computing x (&, H) modulo p all but two summands in the
sum in Eq. (6) are congruent to 0. Hence, we can simplify Eq. (6) to

R (@, H) = ¢(H[A]) + @(HIE(H)]) - (D" = @ (H[A]) — ®(H) mod p.

@ Springer



Algorithmica

Fig.1 The two main examples for p-edge-transitive graphs: Complete bipartite graphs K Pl pm with¢, m >
0 (left) and wreath graphs ka for k > 1 (right)

Note that we use the fact that for p > 2 we have that #E(H) is odd since it is
a prime power and for p = 2 we have —1 = 1 modulo p. Now, the condition
D (H[P]) # @ (H) exactly gives us @ (H[A]) — ®(H) = £1 mod p. O

There are two main examples for p-edge-transitive graphs. The first one is the class
of the complete, bipartite graphs K ¢ ,» with £, m > 0. The graph K ¢ ,» has pttm
edges and the automorphism group clearly acts transitively on the edges of that graph.
The second example is the class of wreath graphs W« for k > 1. The graph W« has
p* vertices that can be decomposed in disjoint sets Vo, . . ., Vp—1 of order p*~1 each,
and edges {v;, vi+1} foreachi = 0,..., p — 1 and vertices v; € V;, viy1 € Viqq
(where it is understood that V,, = Vp). Thus in total, ka has p2k -1 edges, except for
p = 2 where it has 222 edges. The graph W« can be seen as the lexicographical
product of a p-cycle with a graph consisting of p*~! disjoint vertices. For k = 1 we
exactly obtain the p-cycle. To see that W is edge-transitive, we observe that on the
one hand, for fixed i we can apply an arbitrary permutation on V; leaving the graph
invariant. On the other hand, there exists a “rotational action” sending V; to V1 for
j =0,..., p— 1, which also leaves the graph invariant. Using these two types of
automorphisms, we can map every edge to every other edge. Consider Fig. 1 for a
visualization of the two main examples of p-edge-transitive graphs.

A graph G is called vertex-transitive if its automorphism group Aut(G) acts tran-
sitively on its set of vertices V (G). The following result tells us that in a certain sense
K, ,m and W are the maximal p-edge-transitive graphs: note that a bipartite graph
is a subgraph of a graph of the form K ; ,» for some /, m > 0.

Theorem 3 Let G be a connected edge-transitive graph with p' edges for some prime
p and positive integer t. Then either G is bipartite or G is vertex-transitive and can
be obtained from the wreath graph W ,x for k =1 by removing edges (or both).

For the proof of Theorem 3, we will use the following well-known result about the
relation between edge and vertex-transitivity [2, Proposition 15.1].

Lemma3 Let G be a connected graph and let I’ C Aut(G) be a subgroup acting
transitively on the set of edges E(G). Then either I' acts transitively on the set of
vertices V(G) (and thus G is vertex-transitive) or G is bipartite (or both).
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The proof from [2] carries over verbatim to the setting of the previous lemma, by
replacing the full group Aut(G) with the subgroup I".

Finally, before beginning the proof of Theorem 3 we recall some facts about the
semidirect product of groups, since such products appear below. Given groups I, 1>
and a group homomorphism o : I, — Aut(l7), the semidirect product I} x I is
defined as the group on the underlying set I x I with group law

(g1, h1) - (g2, h2) = (g10(h1)(g2), hih?) for (g1, h1), (g2, h2) € It X I,

The group I't x I> naturally contains I, I as the subgroups I't X {e, } and {ef, } x I>.
Moreover, given a set X and actions of I, I> on X such that

h-(g-x)=0)(g)-(h-x)forgeN,hel,xeX

there is a well-defined action of I] x I on X given by (g, h) -x =g - (h - x).

Proof of Theorem3 Let G be a p-edge-transitive, non-bipartite graph. Then by
Lemma 2 any p-Sylow subgroup I' € Aut(G) still acts transitively on the edges
E(G) of G. By Lemma 3, since G is not bipartite, the group I" acts transitively on the
set of vertices V (G) (and thus G is also vertex-transitive).

We observe that in this case, by the Orbit-Stabilizer theorem, we have #V (G) = pk
for some k > 1. We claim that, in this case, G is an edge subgraph of ka.

To see this, let us reformulate our situation slightly: We identify the vertex set
V (G) with the set [ pk] ={1,..., pk}. Then we can canonically identify Aut(G) as a
subgroup of S ¢, the symmetric group on [ p¥] (this is because a graph automorphism
is uniquely determined by its action on the vertices of a graph). Inside Aut(G) we have
the subgroup I", which is a p-group. By the Sylow theorem, there exists a p-Sylow
subgroup I'" C S+ containing I'3 Since the action of I" is transitive on the set of
edges E(G), we can obtain E(G) by starting with some edge ¢g = {v1, 12} € E(G)
with vy, vy € [p*] and taking its orbit {{gvy, gv2} : g € I'} = E(G). But note that by
instead taking the orbit of eg under I'" C S k we getat least this set of edges and maybe
more. Denote by G’ the graph with vertices [ p¥] and edges {{gv1, gv2} : g € I''}. We
claim that G' = W .

To show this we will explicitly identify the p-Sylow subgroup I’ C S pk (recall that
by the Sylow theorem it is unique up to conjugation, that is reordering of the elements
of [p*]).

First note that S« has ( pX)! elements. Inductively one sees that the highest power
of p appearing in this number is p¢® fore(k) = pF 1+ p*2 4+ ..+ p+1. Wewill
inductively construct a subgroup I"(p, k) of S« with p¢® elements, which then is a
p-Sylow subgroup. We note that a description of such a p-Sylow subgroup is given
in [25].

For k = 1 we have e(k) = 1 and a p-Sylow subgroup I"(p, 1) € §, is generated by
a cyclic permutation 1 — 2,2 — 3, ..., p > 1 of the elements of [p]. The group
I’ (p, 1) is isomorphic to the cyclic group Z/ pZ.

5 Here we remark that while I” was chosen to be a p-Sylow subgroup of Aut(G), it is not necessarily
p-Sylow in the bigger group Spk.
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Now assume we constructed I"(p, k — 1) for some k > 2, then we first note that
a product of p copies ]_[{:01 I'(p,k —1)of I'(p, k — 1) acts on [p¥] where the i-th
factor acts by permutations on the elements

it i 2 i e =G

All of these actions commute, so we can see the product ]_[{);01 I'(p,k—1)asa
subgroup of §,x. However, there is a further action of Z/pZ on [p*] sending j to
7+ p*~! (modulo p*). This action cyclically permutes the p blocks of p*~! elements
in [p¥] on which the p factors of ]_[f:ol I'(p,k — 1) act. Thus these two actions do
not commute, but indeed they induce an action of the semidirect product

p—1
rip.o=[]rek-1]xz/pz
i=0

where Z/pZ maps to the automorphism group of ]_[f:ol I'(p, k — 1) by permuting
the factors of the product. We claim that I"(p, k) is the desired p-Sylow subgroup of
S k.

p
Indeed, as the underlying set of the semidirect product is simply the product of the
two underlying sets of the groups, the number of elements of the semidirect product
is

#I(p, k) = H#T(pk —1)P - p = (pe*=DyP . p = pre=Drl — pel®)

so it has the correct number of elements and is indeed a subgroup of S .

Now recall what we want to show: for a pair {vy, va} of vertices forming an edge of
our original graph G, we want to show that the graph G’ with edges {{gv;, gv2} : g €
I'" = I'(p, k)} is isomorphic to the wreath graph W« By relabeling the vertices (that
is performing a conjugation in S ) we may assume that I” "= I'(p, k). Furthermore,
by a translation in the group I"(p, k), which acts transitively on the elements of [p¥],
we may assume that vy = 1. Now if vy were in the first block [pk’l] of vertices, on
which the first factor I"(p, k — 1) operates, then it is easy to see that the resulting
graph G’ would not be connected: the first factor I"(p, k — 1) would send the edge
{1, v2} only to edges within the first block [p*~!] and then the cyclic permutation by
the factor Z/pZ would send this pattern of edges to the p — 1 other blocks, giving
us a disjoint union of p graphs. This is not possible, since our original graph G is a
subgraph of G’ and also was assumed to be connected.

Thus we may assume that v; is in one of the other blocks

P@ =[p* " 1+ip-fora=1,....,p—1.
Now we want to argue that we can reorder these blocks, sending P(a) to P(1) and

leaving P (0) invariant, such that the group action of I" (p, k) is respected. And indeed,
let b € Z/ pZ be the multiplicative inverse of a (such thatab =1 mod p), then there
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is a permutation of [ P sending the block P (i) to the block P(i - b mod p) (where
the block is just translated as a whole, not permuting the elements inside). And indeed,
we see that P(a) is sent to P(1). The reason why this permutation respects the form
of the action® of I'(p, k) is that multiplication by b induces a group isomorphism
7] pZ — 7./ pZ on the factor Z/ pZ of I' (p, k).

To summarize, we can assume without loss of generality that we start with an edge
{1, v2} with v; in the second block of vertices. But then it is easy to see that the graph
G’ obtained by taking the orbit of {1, vo} under I'(p, k) is indeed the wreath graph
W k. Indeed, the group I"(p, k) acts transitively within each of the p blocks of vertices
(since the i-th factor I"(p, k — 1) above acts transitively there), so every edge from the
first to the second block is in the orbit of {1, v2}. Then finally the cyclic permutation
action of Z/ pZ sends these edges to the set of all edges between blocks i and i + 1,
which exactly gives the set of edges of the wreath graph. This finishes the proof.

O

4 The Main Reduction: From Homomorphisms to Induced Subgraphs

In what follows we will construct a sequence of reductions, starting from #HoM (H) and
ending in #INDSUB(®). Here, H is a recursively enumerable set of p-edge-transitive
graphs and @ is a graph property such that for every graph H € H we have that
D (H[A)) # P(H).

More precisely, we will prove that

Lemma 4 Lemma 9 Lemma 10

#HOM(H) g?t #cp- HOM(H) g?t #CP- INDSUB(®) 5?“ #INDSUB(®) (7)

In particular, all of those reductions will be tight in the sense that conditional
lower bounds on the fine-grained complexity of #HOM(H) immediately transfer to
#INDSUB(@). For the hardness results we rely on a result of Dalmau and Jonsson [9]
stating that the problem #HOM () is known to be #W[1]-hard whenever H is recur-
sively enumerable and of unbounded treewidth.” Here a class of graphs is said to have
unbounded treewidth if for every b € N there exists a graph in the class with treewidth
at least b.

4.1 Reducing Homomorphisms to Color-Prescribed Homomorphisms

In the first reduction we are given graphs H and G and the goal is to compute
#Hom(H — G) using an oracle for #cp-Hom(H — g *). This can be done by taking
precisely |V (H)| copies of the vertices of G, that is, one for each vertex in H and then

6 To be precise, what happens is the following: the map sending P (i) to P(i - b mod p) is a permutation
of [pk], that is an element o € Spk- What we are claiming is that the subgroup I'(p, k) < Spk is stable

under the conjugation by o, thatis I'(p, k) = o I'(p, k)a_l. So o is a relabeling of the vertices of our
graph G’ which leaves the graph itself invariant.

7 We remark that the graph parameter of treewidth is not used explicitly in this work. Hence we omit the
definition and refer the interested reader e.g. to Chapter 11 in [12].
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adding an edge between two vertices u and v if they are copies of adjacent vertices in
G and the vertices of H corresponding to the copies of V (G) that contain u and v are
adjacent in H as well; this construction is also known as the Tensor product of H and
G. The construction is formalized in the proof of the following lemma. In particular
it is shown that the resulting graph G is H-colored.

Lemma4 Let H be a graph. There exists an algorithm A that is given a graph G
as input and has oracle access to the function #cp-Hom(H — g ) and computes
#Hom(H — G) in time [(|V(H)]) - |V(G)] where f is a computable function. Fur-
ther, every oracle query G satisfies |V(G)| < f(VH)] - IV(G)].

Proof Let k = |V (H)|. It will be convenient to assume that V(H) = [k]. Given a
graph G, we construct a graph G as follows. The vertex set of G is defined to be

k
viG)=Jv,

where V; = {v; | v € V(G)} is a copy of V(G) identified with vertex i € V(H). We
add an edge {u;, v;} to G if and only if {i, j} € E(H) and {u, v} € E(G). Now it
can easily be verified that the function c¢ : V(G) — V(H) given by c(v;) ;=i is an
H-coloring of G. Furthermore it is easy to see that

#cp-Hom(H — g é) = #Hom(H — G),

which concludes the proof. O

4.2 Reducing Color-prescribed Homomorphisms to Color-prescribed Induced
Subgraphs

The reduction from color-prescribed homomorphisms to color-prescribed induced
subgraphs requires the introduction of an H-colored variant of the framework of
graph motif parameters, which was explicitly introduced in [8] and implicitly used in
[4]. More precisely, given an H-colored graph G and a property @, we will express
#cp-IndSub(® — g G) as a linear combination of color-prescribed homomorphisms
counts, that s, terms of the form#cp-Hom(H[S] — g G).Inafirst step, we show com-
plexity monotonicity for linear combinations of color-prescribed homomorphisms.
While this property allows a quite simple proof, a second step, in which we study the
coefficient of #cp-Hom(H — g G) requires a thorough understanding of the alternat-
ing enumerator of @ and H. In case of p-edge-transitive graphs, the latter is provided
by Lemma 1.

We start by introducing a colored variant of the tensor product of graphs (see e.g.
Chapter 5.4.2 in [17]). Given two H-colored graphs G and G with colorings ¢ and ¢
we define their color-prescribed tensor product G X g G as the graph with vertices
V = {(v,0) € V(G) x V(G) | c(v) = é(D)} and edges between (v, 0) and (u, i) if
and only if {v, u} € E(G) and {0, i} € E(G). The next lemma states that #cp-Hom
is linear with respect to x g.
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Lemma5 Let H be a graph, let F be an edge-subgraph of H, and let G and G be
H-colored. Then we have that

#cp-Hom(F — G xy G) = #cp-Hom(F — i G) - #cp-Hom(F —p G) .

Proof It can easily be verified that the function b(k, ﬁ)(v) :=A(h(v), fz(v)) that
assigns elements in cp-Hom(F —pu G) x cp-Hom(F —p G) to elements in
cp-Hom(F — g G x g G) is a well-defined bijection. O

The proof of the complexity monotonicity property for color-prescribed homomor-
phisms (Lemma 7) will require to solve a system of linear equations. The following
lemma proves that the corresponding matrix is non-singular.

Lemma 6 Let H be a graph (which we consider H -coloured by the identity mapping)
and let M be a square matrix of size 2'EUD! such that the rows and columns are
identified by the subsets of edges of H. Furthermore assume that the entries of M are
given by

M(S, T) :=#cp-Hom(H|[S] -y HI[T)).

Then M is non-singular. This holds true even if M is considered as a matrix over Zp,
that is, the field with p elements. In the latter case, the entries are taken modulo p.

Proof We fix any linear extension < of the subset inclusion relation on E (H) and order
the columns and rows of M accordingly. We claim that M is triangular. To see this
we first observe that M (S, S) = 1 for every S, given by the identity homomorphism
from H[S] to H[S] which is, of course, color-prescribed. Now consider M (S, T) for
some T # S with T < S. It follows that there exists an edge {u, v} in S\ T since
< linearly extends subset inclusion. Now assume that there exists a color-prescribed
homomorphism 4 from H[S]to H[T]. By color-prescribedness we have that 7 (1) = u
and h(v) = v, contradicting the fact that / is a homomorphism and {u, v} ¢ T. Hence
M (S, T) = 0 and, consequently, M is upper-triangular. O

We are now prepared to prove the color-prescribed variant of complexity monotonicity.
Lemma 7 (Complexity monotonicity) Let H be a graph and let a be a computable

function from edge-subgraphs of H to rationals. There exists an algorithm A that is
given an H-colored graph G as input and has oracle access to the function

> a(H[S)) - #cp-Hom(H[S] — 1 +) .
SCE(H)

and computes #cp-Hom(H[S] —py G) for all S such that a(H[S]) # 0 in time

]: (|H]) - |V(G)J where f is a computable function. Furthermore, every oracle query
G satisfies |V(G)| < f(IH]) - [V(G)].
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Proof Using Lemma 5 we have that for every H-colored graph F it holds that

Z a(H[S)) - #cp-Hom(H[S] — 5 (G xy F)) )
SCE(H)
= Y a(H[S)) - #cp-Hom(H[S] —p G) - #cp-Hom(H[S] - F), (9)
SCE(H)
which we can evaluate for F = H[{], ..., H[E(H)]. This induces a system of linear

equations; for each of the aforementioned F' we obtain an equation

br= Y  ars-xs.

SCE(H)

such that bp = ZSQE(H)a(H[S]) - #cp-Hom(H[S] - (G xpg F)),and ar s =
#cp-Hom(H[S] -y F),and xs = a(H[S])-#cp-Hom(H[S] — y G).Now observe
that we can compute br using the oracle, and that we can compute ar g in time only
depending in H (since F is an edge-subgraph of H and S € E(H)). Furthermore, for
our choices of F, the corresponding matrix is non-singular by Lemma 6. Consequently,
the numbers a(H[S]) - #cp-Hom(H[S] —p G) are uniquely determined and can
be computed by solving the system using Gaussian elimination. Finally, we obtain
the numbers #cp-Hom(H[S] —y G) by multiplying with a(H[S])~' whenever
a(H[S]) #0. O

It remains to express the number of color-prescribed induced subgraphs that satisfy
a property @ as a linear combination of color-prescribed homomorphisms.

Lemma 8 Let H be a graph, let @ be a graph property and let G be an H-colored
graph. Then it holds that

#ep-IndSub(® —p G)= Y @HISH Y (=D #cp-Hom(HISUJ]1 >y G).
SeE(H) JSE(H)\S

Moreover, the absolute values of the coefficient of #cp-Hom(H — i G) and 3 (@, H)
are equal.

Proof We start by establishing the following claim.

Claim 1 Let H be graph, let S € E(H) and let G be an H-colored graph. Then

#ep-IndSub(H[S] > G)= Y (=" - #ep-Sub(H[SU J] > p G).
JCE(H)\S

Proof of claim 1t holds that

cp-IndSub(H[S] — x5 G)

=cp-Sub(H[S1 =4 GO\ | |J cp-Sub(H[SU{e}l =1 G)|. (10)
ecE(H)\S
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and hence, by inclusion-exclusion, #cp-IndSub(H[S] —  G) is equal to

#cp-Sub(H[S] = G) — Z (=)* =1 #cp-Sub(H[SU J] - 5 G)
BCICE(H)\S
(1)
= Z (—=D* . #cp-Sub(H[SU J] - G), (12)
JCE(H)\S

which concludes the proof of the claim.

Now we have that

#cp-IndSub(® — g G) (13)
= Z @ (H[S]) - #cp-IndSub(H[S] = G) (14)
SeE(H)
= Z ®(H[S)) Z (—=D)* . #cp-Sub(H[SU J] = G) (15)
SeE(H) JCE(H)\S
- Z D (H[S]) Z (—D)* - #cp-Hom(H[SUJ] > G)  (16)
SeE(H) JCE(H)\S

where (14) follows from the definition of cp-IndSub(® — gy G), (15) is Claim 1 and
(16) holds as color-prescribed homomorphisms are injective and a color-prescribed
embedding is uniquely identified by its image. Collecting for the coefficient of
#cp-Hom(H — g G) yields

> @HISD - (—DFEIDTH = (—)EID 5@, H). (17)
SeE(H)

O
The application of the complexity monotonicity property for color-prescribed homo-
morphisms (Lemma 7) requires non-zero coefficients. However, this can be guaranteed
for the coefficient of interest in case of p-edge-transitive graphs as shown in Sect. 3.
Formally, the reduction is constructed as follows.

Lemma9 Let @ be a computable graph property and let H be a p-edge-transitive
graph such that ® (H[0]) # ®(H). There exists an algorithm A that is given an
H-colored graph G as input and has oracle access to the function

#cp-IndSub(® — g %),
and computes #cp-Hom(H —y G) in time f(|AH|) - |V(G)| where f is a com-

putable function. Furthermore, every oracle query G is H-colored as well and satisfies

V(G| < FUH]) - [V(G)].
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Proof Using Lemma 8 we can express #cp-IndSub(® —py %) as a linear
combination of color-prescribed homomorphisms. In particular, the coefficient of
#cp-Hom(H —pg %) is (£1) - x(®, H) and by Lemma 1 we have that this num-
ber is non-zero whenever H is p-edge-transitive and @ (H[{]) # ®(H). Hence we
can use the algorithm from Lemma 7 to compute #cp-Hom(H — g G) in the desired
running time. O

4.3 Reducing Color-Prescribed Induced Subgraphs to Uncolored Induced
Subgraphs

The last part of the reduction sequence allows us to get rid of the colors. More precisely,
we will reduce the problem of counting color-prescribed induced subgraphs of an H -
colored graph to the problem of counting uncolored induced subgraphs of size |V (H)|
in a graph, both with respect to some property @. The proof is a straightforward
application of the inclusion-exclusion principle, which is standard for reducing from
the colored to the uncolored version of a parameterized counting problem (see for
instance [7, Section 1.4.1]). We include a proof only for completeness.

Lemma 10 Let @ be a graph property and let H be a graph with k vertices. There
exists an algorithm A that is given an H-colored graph G as input and has oracle
access to the function #IndSub(®, k — %) and computes #cp-IndSub(® — g G) in
time f(k)-|V(G)| where f is a computable function. Furthermore, every oracle query
G satisfies |V(G)| < |V(G)| and, in particular, G allows an H- -coloring as well.

Proof It will be convenient to assume that V(H) = [k]. We first check whether the
H-coloring ¢ of G is surjective. If this is not the case then there exists some vertex
i € V(H)suchthati ¢ im(c) and hence there is no color-prescribed induced subgraph
of G, so A can just output 0. Otherwise, the H-coloring of G induces a partition of
V(G) in k many non-empty and pairwise disjoint subsets, each associated with some
“color” i € V(H). This allows us to equivalently express cp-IndSub(® —p G) in
terms of vertex-colorful induced subgraphs:

V(G
cp-IndSub(® - G) = {S c ( 5{ )> ‘ c(S) =[k] A 2(G[S) = l} (18)
By the principle of inclusion and exclusion we obtain that

#cp-IndSub(® — g G) = Z (—=D* - #IndSub(®, k — G ), (19)
ISk

where G is the graph obtained from G by deleting all vertices that are colored with
some color in J. Hence we can compute #cp-IndSub(® — y G) using 2k oracle calls.
Finally, we observe that H-colored graphs are closed under the removal of vertices
and therefore every oracle query G ; allows an H-coloring. O
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5 Non-trivial Monotone Properties on Bipartite Graphs

In what follows, we apply the algebraic approach which was laid out in the preceding
sections to bipartite graph properties. This will allow us to prove our main result.
To this end, we say that a set L € N is dense if there exists a constant ¢ such that
for every k' € N there exists k € K such that ¥’ < k < ck’. Furthermore, we
write IS for the graph with k isolated vertices. The following theorem is obtained
by invoking the reduction sequence (7) to complete bipartite graphs K, ; for prime
powers ¢ = p*, which are p-edge-transitive (see Sect. 3). The extension to modular
counting is presented in the next section.

Theorem 1 Let @ be a computable graph property and let IC be the set of all prime
powers t such that @ (ISy;) # D (K, ). If K is infinite then #INDSUB(QP) is #W[1]
hard. If additionally K is dense then it cannot be solved in time f (k) - n°® for any
computable function f unless ETH fails. This holds true even if the input graphs to
#INDSUB(®) are restricted to be bipartite.

While #W[1]-hardness will follow by the classification of Dalmau and Jonsson [9],
hardness under ETH requires a tight reduction from counting cliques, which we will
present first. In particular we use a trick inspired by Lemma 1.11 in [7] to make the
reduction parsimonious which is required for the extension to modular counting in the
subsequent section.

Lemma 11 There exists an algorithm that, given a positive integer £ > 1 and a graph
G with n vertices, computes in time O (€n) a Ky ¢-colored graph G’ with at most O (£n)
vertices such that the number of cliques of size £ in G equals #cp-Hom(K, ¢ —k,,
G).
Proof Letthe vertexsetof Gbe{v; | 1 <i < n}andletthatof K; ¢be{a;,b; | 1 <i <
£}. We now construct the graph G’ on the vertex set {wij,wij11<i<¢1=<j=<n}
with a K¢ ¢-coloring given by c¢(u; ;) = a; and c(w; ;) = b;. We add an edge between
u;j j and wy ;o if and only if

— either (i, j) = (i', j),

—ori <i', j < j"and the vertices v; and v are adjacent,

—ori >1i', j > j"and the vertices v; and v/ are adjacent.

Let {vj,,...vj,} be an £-clique in G. Assume w.l.o.g. that ji < ji fork < k.
Then the set {uy j,,...ue j,, wy,j;, ... wy,j,} forms a colorful biclique in G', so it
gives rise to a color-prescribed homomorphism 2 € cp-Hom(K¢ ¢ —k,, G'). Now
let i’ € cp-Hom(K, ¢ —k,, G') be a color-prescribed homomorphism. Then there
has to be the following colorful biclique in G':

{Ut,01s - Mgy, W1y - - wg,,g(} .

We first see that for every i we have o; = B; since there has to be an edge between
Ui o; and w; g;. All other edges now directly imply that {vy,, ..., vy} is a clique of
size £ in G. Furthermore the edges enforce o; < By = «; for every i < i/, i.e. that
the «; are sorted in increasing order and thus there is a one-to-one correspondence
between homomorphisms in cp-Hom(Ky ¢ — g, , G’) and £-cliques in G. ]
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Proof of Theorem 1 Let @ and K be as given in Theorem 1. We define a class of graphs
‘H as follows:

:{Kt’[|t€,C}

By the reducnons sequence (7), given by Lemmas 4, 9 and 10, we obtain that
#HOM(H) < #INDSUB(@) As @ is computable, H is recursively enumerable.
Furthermore, as KC is infinite, we have that there are arbitrary large bicliques in H
and, in particular, the treewidth of  is unbounded. Therefore #HoM (), and hence
#INDSUB(@), are #W[1]-hard by the classification of counting homomorphisms due to
Dalmau and Jonsson [9]. For the tight bound under ETH, we reduce from the decision
problem CLIQUE which asks, given G and k, to decide whether G contains a clique of
size k and which cannot be solved in time f (k) - n°®) for any computable function f,
unless ETH fails [5,6]. Now assume that /C is dense and let (G, k) be an instance of
CLIQUE. By density of /C, there exists £ € K such that k < £ < ck for some overall
constant ¢ independent of k. We construct the graph G from G by adding ¢ — k further
vertices and adding edges between all new vertices as well as between every pair of
an old and a new vertex. It can then easily be verified that G contains a clique of size
k if and only if G contains a clique of size £.

Next we apply Lemma 11 to G and ¢, and obtain an K ¢.¢-colored graph G’ satisfying
that the number of ¢-cliques in G is equal to

#cp-Hom (K¢ e —k,, G).

Now we invoke Lemmas 9 and 10 to conclude the reduction. In particular, all reductions
are tight in the sense that every oracle call for #INDSUB(@) in the final part of the
reduction is a pair (G, 2¢) where the number of vertices of G is bounded by O (¢ -
[V(G)]). As £ < ck we conclude that every algorithm that solves #INDSUB(@) in time
f (k) - n°® can be used to solve CLIQUE in time f (k) - n®®—just check in the end
whether the output is a number greater than zero.

Finally, we point out that for both (#W[1] and ETH) hardness results, the last part
of the reduction, that is, Lemma 10 only queries for graphs that are K; ;-colorable and
hence bipartite. O

Note that, in case @ or its complement is edge-monotone, we only have to find
infinitely many prime powers ¢ for which @ is neither true nor false on the set of
all edge-subgraphs of K;;, which is the case for all natural, non-trivial properties
that do not rely on the number of vertices in some way.® If @ (or its complement)
is monotone, that is, not only closed under the removal of edges, but also under the
removal of vertices, then such artificial properties do not exist and we can state the
result more clearly as follows.

Theorem 2 Let @ be a computable monotone graph property such that @ and —®
hold on infinitely many bipartite graphs. Then #INDSUB(Q®) is #W[1]-hard and cannot

8 An example of such a “non-natural” case would be the (edge-monotone) property which is equivalent to
planarity for all graphs whose number of vertices is contained in the image of the Ackermann function, and
which is trivially true for all other vertex counts.
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be solved in time f (k) - n°® for any computable function f unless the Exponential
Time Hypothesis fails. This holds true even if the input graphs to #INDSUB(®) are
restricted to be bipartite.

Proof Since @ holds for infinitely many (bipartite) graphs, we have that for each
positive integer k, there exists a graph H with at least k vertices such that ® (H) = 1.
Since @ is monotone, that is, closed under removal of vertices and edges, and since
ISy is a subgraph of H, we have that @ (IS;) = 1.

Next, we claim that @ (K; ;) = Oforall but finitely many 7. Assume for contradiction
that the latter is false, that is, for each 7 there exists a ' > ¢ such that @ (K, ) = 1.
However, this implies that for every bipartite graph H, the property @ is true for a
supergraph of H. Since @ is monotone, we conclude that @ (H) = 1, contradicting
the fact that =@ holds for infinitely many bipartite graphs.

Consequently, we have shown that @(IS;) = 1 for all positive integers k and
@ (K;;) = O for all but finitely many ¢. Hence we can apply Theorem 1 and, in
particular, the set IC will contain all but finitely many prime powers and is therefore
dense. O

6 Extension to Modular Counting

In the last part of the paper, we show that our main result (Theorem 1) can easily be
extended to counting modulo a fixed prime:

Theorem 5 Let p be a prime number, let @ be a computable graph property and let K
be the set of all prime powers t = p* such that ® (ISy;) # D (K; ). If K is infinite
then Mod ,INDSUB(®) is Mod,W[1] hard. If additionally K is dense, then it cannot
be solved in time f (k) - n°® for any computable function f unless ETH fails. This
holds true even if the input graphs to Mod ,INDSUB(®) are restricted to be bipartite.

Here Mod ,INDSUB(®) asks, given G and k, to compute the number of induced sub-
graphs with k vertices in G that satisfy @ modulo p. The parameterized complexity
class Mod,W[1] is defined by the problem of, given G and k, deciding whether the
number of k-cliques in G is 0 modulo p, which is complete for the class (see [3] for
p = 2 and Chapter 1.2.2 in [7] for the general case).

First of all, we point out that the modular counting version of Theorem 2 follows as
corollary from the above theorem in the same way Theorem 2 follows from Theorem 1.
For the proof of Theorem 5 we rely on the following fact stating that all required
reductions in Sect. 4 work as well in the case of counting modular a prime number.

Fact1 Let p be a fixed prime. Then Lemmas 9 and 10 remain true when counting is
done modulo p if the graph H is restricted to be K, ; for some prime power t = pk.

The only two non-trivial observations required to verify Fact 1 are, first, that
X (@, K; ;) #0 mod p whenever @ (K, ,[0]) # ®(K;,) (Lemma 1) and, second,
that complexity monotonicity (Lemma 7) holds for computation modulo p as well,
since non-singularity of the matrix M in the proof is given by Lemma 6 even in case
the entries of M are considered to be elements of Z . The last ingredient for the proof
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of Theorem 5, in particular for hardness under ETH, requires a method of isolating
cliques that works in the parameterized setting. This is given by the following result
of Williams et al.

Lemma 12 (Lemma 2.1 in [26]) Let p > 2 be an integer, G, H be undirected graphs.
Let G' be a random induced subgraph of G such that each vertex is taken with prob-
ability 1/2, independently. If there is at least one induced H in G, the number of
induced H in G' is not a multiple of p with probability at least 2~'H1.

Proof of Theorem 5 The proof is most similar to the proof of the tight lower bound
under ETH in Theorem 1. We start our reduction from the problem of finding a clique
of size k. In case K is dense and we aim to establish the ETH hardness result, we
perform the following two initial steps before the main reduction:

1. Given G and k, we construct a graph G such that G contains a clique of size k
if and only if G contains a clique of size £ where k < £ < ck for some overall
constant c¢. The details of the construction are given in the proof of Theorem 1.

2. We use Lemma 12 to isolate an ¢-clique in G, assuming there is any, with high
probability.

For the main part of the reduction we then first apply the reduction from counting

cliques to counting color-prescribed homomorphisms from the biclique as given by

Lemma 11. In particular, this reduction is parsimonious. Finally, we proceed from this

point on precisely as in the proof of Theorem 1, the correctness of which follows by

Fact 1.

We conclude by pointing out that, in case the randomized construction of Lemma 12
was used, we can perform probability amplification by repeating the final algorithm

2K times to end up in a constant success probability. O

7 Conclusion

We have established hardness for #INDSUB(@) for any (edge-)monotone property @
that is non-trivial on bipartite graphs. In particular, this holds true even if we count
modulo a prime and restrict the input graphs to be bipartite as well. Hence, we did not
only significantly extend the set of graph properties @ for which the (parameterized)
complexity of #INDSUB(@) is understood, but we also generalized many of the prior
results, such as [13], [19] and parts of [22] to the cases of bipartite input graphs and
modular counting.

As anext step towards a proof of Conjecture 1, we suggest the study of properties that
are defined by forbidden induced subgraphs, for which the complexity of #INDSUB(®)
is only partially resolved at this point.
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