26 research outputs found

    Modulational Instability in Equations of KdV Type

    Full text link
    It is a matter of experience that nonlinear waves in dispersive media, propagating primarily in one direction, may appear periodic in small space and time scales, but their characteristics --- amplitude, phase, wave number, etc. --- slowly vary in large space and time scales. In the 1970's, Whitham developed an asymptotic (WKB) method to study the effects of small "modulations" on nonlinear periodic wave trains. Since then, there has been a great deal of work aiming at rigorously justifying the predictions from Whitham's formal theory. We discuss recent advances in the mathematical understanding of the dynamics, in particular, the instability of slowly modulated wave trains for nonlinear dispersive equations of KdV type.Comment: 40 pages. To appear in upcoming title in Lecture Notes in Physic

    Dispersive shock waves and modulation theory

    Get PDF
    There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G. B. Whitham’s seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham’s averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg–de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. Ciências da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior Técnico. Universidade Técnica de Lisbo

    Does solitary wave solution persist for the long wave equation with small perturbations?

    Full text link
    In this paper, persistence of solitary wave solutions of the regularized long wave equation with small perturbations are investigated by the geometric singular perturbation theory. Two different kinds of the perturbations are considered in this paper: one is the weak backward diffusion and dissipation, the other is the Marangoni effects. Indeed, the solitary wave persists under small perturbations. Furthermore, the different perturbations do affect the proper wave speed ensuring the persistence of the solitary waves. Finally, numerical simulations are utilized to confirm the theoretical results

    Solitons, Breathers and Rogue Waves in Nonlinear Media

    No full text
    In this thesis, the solutions of the Nonlinear Schrödinger equation (NLSE) and its hierarchy are studied extensively. In nonlinear optics, as the duration of optical pulses get shorter, in highly nonlinear media, their dynamics become more complex, and, as a modelling equation, the basic NLSE fails to explain their behaviour. Using the NLSE and its hierarchy, this thesis explains the ultra-short pulse dynamics in highly nonlinear media. To pursue this purpose, the next higher-order equations beyond the basic NLSE are considered; namely, they are the third order Hirota equation and the fifth order quintic NLSE. Solitons, breathers and rogue wave solutions of these two equations have been derived explicitly. It is revealed that higher order terms offer additional features in the solutions, namely, ‘Soliton Superposition’, ‘Breather Superposition’ and ‘Breather-to-Soliton’ conversion. How robust are the rogue wave solutions against perturbations? To answer this question, two types of perturbative cases have been considered; one is odd-asymmetric and the other type is even-symmetric. For the odd-asymmetric perturbative case, combined Hirota and Sasa-Satsuma equations are considered, and for the latter case, fourth order dispersion and a quintic nonlinear term combined with the NLSE are considered. Indeed, this thesis shows that rogue waves survive these perturbations for specific ranges of parameter values. The integrable Ablowitz-Ladik (AL) equation is the discrete counterpart of the NLSE. If the lattice spacing parameter goes to zero, the discrete AL becomes the continuous NLSE. Similar rules apply to their solutions. A list of corresponding solutions of the discrete Ablowitz-Ladik and the NLSE has been derived. Using associate Legendre polynomial functions, sets of solutions have been derived for the coupled Manakov equations, for both focusing and defocusing cases. They mainly explain partially coherent soliton (PCS) dynamics in Kerr-like media. Additionally, corresponding approximate solutions for two coupled NLSE and AL equations have been derived. For the shallow water case, closed form breathers, rational and degenerate solutions of the modified Kortweg-de Vries equation are also presented
    corecore