1,403 research outputs found

    A Memtic genetic algorithm for a redundancy allocation problem

    Get PDF
    In general redundancy allocation problems the redundancy strategy for each subsystem is predetermined. Tavakkoli- Moghaddam presented a series-parallel redundancy allocation problem with mixing components (RAPMC) in which the redundancy strategy can be chosen for individual subsystems. In this paper, we present a bi-objective redundancy allocation when the redundancy strategies for subsystems are considered as a variable of the problem. As the problem belongs to the NP-hard class problems, we will present a new approach for the non-dominated sorting genetic algorithm (NSGAII) and Memtic algorithm (MA) with each one to solve the multi-objective model

    An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm

    Get PDF
    AbstractThe main goal of the present paper is to present a penalty based cuckoo search (CS) algorithm to get the optimal solution of reliability – redundancy allocation problems (RRAP) with nonlinear resource constraints. The reliability – redundancy allocation problem involves the selection of components' reliability in each subsystem and the corresponding redundancy levels that produce maximum benefits subject to the system's cost, weight, volume and reliability constraints. Numerical results of five benchmark problems are reported and compared. It has been shown that the solutions by the proposed approach are all superior to the best solutions obtained by the typical approaches in the literature are shown to be statistically significant by means of unpaired pooled t-test

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    Multi-objective optimisation of safety-critical hierarchical systems

    Get PDF
    Achieving high reliability, particularly in safety critical systems, is an important and often mandatory requirement. At the same time costs should be kept as low as possible. Finding an optimum balance between maximising a system's reliability and minimising its cost is a hard combinatorial problem. As the size and complexity of a system increases, so does the scale of the problem faced by the designers. To address these difficulties, meta-heuristics such as Genetic Algorithms and Tabu Search algorithms have been applied in the past for automatically determining the optimal allocation of redundancies in a system as a mechanism for optimising the reliability and cost characteristics of that system. In all cases, simple reliability block diagrams with restrictive assumptions, such as failure independence and limited 2-state failure modes, were used for evaluating the reliability of the candidate designs produced by the various algorithms.This thesis argues that a departure from this restrictive evaluation model is possible by using a new model-based reliability evaluation technique called Hierachically Performed Hazard Origin and Propagation Studies (HiP-HOPS). HiP-HOPS can overcome the limitations imposed by reliability block diagrams by providing automatic analysis of complex engineering models with multiple failure modes. The thesis demonstrates that, used as the fitness evaluating component of a multi-objective Genetic Algorithm, HiP-HOPS can be used to solve the problem of redundancy allocation effectively and with relative efficiency. Furthermore, the ability of HiP-HOPS to model and automatically analyse complex engineering models, with multiple failure modes, allows the Genetic Algorithm to potentially optimise systems using more flexible strategies, not just series-parallel. The results of this thesis show the feasibility of the approach and point to a number of directions for future work to consider

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends
    corecore