230 research outputs found

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    The non-smooth and bi-objective team orienteering problem with soft constraints

    Get PDF
    In the classical team orienteering problem (TOP), a fixed fleet of vehicles is employed, each of them with a limited driving range. The manager has to decide about the subset of customers to visit, as well as the visiting order (routes). Each customer offers a different reward, which is gathered the first time that it is visited. The goal is then to maximize the total reward collected without exceeding the driving range constraint. This paper analyzes a more realistic version of the TOP in which the driving range limitation is considered as a soft constraint: every time that this range is exceeded, a penalty cost is triggered. This cost is modeled as a piece-wise function, which depends on factors such as the distance of the vehicle to the destination depot. As a result, the traditional reward-maximization objective becomes a non-smooth function. In addition, a second objective, regarding the design of balanced routing plans, is considered as well. A mathematical model for this non-smooth and bi-objective TOP is provided, and a biased-randomized algorithm is proposed as a solving approach. © 2020 by the authors.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness & FEDER (SEV-2015-0563), the Spanish Ministry of Science (PID2019-111100RB-C21, RED2018-102642-T), and the Erasmus+ Program (2019-I-ES01-KA103-062602)

    Determining reliable solutions for the team orienteering problem with probabilistic delays

    Get PDF
    In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle’s capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020–2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Peer ReviewedPostprint (published version

    Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays

    Full text link
    [EN] In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle's capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RBC21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Herrera, EM.; Panadero, J.; Carracedo-Garnateo, P.; Juan-Pérez, ÁA.; Pérez Bernabeu, E. (2022). Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics. 10(20). https://doi.org/10.3390/math10203788102

    Orienteering Problem: A survey of recent variants, solution approaches and applications

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Solving Multi‑Objective Team Orienteering Problem with Time Windows Using Adjustment Iterated Local Search

    Get PDF
    One of the problems tourism faces is how to make itineraries more effective and efficient. This research has solved the routing problem with the objective of maximizing the score and minimizing the time needed for the tourist’s itinerary. Maximizing the score means collecting a maximum of various kinds of score from each destination that is visited. The profits differ according to whether those destinations are the favorite ones for the tourists or not. Minimizing time means traveling time and visiting time in the itinerary being kept to a minimum. Those are small case with 16 tourism destinations in East Java, and large case with 56 instances consists of 100 destinations each from previous research. The existing model is the Team Orienteering Problem with Time Window (TOPTW), and the development has been conducted by adding another objective, minimum time, become Flexible TOPTW. This model guarantees that an effective itinerary with efficient timing to implement will be produced. Modification of Iterated Local Search (ILS) into Adjustment ILS (AILS) has been done by replacing random construction in the early phase with heuristic construction, continue with Permutation, Reserved and Perturbation. This metaheuristic method will address this NP-hard problem faster than the heuristic method because it has better preparation and process. Contributing to this research is a multi-objective model that combines maximum score and minimum time, and a metaheuristics method to solve the problem faster and effectively. There are calibration parameter with 17 instances of 100 destinations each, small case test using Mixed Integer Linear Programming, and large case test comparing AILS with Multi-Start Simulated Annealing (MSA), Simulated Annealing (SA), Artificial Bee Colony (ABC), and Iterated Local Search. The result shows that the proposed model will provide itinerary with less number of visited destination 4.752% but has higher total score 8.774%, and 3836.877% faster, comparing with MSA, SA, and ABC. While AILS is compared with ILS, it has less visited destination 5.656%, less total score 56.291%, and faster 375.961%. Even though AILS has more efficient running time than other methods, it needs improvement in algorithm to create better result

    Tour recommendation for groups

    Get PDF
    Consider a group of people who are visiting a major touristic city, such as NY, Paris, or Rome. It is reasonable to assume that each member of the group has his or her own interests or preferences about places to visit, which in general may differ from those of other members. Still, people almost always want to hang out together and so the following question naturally arises: What is the best tour that the group could perform together in the city? This problem underpins several challenges, ranging from understanding people’s expected attitudes towards potential points of interest, to modeling and providing good and viable solutions. Formulating this problem is challenging because of multiple competing objectives. For example, making the entire group as happy as possible in general conflicts with the objective that no member becomes disappointed. In this paper, we address the algorithmic implications of the above problem, by providing various formulations that take into account the overall group as well as the individual satisfaction and the length of the tour. We then study the computational complexity of these formulations, we provide effective and efficient practical algorithms, and, finally, we evaluate them on datasets constructed from real city data
    corecore