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Abstract 

Achieving high reliability, particularly in safety critical systems, is an impor-

tant and often mandatory requirement. At the same time costs should be 

kept as low as possible. Finding an optimum balance between maximising a 

system‟s reliability and minimising its cost is a hard combinatorial problem. 

As the size and complexity of a system increases, so does the scale of the 

problem faced by the designers. To address these difficulties, meta-

heuristics such as Genetic Algorithms and Tabu Search algorithms have been 

applied in the past for automatically determining the optimal allocation of 

redundancies in a system as a mechanism for optimising the reliability and 

cost characteristics of that system. In all cases, simple reliability block 

diagrams with restrictive assumptions, such as failure independence and 

limited 2-state failure modes, were used for evaluating the reliability of the 

candidate designs produced by the various algorithms.  

This thesis argues that a departure from this restrictive evaluation model is 

possible by using a new model-based reliability evaluation technique called 

Hierachically Performed Hazard Origin and Propagation Studies (HiP-HOPS). 

HiP-HOPS can overcome the limitations imposed by reliability block diagrams 

by providing automatic analysis of complex engineering models with multiple 

failure modes. The thesis demonstrates that, used as the fitness evaluating 

component of a multi-objective Genetic Algorithm, HiP-HOPS can be used to 

solve the problem of redundancy allocation effectively and with relative 

efficiency. Furthermore, the ability of HiP-HOPS to model and automatically 

analyse complex engineering models, with multiple failure modes, allows the 

Genetic Algorithm to potentially optimise systems using more flexible strate-

gies, not just series-parallel. The results of this thesis show the feasibility of 

the approach and point to a number of directions for future work to con-

sider. 
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1. Introduction 

1.1  Motivation 

1.1.1 Reliability is important. 

People are dependent on the products of technology. This dependence is 

only possible when these products are reliable.  

The IEEE Reliability Society describes reliability as the ability of a product to 

perform its function for the stated duration in a given environment (IEEE 

Reliability Society - Reliability Engineering). In this thesis, reliability will 

refer to the quantifiable probability that a system will not fail within a given 

time period. 

Sometimes the failure of a product can cause serious injury or loss of life 

and cannot be designed to fail safely. These are known as safety-critical 

systems and include the products of the automotive industry, the aeronautic 

and aerospace industry, the shipping industry, the rail industry, and the 

nuclear power industry. It is especially important that these systems are 

designed to be highly reliable. 

Reliability is a valuable property in all systems, not just where safety is 

critical. No company would like to be associated with the manufacture of 

unreliable products, but the benefits of reliability extend beyond brand 

reputation. A company releasing a reliable product could expect fewer 

returns from customers, so fewer costly repairs or replacements required.  

From a user‟s point of view, reliable systems can result in lower operational 

costs; failing with expensive down-time and requiring costly repair less 

frequently. Likewise, a high reliability can allow longer periods between 

preventative maintenance.   
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There is clearly a broad reaching need for creating safe, reliable systems. 

However, this need is in conflict with decreasing product lifecycles and 

increasing complexity of design.   

1.1.2  How do we know if a system is reliable? 

The reliability of a system can be determined during its deployed lifetime; 

how often and with what frequency does it fail? However we want to be able 

to improve the reliability of systems before they are built and deployed, 

during the design phase of the system. In the rest of this thesis, when the 

“reliability of a system design” is used, it refers to the modelled reliability of 

the system that will be based on this design.  

In order to improve the reliability of a system design, it is necessary to 

analyse the system design to gain an understanding of its failure behaviour. 

One technique that has been in use for nearly half a century is fault tree 

analysis (FTA). Now widespread in industry, FTA is used to help understand 

the relationship between failures of a system and the possible causes of 

those failures; it encapsulates the complex interaction between the failures 

of individual parts of a system and how they can combine to cause the 

system as a whole to fail.  

Where FTA asks the question, „What caused this system failure?‟, Failure 

Modes and Effects Analysis (FMEA) inverts the question and asks, „If this 

component fails, what is the effect on the system?‟. 

Reliability block diagrams (RBD) can also be created. They are based on the 

engineering model of the design but conform to a series-parallel representa-

tion of it. The simplification of the model as an RBD allows a reliability 

approximation to be calculated quickly. 
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An increase in available computing power allows computer engineering 

models to be used to simulate the function of the system they are model-

ling. Depending on the accuracy of the simulation model, this can provide 

information about how the system behaves under certain conditions. 

1.1.3 Making use of reliability analysis.  

These different techniques are useful and important for evaluating the 

reliability of the systems that they analyse. They are often used, sometimes 

as the mandatory requirement of an industry standard, to validate and 

certify the safety credentials of a design.  

This use certainly has its place, but in recent years there has been an impe-

tus to make use of these system analyses to inform the design decisions and 

drive the design process. At each stage of the design cycle, the system can 

be analysed, providing the engineers with information highlighting the 

reliability weaknesses in the system. Armed with this knowledge, the design 

team can make modifications to the system in order to increase the reliabil-

ity of the design and eliminate the most hazardous failure modes. Making 

these changes as early in the design cycle as possible minimises the cost; 

late stage changes are expensive. 

However, the application of these techniques is challenged by complexity. In 

a system that has a thousand components, for example, assuming that each 

component has a single failure mode, there are approximately 500,000 

combinations of two failures that might occur and their effects need to be 

considered in a thorough safety or reliability analysis. To address problems 

of analysis arising in complex systems, new techniques for performing the 

analyses had to be developed in order to allow computer automation.  

FMEA for example was, and to a certain extent still is, a primarily manual 

process conducted by teams of engineers over multiple weeks. The cost of 
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doing this, in time and money, makes its application in a cyclical process 

impossible. Tools and methods such as AutoSteve (Price and Taylor, 2002) 

and HiP-HOPS automate the process, producing FMEA data and tables di-

rectly from the system models making the analysis a matter of hours, 

minutes, and even seconds and less. 

1.1.4 Improving the reliability of a system through design 

modifications. 

The availability of these automatic tools provides rich data to the engineers, 

quickly enough to be useful in informing their design modifications.  

The decisions regarding the modifications still lie with the engineer, how-

ever, and rely on their experience and system knowledge to improve the 

reliability of the functional design. 

In their book on optimal reliability design (KUO, W et al., 2001) the authors 

layout a number of principles for improving the reliability of a system. Some 

of them, such as keeping the design as simple as possible whilst fulfilling the 

requirements, are down to good design practices. It is also possible to 

improve reliability simply by using more reliable components or by using 

redundant configurations of components as a backup.  

Also listed as principles for increasing reliability is the use of maintenance, 

both proactive and reactive. This in itself is a complex optimisation problem 

and is beyond the scope of this thesis. 

1.1.5  Problems with achieving optimality. 

The goal of improving the reliability of a system rarely occurs in isolation 

and the use of more reliable components or the use of extra components in 

parallel configurations carries an extra cost; not necessarily just a financial 
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cost but perhaps a feasibility cost in terms of the weight gain or volume 

constraints that are affected by the use of different or extra components. 

The conflicting goals of minimising the cost of a system and maximising its 

reliability turn the problem of selecting the best location for a redundant 

strategy, or the use of an expensive extra reliable component, into an 

optimisation problem. 

As stated previously, automated system analysis tools greatly enhance the 

information that the engineers have to inform their design modification 

decisions. However, on anything other than the simplest of systems, choos-

ing the optimum location of expensive redundancy configurations and 

premium components is a non trivial problem, because complex systems can 

be implemented in many different ways and have many different real-time 

configurations. The many permutations give a design search space that is 

highly susceptible to combinatorial explosion.  

Combinatorial explosion occurs when the number of possible solutions 

rapidly increases due to the effect of the combinations and permutations of 

the available choices. A system with only ten components, for example, that 

has 4 alternatives for each component has over a million different combina-

tions of component choices. That doesn‟t even consider combinations of 

redundant strategies for the system. 

An informed and experienced engineer can make educated choices to at-

tempt optimality but the sheer number of options makes it very unlikely that 

it will be achieved. 
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1.1.6  Automatic optimisation algorithms can help. 

Automated optimisation algorithms are designed for problems of this nature, 

where the exhaustive search of all the options falls into a prohibitive time 

frame. 

There are many different types of optimisation algorithm. Exact mathemati-

cal methods such as dynamic programming and integer programming can 

guarantee that, where solutions are found, they are optimal, but can typi-

cally only achieve this on highly constrained problems. 

Meta-heuristics, on the other hand, cannot guarantee the optimality of 

solutions but can be applied much more flexibly to problems, with fewer 

constraints or artificial restrictions.  

One such algorithm is Tabu search which navigates through the search 

space one step at a time by maintaining and modifying a list of taboo 

moves. Alternatively, the pheromone trails of a foraging ant colony inspire 

the working of Ant Colony Optimisation. Also inspired by natural processes, 

genetic algorithms are modelled on the „survival of the fittest‟ mechanisms 

of biological evolution and are known to be effective when applied to combi-

natorial problems such as this.  

1.1.7  Problems with existing optimisation algorithms. 

The optimisation methods listed above have been applied to the problem, of 

optimal location of redundant configurations and alternative components, in 

the literature with varying degrees of success. However, a limitation that 

they all typically share is that the failure model used to calculate the reliabil-

ity of the candidate solutions is a reliability block diagram (RBD). 

This is not ideal, as RBDs are an abstract simplification of a system under 

failure, and cannot fully capture the complex behaviour of a system. The 
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component failures in the model, as well as the failure of the whole system, 

are single mode, only allowing complete loss of function to be modelled. In 

addition to this, RBDs are not the same as the engineering model of the 

system, though they are based on it. This means that RBDs must be gener-

ated from and converted back to the „real‟ model to be useful; an extra and 

potentially error prone step. 

The massively iterative nature of optimisation algorithms previously relied 

on the main strength of RBDs, the speed of reliability calculation. With the 

recent advances in automatic safety and reliability analyses, however, it 

becomes possible to manage without these limitations and allow the more 

desirable situation where the architecture of the engineering model itself can 

be directly optimised.  

This thesis argues that these limitations can be addressed by using an 

automatic safety and reliability analysis method in conjunction with a multi-

objective genetic algorithm. 

1.2 Research Hypothesis  

It is conceptually possible and technically feasible to achieve architectural 

optimisation using a combination of emerging model-based safety analysis 

techniques and meta-heuristics, assisting in the exploration of large design 

spaces for optimal tradeoffs between cost and reliability. 

1.3 Research Objectives  

The overarching goal of this research thesis is to demonstrate the technical 

feasibility and usefulness of optimising the dependability characteristics of a 

safety-critical system model by modifying its architecture using a genetic 

algorithm. 
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Both existing fields of research, complex reliability analysis and multi-

objective optimisation, are well established with strongly developed solu-

tions, whereas the combination of the two fields has not been achieved 

before. An attempt to develop completely new analysis methods and com-

pletely new optimisation algorithms would unnecessarily spread research 

effort too thinly. Instead good candidates will be selected from each field 

and will be modified and integrated to provide new and essential functional-

ity that was hitherto not possible. 

Achieving this outcome relies on meeting several objectives: 

1. Choose from among the state of the art in safety and reliability 

analyses a technique that can provide fast, scalable, and 

automatic model-based evaluation of safety and reliability. 

At a conceptual level optimising the reliability characteristics of a system 

model is a simple matter; all that is needed is any optimisation algorithm 

using any reliability-analysis technique to provide the solution evaluations. 

Ensuring the technical feasibility of such a combination, however, is not as 

straight forward as the time available for the design of a system is strictly 

limited and therefore any solution must be fast enough to be useful in a 

practical design process. 

Sophisticated optimisation algorithms typically require a large number of 

iterative cycles to satisfactorily explore the solution space. In this context 

each considered solution must be evaluated by the reliability-analysis 

method to allow the optimisation algorithm to make comparisons and selec-

tions between solutions. 

The consequence of this requirement is that the reliability-analysis method 

will need to be repeated, perhaps millions of times. Realistically, even reli-

ability-analysis methods that take just a few seconds to perform will be 
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unsuitable as the repetition results in prohibitively long total optimisation 

times.  

For the purposes of this work, this means that after a suitable reliability-

analysis technique has been selected it will still be desirable, if not neces-

sary, to reduce the computational effort required by this technique. The 

second objective of this work is therefore to:  

2. Examine the possibility of further minimising the computa-

tional effort required to perform reliability analysis through 

performance enhancements to the chosen technique. 

Satisfaction of this objective will maximise the scalability of the optimisation 

process to allow its application to larger and more complex system models. 

Beyond the area of reliability analysis, this thesis also engages with the 

state-of-the-art in the area of optimisation. The third objective is precisely 

to:    

3. Choose from among the state of the art a strongly performing 

genetic algorithm that can conduct the optimisation.  

The meta-heuristic optimisation techniques, genetic algorithms, are known 

to perform well in combinatorial problems such as this and will be used as 

the optimisation method. Research into genetic algorithms is active and 

continuing and there are many variations. Not all are equal, however, and so 

finding one that performs well on this type of problem will be important. 

Having selected a suitable GA it will still be desirable to examine the possi-

bility of improvements to the performance of the chosen algorithm. The 

fourth objective of this work is therefore to:  

4. Examine the possibility of minimising the computational effort 

required for the chosen genetic algorithm to perform the opti-

misation. 
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Though the bulk of the total computational expense of the optimisation will 

likely be the reliability-analysis technique, the overhead of the genetic 

algorithm itself will not be zero; this is again exacerbated by the iterative 

nature of the algorithm. As with the reliability-analysis technique, any per-

formance improvements that can be applied to the genetic algorithm are 

desirable. 

Performance and efficiency are important but should only be means for 

achieving good design solutions. The fifth objective of this work, therefore, is 

to:  

5. Maximise the quality of the alternative solution designs found 

by the genetic algorithm. 

Due to the stochastic nature of genetic algorithms it is not possible to guar-

antee that optimum solutions will be found. Selecting a good genetic 

algorithm for the task is the first step in ensuring that the solutions found 

are as near optimal as possible.  

After that it is necessary to select and tune the parameters of the genetic 

algorithm to ensure that they are as well suited to the problem as possible. 

Sometimes, experience with a genetic algorithm or the particular problem 

can facilitate choosing good values for the parameters. However, this proc-

ess cannot always rely on intuition, and choosing the wrong values can have 

adverse consequences on the quality of solutions produced. 

Therefore, the genetic algorithms should be altered, where possible, to 

minimise the requirement of the user to select operating parameters.  

6. Apply the proposed optimisation approach to case studies in 

order to validate feasibility and evaluate the scalability and 

usefulness of the approach. 
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Several existing approaches in the literature for optimising redundancy 

allocation and component selection make use of a small benchmark system 

to evaluate the techniques. 

This same benchmark system will be used for evaluating the techniques 

proposed in this thesis as this will allow direct comparison with existing 

techniques.  In addition, a case study, on an example fuel system, will be 

used to show the potential practical benefits of this approach compared to a 

traditional unaided engineering design optimisation that was performed by 

an expert engineer. 

1.4 Thesis Structure  

A brief outline of the contents of the remaining chapters of this thesis follows 

below: 

Chapter 2 gives a review of the relevant literature providing a background to 

the research. It is divided in to two sections. The first looks at different 

reliability-analysis techniques considering their advantages and disadvan-

tages. Particular attention is given to the feasibility of their use in 

conjunction with an optimisation algorithm. The second section discusses 

different approaches to optimisation along with their respective merits. This 

includes analytical methods such as integer programming and meta-

heuristics such as Tabu search and evolutionary algorithms. 

Chapter 3 explains that the general properties of the HiP-HOPS reliability-

analysis technique make it suitable for combining with an optimisation 

algorithm, satisfying objective 1. The highly iterative nature of optimisation 

algorithms requires that a restrictive computational expense limit must be 

placed on each iteration to allow the whole process to complete in a reason-

able time. Objective 2, to reduce the computational cost of the reliability-
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analysis, is fulfilled by extensions and improvements that were designed and 

applied to HiP-HOPS. These are also described in this chapter. 

Chapter 4 describes methods for performing architectural optimisation of 

system models using an automated reliability-analysis technique integrated 

with a genetic algorithm. The focus is on a penalty-based genetic algorithm 

and two Pareto-based multi-objective genetic algorithms, chosen from the 

literature to be evaluated for objective 3. The chapter also details modifica-

tions to the basic genetic algorithms designed to improve their performance, 

both in terms of computational effort (objective 4) and solution quality 

(objective 5). 

Chapter 5 discusses and evaluates the different algorithms through numer-

ous experiments devised by altering the parameters of the algorithms and 

testing against a well known benchmark problem (objective 6). The reason 

for varying the parameters in this way is to maximise solution quality as per 

objective 5. 

Chapter 6 applies the combined approach to a ship‟s fuel oil system case 

study. It is compared to a previous approach that evaluated several manu-

ally configured model variants before performing a cost benefit analysis. 

Chapter 7 concludes the thesis, drawing together the contributions made, 

why they are relevant, and whether they satisfy the objectives laid out in 

this introduction.  

Finally chapter 8 discusses some further work that remains open at the 

conclusion of this thesis. 

1.5 Summary of contributions 

The technique developed in this thesis is the first time that complex reliabil-

ity analysis algorithm has been successfully combined with an optimisation 
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algorithm. HiP-HOPS, the selected analysis tool, was refined to significantly 

improve its performance making it more suitable for this role. The multi-

objective optimisation algorithm that was selected to complete the combina-

tion, NSGA-II, was also refined and enhanced to improve efficiency and the 

quality of the results. The improved optimisation variant is the first meta-

heuristic to find all of the optimum solutions in the Redundancy Allocation 

Problem; this had only previously been achieved with exact mathematical 

techniques. 

1.6 Publications 

Some of the work presented in this thesis has been published in part at 

several conferences. Parker et al.. (2006) describes an algorithm for auto-

matically generating an FMEA from FTA results. Parker and Papadopoulos 

(2007a, 2007b, 2007c) contains results from some early experiments in 

Chapter 4 and 5 using the PESA-II search algorithm. Zeng et al.. (2007, 

2008) show HiP-HOPS being used to provide reliability analysis to an Asyn-

chronous Heterogeneous Hierarchical Genetic Algorithm. 
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2. Background 

This chapter contains a review of two areas of research: Model-based reli-

ability-analysis, and reliability optimisation. It is divided mainly along these 

subjects into two sections. 

Also discussed in this chapter is how both disciplines can benefit from the 

combination of their states of the art. 

2.1 Safety analysis 

Traditionally, the way in which safety analysis was used centred on the 

assumption that it is component failure that causes accidents. Certainly this 

assumption was not unfounded as this used to be true for the majority of 

cases. 

With the advance of technology, and the increasing complexity of system 

designs, there has been shift towards system accidents that are not caused 

explicitly by component failure but from the interaction between compo-

nents. 

The increasing complexity of systems design also makes it difficult to deter-

mine the effects of component failures; how they propagate through and 

affect the system‟s function. 

The increasing size and complexity of the design also adds a new source of 

error. Design of a system is typically split between numerous different 

groups. Communication between the groups may be less than perfect and 

different teams may have different methodologies and practices. 

Traditionally, safety analysis was a wholly manual process. It was based on 

an informal knowledge of the system being analysed. 
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Two methodologies that gained widespread use were Fault Tree Analysis 

(FTA) (VESELY, W E et al., 2002) and Failure Modes and Effects Analysis 

(FMEA) (MILITARY, U S, 1949). 

The two approaches consider failure in a system from opposite directions. 

FTA is concerned with the fact that a system failure has occurred, what was 

the cause? FMEA deals with the question from the other end, namely, a 

component failure has occurred, how will this affect the system? 

These techniques gave valuable insight into the behaviour of a faulty sys-

tem, and forced designers to consider safety. However, the traditional 

method for achieving this analysis is a very time consuming, manually 

performed, process that is carried out by teams of engineers discussing the 

expected behaviour of the system, based on their experience. 

There are several problems with this. The first is that postulating expected 

failure effects requires experience of previous faults and their effects. This is 

less of a problem in stable designs that undergo minor revisions between 

releases. In fast changing fields, or areas of design that radically change 

between versions, previous experience is not present or its relevance is 

diminished. 

The second is that humans are prone to error. This problem is exacerbated 

hugely when the systems being considered increase in scale and complexity. 

Accurately inferring the failure behaviour of such a system becomes difficult 

and the chances of details being omitted or inconsistently recorded increase. 

Thirdly, the time required to perform this analysis is measured in weeks. 

This limits its usability to validation of safety requirements at the end of the 

design process. That is an important use, but shortening the time that is 

required for the analysis expands its potential for driving change in the 

design of a safety critical system. 
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A safety-focused design process, in which safety analysis results are fed into 

each design iteration, enables problems to be identified and solved earlier in 

the process, thereby saving time and money. 

Finally, the results of the safety analysis are completely separate from the 

model. Changes in the system will generally invalidate the analysis results. 

This is clearly not desirable when repeating the analysis requires a costly 2 

weeks. 

Several tools made an intermediate step of enlisting computer aid for the 

clerical side of safety analysis, enforcing consistency and improving inter-

team collaboration. However, the recent increase and accessibility of com-

puting power has lead to a field of research that seeks to automate safety 

analysis to overcome the above problems and broaden the usefulness of 

safety analysis. 

The following section considers a selection of approaches from this field.  

2.1.1 Failure Logic Modelling 

Determining the complete system fault tree for a complex system is a diffi-

cult task. Small changes to system components will typically invalidate the 

whole tree requiring repetition of the process. 

The techniques that use failure logic modelling seek to address both these 

issues. Focussing on the failure behaviour of simpler components is a much 

less complicated task than considering the entire system and can be per-

formed more quickly with less likelihood of error. 

Furthermore, the failure behaviour of the system is composed of the local 

behaviours of the internal components, and the behaviour of components 

can only be influenced through their connection interface. This means that 
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the individual components can be altered without needing to reconsider the 

failure behaviour of other parts of the system. 

This section considers several approaches that are based around this con-

cept. 

2.1.1.1 Failure Propagation and Transformation Notation 

Failure Propagation and Transformation Notation (FTPN) is a graphical 

description of the failure behaviour of a system introduced by Fenelon and 

McDermid (1993) and applied within an assessment procedure (FENELON, P 

et al., 1994). 

It was designed to provide a bridge between the deductive FTA and the 

inductive FMEA processes; FPTN is an abstraction of both techniques that 

can be traversed from cause to effect, as with FMEA, or from effect to cause, 

as with FTA. 

FPTN was conceived with a focus on software intensive applications, al-

though it is not specific to this domain. 

The failure model can be defined using FPTN by abstracting the architecture 

of the system into modules that have inputs and outputs. Modules can be 

connected to other modules via the inputs and outputs. Collections of mod-

ules can be hierarchically encapsulated in a subsystem module that can then 

be used as a component in a higher level module. 

Each module contains a set of failure modes. The failure modes are typed 

into broad categories, such as timing or value failures. They are further 

classified as either internal failures, a result of a failure of the module itself, 

or external failures, caused by other modules. 
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Finally, logical equations describe the smallest combination of failure modes 

required to cause a failure mode at the outputs of the module. The logical 

equations can propagate failure modes, unchanged, from the module inputs 

to the module outputs. Failure modes can also be transformed, from one 

failure type to another, in between the input and output of the module. 

Additionally, internal failure modes can cause external failure modes at the 

outputs, and external failure modes at the inputs can be handled by the 

module thereby halting their propagation. 

Wallace (2005) identifies a key deficiency with FPTN. This is that it can be 

easy for the failure model, given by the FPTN, to become desynchronised 

with the system model.  

The defined failure model sits separately above the system model. Only 

known failure propagations are modelled in the connections between mod-

ules and so changes to a component in the model can require non-local 

changes to be applied to the FPTN diagram. Individual expressions in a 

module can be sensitive to even minor changes in other components. De-

termining these changes in the flow of failure would require a complete 

reanalysis of the entire system. 

FPTN is limited as a manual method that formalizes and records the de-

signer‟s knowledge. Thus it represents a step forward from ad hoc analyses 

of traditional FMEA and FTA but is a process that is not suitable for automa-

tion.  

2.1.1.2 Failure Propagation and Transformation Calculus 

Failure Propagation and Transformation Calculus (FPTC) was proposed by 

Wallace (2005) in an attempt to overcome the limitations he identified with 

FPTN. 
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The main way in which this is achieved is to tie the failure behaviour of the 

system more closely to the architectural model. The result of this is that all 

potentially important dependencies are identified and recorded, and not just 

the ones known to transmit failure. 

FPTC is similar to FPTN in that the failure modes are classified e.g. value 

failures, omission, commission, etc. Where FPTN had a floating failure 

model, however, FPTC failure behaviours are annotated directly in the 

components of the system model. 

Each component will have inputs and outputs, and a set of expressions in 

the component declare the propagation and transformation of failure as it 

passes between them. It includes the use of wild cards at both the input and 

output side of the expression, to indicate for example that all failure modes 

are transmitted to a particular output, without the need for repetition in 

definition. 

If both sides of the expression carry the same failure mode then it repre-

sents a normal propagation, whereas different failure modes indicate that 

the incoming failure mode has been transformed by the component. 

The same mechanism is used to annotate the connections between compo-

nents as these communications protocols can also affect the error flow. 

Failure modes can also be mitigated or initiated by a component and is 

indicated by the normal behaviour (*) token on the output and input side of 

the expression respectively. 

Once the components are all annotated, the system acts as a token-passing 

network. Each expression can then be „run‟ with respect to the normal 

behaviour token. The generated token sets are passed along the connections 

where they are propagated and transformed by components and connections 

in the system. The process continues until no new tokens are created. It has 
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been demonstrated that the finite number of failure modes results in a non-

infinite cycle. 

Useful analysis of failure consequence can be done by repeating the process 

with failures injected into the system and recording of the failure mode 

tokens appearing at key parts of the system. 

Ge et al. (2009) extend the basic syntax of FPTC to permit probabilistic 

analysis of the system failures. This is done by adding a probability value to 

each expression. Model checking can ensure that the probability values are 

valid, totalling one for each input failure mode. 

When the failure model is then „run‟, in addition to the tokens being passed 

around the model the calculated probabilities are also transmitted. 

Offering an advantage over FPTN, FPTC can be automated, and because the 

failure model is coupled with the architectural model, changes made to 

components can be localised and not require a complete reanalysis to up-

date the annotations. 

However, FPTC has a limitation of its own. In order to analyse the effect of a 

failure, the failure must be injected into the system. For each different 

failure or combination of failures the cycle must be repeated. 

2.1.1.3 State Event Fault Trees 

State Event Fault Trees (SEFT) were proposed to overcome the inability of 

standard FTs to model temporal event ordering (KAISER, B and Gramlich, C, 

2004). They can be distinguished from normal fault trees in the way that 

they separate states, that last a period of time, from events, that are instan-

taneous and typically trigger state changes (GRUNSKE, L et al., 2005). 
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SEFTs can express both software behaviour, which is usually the domain of 

State charts, and hardware failure states, which are typically modelled using 

Markov Chains (KAISER, B et al., 2007). 

As with FPTC the failure behaviour is modelled at the component level; the 

system behaviour exists as an emergent property of interaction of the 

components. This improves the reusability of the components and the ease 

of determining the behaviour in the first place. 

To enrich the modelling of temporal events they include several concepts, 

such as the Priority-AND that remembers if events have occurred in a spe-

cific order. Additionally the History-AND gate remembers previous events 

that have occurred. They can also make use of the NOT gate concept. 

The use of the states and transitions in the SEFT makes them unable to 

make use of standard FTA algorithms for analysis. Instead the model is 

converted into a Deterministic and Stochastic Petri Net (DSPN) (CIARDO, G 

and Lindermann, C, 1993).  

Once a DSPN exists, it can be quantifiably analysed automatically by a 

suitable tool, such as TimeNET (ZIMMERMANN, A et al., 1999). 

One potential flaw that affects the scalability of the technique is that, as with 

all state-based analysis, on larger models there can be a state-space explo-

sion. 

2.1.2 HiP-HOPS 

Papadopoulos and McDermid (1999) proposed a methodology, Hierarchically 

Performed Hazard Origin and Propagation Studies (HiP-HOPS), that can 

automatically synthesise system fault trees from an annotated architectural 

model. 
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The annotations are similar to those used by FPTN. Like FPTN, the expres-

sions are logical equations that define how classed failure modes at the 

outputs of a component are transformed or propagated from the inputs of 

the component. Internal failure modes can also cause output failures. 

To differentiate between external failure modes and internal failure modes, 

failures that occur at the inputs and outputs of the component are defined as 

deviations of normal behaviour: input deviations and output deviations 

respectively. 

The failure expressions are directly applied to the components and not to a 

separate floating failure model. This coupling ensures that changes to the 

local behaviour do not require a redefinition system wide. 

Once the model is completely annotated, the fault tree synthesis algorithm 

traverses the model, starting at the outputs of the system. Following the 

model connections between components, the algorithm encounters output 

deviations at the boundaries of components. 

The output deviations each have a logical expression that describes a fault 

tree with leaf nodes that are either terminating internal failures or input 

deviations that connect externally. 

The automatic traversal connects outputs to inputs and constructs a system 

wide fault tree or set of fault trees. These system fault trees can be analysed 

using standard FTA algorithms to produce minimal cut sets describing the 

smallest combinations of failure required to cause a system level failure. 

An advantage over other methods is that component failures are explicitly 

defined in the components. The deductive traversal technique does not 

require faults to be injected as they are already defined in the model and are 

identified, including combinations of failures, during the traversal. 
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HiP-HOPS‟ capabilities are further extended by Parker et al. (2006) to auto-

matically generate FMEA tables. As noted by the authors of FPTN there is a 

relationship between the deductive FTA and the inductive FMEA. This prop-

erty is exploited by HiP-HOPS to further process the minimal cut sets from 

the FTA.  

A fault tree describes how a system level failure is caused by (a combination 

of) component level failures. By going through the cut sets one by one and 

cataloguing the component level failures along with the system level effect 

of the cut set, the FMEA relationship can be found. 

It offers a number of advantages over traditional FMEA. Firstly it is derived 

from the fault trees of the system. It does not require an inductive reasoning 

of the effect of each failure mode. Also, a benefit of harvesting the data from 

the fault trees is that the minimal cut sets define combinations of failures, 

not just the single failures of traditional FMEA. Therefore the effects of 

combinations of failures can be determined without the combinatorial explo-

sion that failure injection techniques suffer from. 

Further advances in HiP-HOPS stem from its FTA abilities. Sharvia and 

Papadopoulos (2008) describe a method for automatically analysing non-

coherent fault trees, i.e. fault trees that contain NOT gates that negate 

branches of the tree. 

Walker and Papadopoulos (2006) further extend the capabilities of HiP-HOPS 

by allowing dynamic fault trees to be defined and analysed. Dynamic fault 

trees make it possible to model the effect of the timing of failures, and the 

order in which they occur. This is further expanded and detailed by Walker 

et al. (2007). The advantage of this technique over SEFTs is that they define 

methods to allow traditional FTA algorithms to be used, rather than requiring 

the conversion to DSPNs. 
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These extensions to HiP-HOPS allow complex failure behaviour to be mod-

elled that is simply not possible with normal FTA. 

Reusable failure patterns are the focus of the extensions proposed by 

Wolforth et al. (2008). The purpose of this extension is to describe generic 

failure expressions that can be held with reusable components in a library. 

The patterns would be instantiated when used in a particular model; auto-

matically generating the standard HiP-HOPS failure expressions with the 

appropriate number of input and output deviations. 

HiP-HOPS has tool support through a graphical user interface for annotating 

and analysing Simulink models. Alternatively its functionality is also avail-

able through a safety analysis plugin to ITI‟s modelling and simulation tool 

SimulationX. 

In summary, HiP-HOPS provides rich and detailed failure behaviour model-

ling that follows the architectural model closely. The fault tree based model 

provides quick and automatic safety analysis. 

2.1.2.1 Component Fault Trees 

Component fault trees, described by Kaiser et al. (2003) and Grunske and 

Kaiser (2005), offer the same basic functionality of HiP-HOPS, but currently 

lack the extensions offered by dynamic and non-coherent fault tree models.  

The term component fault tree (CFT) does however neatly describe the 

function of the failure expressions in HiP-HOPS and in the rest of the thesis 

the use of the term CFT refers to the fault tree described by the component 

failure expression in a HiP-HOPS context. 
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2.1.3 Behavioural Fault Simulation 

A different approach to safety analysis is to use formal modelling engines 

that enable simulation of the design when functioning normally. Where this 

is possible, the behaviour of this system can be compared with a variation 

that has been degraded through the injection of faults. 

A benefit of these techniques is that often the failures in the system do not 

require extra annotation as they can be automatically extracted from the 

model. This does come at a cost, however, as this is only possible where the 

required domain has been modelled. 

2.1.3.1 AltaRica 

AltaRica is a formal modelling language that can be used to describe com-

plex hierarchical models (GRIFFAULT, A et al., 1999). The failure model can 

include both states and events allowing temporal properties to be modelled 

(BIEBER, P et al., 2002). 

On the basis of this formal definition the AltaRica model can be used to 

generate fault trees for non-dynamic failures or Petri nets for temporal 

analysis as with SEFTs. In both cases, external tools can then be used for 

analysis. 

(BIEBER, P et al., 2004) identified some drawbacks to using AltaRica for 

modelling real-world systems. In a particular example, modelling the loss of 

pressure in a hydraulic system, both fluid and pressure data needs to be 

transmitted in opposite directions in the model. The use of these bidirec-

tional signals to propagate failure can easily lead to loops in the model which 

would then be rejected by the modelling language. 

Workarounds to prevent loops include the introduction of delays, but these 

can lead to incorrect modelling of instantaneous propagations. The delays 
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also introduce temporal features to non temporal faults making it impossible 

to generate fault trees from the model.  

2.1.3.2 Formal safety analysis platform with NuSMV-SA 

Formal safety analysis platform (FSAP) provides a graphical user interface 

for the NuSMV-SA model checking and safety analysis engine (BOZZANO, M 

and Villafiorita, A, 2006). FSAP/NuSMV-SA was created to provide a single 

environment for model design and safety analysis. 

The underlying engine is capable of simulating the model, in both nominal 

functional mode and degraded – fault injected – mode. Standard model 

checking capabilities, such as property verification and counter example 

generation, are also provided by the NuSMV engine. 

Additionally, fault trees can be generated from the model where failure 

modes have been added to the model. The fault trees can include NOT gates 

for specifying conditions where events are required not to have happened for 

failure to occur. 

Tighter integration of the safety analysis and design modelling allow safety 

analysis to be performed earlier in the design cycle, enabling less expensive 

design changes. 

As is common with model checking systems, FSAP/NuSMV-SA is susceptible 

to state space explosion. Using simplified models can alleviate the problem 

in some cases. 

2.1.3.3 Model based deviation analysis 

Model based deviation analysis (MDA) (HEIMDAHL, M P et al., 2002) differs 

from the other approaches here in that it is not concerned with faults in the 
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system. The assumption is that the system is not faulty; instead, MDA seeks 

to determine the system effects of deviations from the expected input data. 

MDA is based on, and extends, the Software Deviation Analysis (SDA) 

developed by Reese and Levenson (1997). SDA is an exploratory, qualita-

tive, technique that sought to answer questions such as, “What is the effect 

on the output if the input reading is high?”. 

MDA quantifies the question to allow a model checker to verify proofs of the 

effects of the deviations. A quantified version question would be, “What is 

the effect on the output if the input reading deviates in a range of 0 to 100 

metres?”. This can then be formulated as a temporal logic property readable 

by a model checker which could then show whether a given deviation is 

acceptable, or if not, provide an example demonstrating how the deviation 

could become too great. 

The basic MDA approach is to create two models, one with no deviations, 

and one with deviations. Both models operate on the same data set with the 

exception of the input deviations, which are added to the normal inputs. 

The models are executed and the computed states are compared to derive 

any critical deviations. 

MDA, in common with many model checker based approaches, suffers from 

state-space explosion. This problem is exacerbated by the need to use two 

models running on separate data sets. To minimise the effect of the extra 

model, the creators of MDA proposed a method where both the normal 

model and the deviated model are embedded in the same environment, 

thereby using the same data set, sharing common variables, and reducing 

the computation required.  
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2.1.3.4 Deductive Cause Consequence Analysis 

Deductive Cause Consequence Analysis (DCCA) (ORTMEIER, F et al., 2005) 

is a formal safety analysis technique that uses mathematical proofs to verify 

whether a component level failure is the cause of a system failure. 

DCCA uses finite automata as system models and Computational Tree Logic 

(CTL) to formalise the model. 

In order to perform the safety analysis, a set of failure modes is considered 

against a set of system hazards. The CTL property of criticality is automati-

cally extracted from the finite automata model. This specifies whether the 

given set of failure modes can cause the system failure.  

The goal of DCCA is to determine the minimal critical set, such that there 

exists no critical subset of failure modes. A model checker such as SMV can 

be used to validate the proofs. 

DCCA has been modified to work with an industrial design tool SCADE 

(GÜDEMANN, M et al., 2007). 

The advantage of this technique is that the calculation and validation of the 

critical sets is automated from the system model. However, the process 

suffers from combinatorial explosion as, to be complete, all combinations of 

failures must be considered. 

A way to reduce the number of combinations checked is to produce a 

smaller set of failure modes from informal analysis techniques such as FTA. 

This smaller set can then be formalised using DCCA. 

An extension to DCCA called Deductive Failure Order Analysis (DFOA) allows 

temporal fault trees to be automatically generated from the system model 

(GÜDERMANN, M et al., 2008). DCCA is used to generate the minimum 



46 

     

critical sets of failures and DFAO re-applies the ordering of the failures. The 

temporal properties can include simultaneous occurrence of failures as well 

as priority ordering.  

2.1.3.5 Automatic FMEA 

AutoSteve (PRICE, C J and Taylor, N S, 2002) uses failures injected into a 

qualitative electrical simulation to automatically generate an FMEA report. 

Qualitative simulation offers an advantage over quantitative simulation in 

that it can be applied earlier in the design cycle when numerical data about 

the components may not be available. Conducting such analysis earlier 

reduces the costs involved in making corrective changes. 

A further advantage is that qualitative simulation is less computationally 

expensive than quantitative simulation. This is especially important when 

using it to generate FMEA data via fault injections, because the simulation 

must be repeated with different faults activated. 

The process for producing FMEA data begins with modelling the normally 

functioning electrical system. This is simulated to provide a baseline for the 

functioning of the system. 

Non-functioning versions of the components are also modelled and inserted 

in to the model. The simulations are then repeated, each time varying the 

combinations of faulty components inserted in the model. 

The FMEA data is then accumulated by comparing the behaviour of the 

faulty models with the baseline model behaviour. 

To increase the readability of the FMEA information, unlikely or mutually 

exclusive combinations of failures are not considered. Additionally, the FMEA 
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results are pruned to remove non-minimal combinations of failures that are 

covered by a single point of failure. 

They suggest that it is possible to convert the FMEA data into a FT format 

equivalent to the reverse of the HiP-HOPS FMEA generation. The ability to 

consider combinations of events greatly enhances the validity of the resul-

tant FT. 

There are several drawbacks to this method. The inductive method for 

generating the FMEA in this way has serious ramifications for scalability. The 

simulation must be repeated for every combination of failure that is consid-

ered.  

Practical steps are taken to reduce the number of combinations considered, 

by introducing a probability threshold for failures which cannot be exceeded. 

The effectiveness of this mechanism is in question though as probabilities of 

failure would likely be lacking in the earlier stages of the design cycle. 

Ricardo developed a tool that works using the same principles called AutoF-

MEA that works with the Matlab Simulink simulation tool (PLC., Ricardo, 

2009). 

2.1.4 Overview of safety analysis 

Safety analysis techniques based on failure logic modelling and fault injec-

tion simulation each have advantages and disadvantages (LISAGOR, O and 

McDermid, J A, 2006).  

The principle drawback with failure logic modelling techniques such as HiP-

HOPS and CFTs is that the process of determining the failure behaviour of 

the components in the system models is not automatic. Although determin-

ing local failure behaviour is easier than trying to infer the failure behaviour 

of the entire system it can still be a time consuming process. 
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The corollary of this is that once the local failure behaviour has been added 

to the model, the generation of complete fault trees is deductive and fast. It 

does not suffer from combinatorial explosion. 

Fault simulation techniques on the other hand make use of domain libraries 

of components where failure behaviour is a property of the model and can 

be automatically extracted. 

It has its disadvantages though. Firstly, simulation is only possible where 

domain models exist. Secondly, the process of injecting failures into a 

functioning model and simulating to determine the effects of the failures is 

very prone to combinatorial explosion. 

It seems that in most cases it would be impractical to consider combinations 

of more than 2 failures, and even then the large number of repeated runs 

could make it unusable in a further iterative process such as optimisation. 

Lisagor and McDermid (2003) suggest that the two techniques could be 

combined; perhaps the formal model simulation techniques could automati-

cally provide local failure behaviour directly from the formal model. 

Although useful to safety analysis in general, such an extension would be 

beyond the scope of this thesis. 

In order to be successfully applied to an optimisation problem it is necessary 

that the repeated analysis of an evaluation tool be quick. The failure logic 

modelling techniques provide quick, deductive, analysis and the slow part of 

the process is carried out just once, before any optimisation and is reusable 

as the model is evolved. 

The slow portion of the simulation based techniques is the repetitive analysis 

and as such makes those less suitable for use with optimisation. 
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Most of the failure logic modelling techniques share similar foundations. 

However, HiP-HOPS seems to provide the richest modelling capabilities, 

allowing not only static FTA but also non-coherent and dynamic fault trees. 

It also includes algorithms for automatic generation of FMEA data. 

Whilst initially the extra capabilities may not be required, it will be possible 

to expand the scope of the optimisation easily due to the richness of the 

model. 

A further reason that adds to the attractiveness of HiP-HOPS for this project 

is that complete source access is available to the author giving unfettered 

scope to modify the algorithms. This will enable performance enhancements 

to be applied to further reduce the computational expense of calculating the 

evaluations required for the optimisation. 

The ability to closely integrate the two parts, analysis and optimisation, is 

also preferable to having to treat the reliability-analysis as a „black box‟. 

Although it is reasonable that other reliability-analysis techniques could be 

used for the purpose of providing reliability data to optimisation algorithms, 

for the reasons above HiP-HOPS will be used for this thesis. The methodol-

ogy will be discussed in more detail, in the context of performance 

enhancing extensions, later in the thesis. 

The next section takes a look at different optimisation algorithms, before 

choosing a couple of well represented algorithms to act as the optimisation 

engines in support of this thesis. 

2.2 Optimising system reliability 

The advancements in safety analysis techniques allow decision makers in the 

design of systems to be influenced by the rich information supplied by the 

techniques. 
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Knowing that one configuration of a functional system has higher reliability 

than another configuration enables the decision maker to choose it as a 

solution. 

However, this presents a new problem. The decision maker now faces an 

almost infinite number of possible configuration alternatives that can im-

prove the reliability of the design, as increasing the redundancy level 

increases the reliability. 

Furthermore, it is highly unlikely that the reliability of the system is their 

only concern. The budget for the system is not infinite and the cost of apply-

ing reliability improving measures increases as reliability is increased. 

The goals of increasing reliability and reducing cost are in direct conflict and 

it is the job of the decision maker to determine an optimum configuration 

with regard to both cost and reliability. 

Typically, the decision maker would rely on his experience to make educated 

choices to attempt to achieve such optimality. However, with such a vast, 

complex search space of possible options available it is highly unlikely that 

this would be achievable in anything but the most trivial of cases. 

It is for this reason that an automated optimisation algorithm, that can 

make use of the computer‟s power of repetition, is necessary. 

2.2.1 Benchmark Redundancy Allocation Problem 

In the literature on optimising system reliability through component selec-

tion and redundancy allocation, there is one test problem that has been 

extensively used. 

The test system was defined (FYFFE, D E et al., 1968) as 14 functional units 

in a series configuration. Each of the units‟ functions can be fulfilled by 
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between three and four alternative components that can be arranged in a 

parallel configuration to provide redundancy. Each of the alternative compo-

nents has varying cost, weight, and reliability values.  

In its original form the system was to have its reliability maximised, subject 

to cost and weight constraints of 130 and 170 units respectively, and com-

ponents could not be mixed within a functional unit. 

Nakagawa and Miyazaki (1981) extended the test problem by varying the 

weight constraint between 159 and 191 units, with increments of 1 unit, to 

present 33 different cases. 

A more general case, where component mixing within functional units is 

allowed, was proposed by Coit and Smith (1996b). This significantly in-

creases the size of the search space calculated to be in excess of 7.6x1033 

configurations. 

The problem was demonstrated to be NP-hard (CHERN, M, 1992). 

It is in this form, that the RAP problem is used most frequently and this use 

allows an easy comparison to be made between different published ap-

proaches. 

What is particularly useful for retrospectively evaluating the quality of the 

solutions found by the different approaches is that in 2007 the optimal 

solutions were exactly calculated for all 33 cases (ONISHI, J et al., 2007). 

These were produced by an exact mathematical approach that guarantees 

the optimality of the solutions. 

So instead of comparing the solutions of one approach with every other 

approach‟s solutions, each can be measured against the true optimum 

solution. 
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A useful metric in this regard is used by Coit and Smith (1996b), called 

Maximum Possible Improvement (MPI). Displayed as a percentage, it is “the 

fraction that the best feasible solution achieved of the maximum possible 

improvement, considering that reliability ≤ 1”. 

If it is used to compare with the optimal solutions then it takes the form: 

 

Any solution that matches the optimal solution will have an MPI of 0%, the 

best value. Inferior solutions will have negative MPIs. 

Finally, to summarise the quality of the solution set over the 33 test cases, 

they will be compared by the percentage of solutions that were optimal, and 

by the mean average of the MPIs for the test set. 

2.2.1.1 Exact mathematical methods 

The first attempts at solving the RAP are classed as exact mathematical 

methods because they work by solving a mathematical formulation of the 

problem. Where this formulation can be solved, the solution is guaranteed to 

be optimal. 

There have been several approaches using exact methods including using 

dynamic programming (FYFFE, D E et al., 1968), integer programming using 

surrogate constraints (NAKAGAWA, Y and Miyazaki, S, 1981), (BULFIN, R L 

and Liu, C Y, 1985), and (ONISHI, J et al., 2007), and linear approximation 

programming (HSIEH, Y, 2002). 

Initial attempts heavily constrained the problem, and component mixing was 

not permitted, though this limitation was later relaxed. 
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The principle strength of exact mathematical techniques is that the solutions 

found by the algorithms can be guaranteed to be optimal. Additionally the 

solutions are quickly calculated. 

This disadvantage is that they rely on the ability of the designer to formulate 

the problem as a solvable complex mathematical formula. There are some 

cases, as with earlier attempts (FYFFE, D E et al., 1968) and (NAKAGAWA, Y 

and Miyazaki, S, 1981), where solutions could not be found to particular test 

cases because the mathematical representation of the problem did not have 

a solution. 

There is a related problem with the generality of the approach; the formula-

tion of one system optimisation problem is unlikely to be applicable to a 

different system. This limits its appeal as the basis of an optimisation 

framework for systems engineers. 

Bulfin and Liu (1985) note that for solving larger problems the use of a 

heuristic, rather than an exact mathematical, method may be required. 

2.2.1.2 Meta-heuristics 

Penalty-based Genetic Algorithm 

In 1996 Coit and Smith (1996b) declared that though the preceding exact 

mathematical solution methods successfully found optimum solutions they 

did so by artificially restricting the search space. The restriction of only 

allowing one component type per functional unit lacks realism, as compo-

nent types could – and often would – be mixed in real world systems. 

They identify genetic algorithms as a particularly effective method for solv-

ing combinatorial optimisation problems, as they are capable of navigating 

large and complex search spaces. This is important as even relatively small 

problems, such as the benchmark case, can have very large search spaces.  
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Genetic algorithms are modelled on biological evolution. A population of 

candidate solutions is maintained and are subject to genetic operators which 

produce new candidate solutions. When the addition of new solutions causes 

the population to grow beyond a certain threshold, the excess is culled. 

The choice of solutions to cull follows a general process of survival of the 

fittest. There is a random element to the choice, but solutions which perform 

well in the objective are more likely to survive into the next generation. 

The candidate solutions are encoded into a genome, mimicking the function 

of DNA. In this case, a string of integers is typically used as the encoding, 

each integer representing a different component choice. The encoding 

should contain all the information necessary to reconstruct the given solu-

tion. 

New candidate solutions are created both by randomly mutating an existing 

encoding and by recombining the encodings from two „parent‟ solutions. The 

latter operator is also known as crossover and creates a new solution that 

has characteristics from both parent solutions. 

The crossover operator acts to promote convergence in the population, 

acting as a local search. Mutation on the other hand promotes diversity in 

the population through random perturbation of the solutions. 

The penalty-based GA method deals with the multiple constraints of the test 

problem by incorporating them into a single objective function that was 

maximized using a single objective genetic algorithm.  

This single objective was to maximize the modified reliability of the system. 

Scaled violations of the cost and weight constraints acted as a penalty which 

was then applied to the reliability value.  
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Thus where there are two solutions that achieved the same reliability but 

one of them violates a constraint, the infeasible solution‟s modified reliability 

would be lowered by the penalty. Consequently the feasible solution would 

be preferred by the algorithm. 

Often an optimum solution is most efficiently found by allowing search to 

proceed through infeasible regions, so it is important that the penalties for 

constraint violation are not too severe. This is achieved here through the use 

of a dynamic penalty function that factors in not just the degree of con-

straint violation but also how long the GA has been running.  

By factoring in the age of the algorithm like this it is able to have small 

penalties at the early stages and penalise more severely in the latter stages. 

This allows effectively unfettered access to the infeasible regions at the 

beginning and gradually guides the search towards feasible solutions by the 

end. 

An earlier paper, (COIT, D W and Smith, A E, 1996a) had determined that 

the dynamic penalty had a superior performance compared to either a static 

version or allowing only feasible solutions. The dynamic penalty system also 

seems to work better with highly constrained cases. 

When applied to the benchmark problem the penalty-based GA found feasi-

ble solutions for all 33 of the test problems. Of particular note is that, free of 

the restriction of single component choices, the GA was able to find solutions 

that exceeded the reliability of those previously deemed optimum at the 

time by exact methods. 

The method found the optimal solution in 21.21% of the test cases, with an 

average MPI of -1.454%, an improvement on the previous approaches. 
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Tabu Search 

In 2003  Kultural-Konak et al. (2003) applied a meta-heuristic method called 

“tabu search” to the RAP benchmark. Unlike the GA which performs a global 

search, a tabu search algorithm makes use of the neighbourhood structure 

inherent in the RAP.  

It functions by first initializing to a random potential solution. This is evalu-

ated. Next, all the neighbouring solutions are generated and evaluated. A 

neighbouring solution is any solution that can be generated with one single 

change from the current solution.  

In the case of the RAP this could be one of three possibilities: changing one 

component for an alternative component, removing one component from a 

parallel subsystem, or adding one random component to a parallel subsys-

tem. 

Once all the options have been evaluated, the one with the highest fitness is 

chosen to be the next current solution and thus the algorithm deterministi-

cally navigates through the search space. 

In order to prevent the algorithm from looping or getting stuck in local 

optima it maintains a list of forbidden or „taboo/tabu‟ moves. This list is 

populated by recently tried solutions, forcing the algorithm to search in 

(recently) unexplored regions. The list is of finite size and older solution 

moves are removed. 

This sequence is then repeated until a set maximum is reached for the 

number of attempts made without an improvement to the best feasible 

solution found. 

The application to the RAP benchmark uses an adaptive penalty function that 

calculates a penalty for constraint violation. The size of the penalty for 
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infeasibility is varied automatically to either guide the search to a more 

feasible region or increase the diversity in the search by allowing more 

infeasible solutions. 

Kultural-Konak et al. (2003) calculated that approximately 40% less effort 

on average was required for the tabu search than for the penalty-based GA 

for all test cases. Although on average more individuals were evaluated, 

because each move in the tabu search only altered one subsystem, only the 

reliability for that subsystem had to be recalculated. They note that this 

balance may not be favourable with all systems. This may also be highly 

dependent on the analysis method used and may not hold with full safety 

analysis based approaches. 

The solutions found by the method were generally better than those found 

by the penalty based GA. It found the optimal solutions in 78.79% of the 

test cases and had an average MPI of -0.263%. 

Ant colony 

In nature, ant colonies use pheromone trails to establish and navigate 

efficient routes between their nests and food sites. Though the pheromone 

evaporates over time, good routes are reinforced as more ants pass over 

them, whereas bad routes dissipate completely.  

Ant colony optimisation is inspired by this biological process and Liang and 

Smith (2004) proposed such a method for reliability optimisation of series-

parallel systems. 

It comprises multiple stages. In the first stage an ant colony is generated 

based on the pheromone trail of previous iterations. In the second stage, the 

ant solutions conduct a local search. Finally, the ants update their phero-

mone trails and the cycle is repeated for a predetermined number of 

iterations. 
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When applied to the test cases of the benchmark system, the ant colony 

algorithm performed similarly to the tabu search algorithm. It found 72.73% 

of the optimum solutions with an average MPI of -0.342%. 

Liang and Smith (2004) note that the ant colony algorithm is more computa-

tionally expensive per run than penalty-based GA, but over 10 repeated 

runs, the solutions found by the ant colony method generally met or ex-

ceeded those of the GA. Therefore, the extra effort involved does yield 

better results, or alternatively the same results can be found with less effort. 

Simulated Annealing 

Simulated annealing is a search technique that is based on metallurgical 

annealing. When a metal is heated, the atoms are free to change their 

position randomly in high energy states. By controlling the rate of cooling 

the blacksmith can encourage the crystals in the metal to form in beneficial 

states. 

With simulated annealing, the current solution is randomly changed to a 

solution that is local in the search space, i.e. a solution that is similar, but 

with minor changes. The acceptance of the new solution is dependent on the 

global temperature; when the temperature is high, highly random changes 

are allowed; as the temperature decreases, according to a cooling schedule, 

the allowable changes follow a greedy method. 

A greedy method seeks to achieve a global optimum by making decisions 

that are locally optimum at each stage. 

Kim et al. (2004) applied simulated annealing to one of the test cases of the 

benchmark problem where the weight constraint was 190 units. It was 

repeated 30 times and the best solution found had an MPI of -0.766%, but 

the average MPI was -12.99%. 
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As it was not tested on the remaining test cases it is not possible to know its 

performance for those. For the single test, whilst the best solution found was 

reasonably near optimal, the average over the 30 runs was relatively poor. 

An advantage of this method, however, is that it is quick, completing a run 

in under a second. 

 Greedy method with natural selection 

You and Chen (2005) proposed another meta-heuristic method. Based on 

the result of a random threshold check, it assigns components to their 

subsystems using either a greedy method or randomly. 

The resulting solutions from this assignment process are revised by two 

methods: an intra-system change randomly selects two subsystems and 

exchanges their component choices if the result is an improvement; and an 

inter-system change randomly selects two subsystems in different solutions 

and exchanges them if the resultant solutions are an improvement. 

The technique has several similarities with a standard genetic algorithm in 

that it is population based and its two solution change mechanisms, inner 

and inter-system change, are broadly similar to mutation and crossover, 

respectively. 

It differs from genetic algorithms in several ways, however. The solutions 

are always feasible; no solutions that violate constraints are allowed. Solu-

tions in the population will never be replaced by solutions with a lower 

fitness. Finally the resultant solutions from the two solution change mecha-

nisms are never worse than the previous solutions. 

When applied to the benchmark problem the method proved very effective. 

It found optimal solutions to 100% of the test problems. In their published 

results, the reliability of several of their solutions was less than those given 
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as optimal by Onishi et al. (2007), but this appears to be due to a rounding 

or typing error as the component configurations matched the optimum 

solutions. 

These results are particularly impressive as their method requires many 

fewer iterations than previously described heuristics. 

A drawback of this method is that it is purely a single-objective optimiser. It 

maximises reliability amongst solutions that do not violate cost and weight 

constraints.  

More ants 

Ant colony optimisation was again used in 2007 (ZHAO, J et al., 2007) 

seeking to improve upon the Liang and Smith (2004) method. 

It differed from the previous attempt in two principal ways. Firstly, when the 

ant colony is generated in each iteration, there is a heuristic that allows for a 

priori system knowledge to be used. A state transition rule is used to bal-

ance the effect of the knowledge-based exploitation with standard 

exploration. 

Secondly, rather than only storing a single best feasible individual for the 

offline pheromone update algorithm, a number of individuals are stored in 

rank order. 

The method was applied to the benchmark RAP problem but with a maxi-

mum iteration set at 300 rather than the 1000 iterations of the previous 

approach.  

An optimum solution was found in 42.42% of the test cases, with an aver-

age MPI of -0.691%; only a little over half of those found by the previous 
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ant colony approach. However, this is achieved with a third of the number of 

iterations. 

If the ratio of iterations to optimums ratio holds, then it would seem to be a 

superior algorithm. However, it is not known whether the new approach 

would yield results of the same quality if allowed the same number of itera-

tions. 

Multi-objective tabu search 

In 2006, Kultural-Konak (2006) approached the RAP problem again with 

tabu search.  

Their original attempt combined the 3 objectives into a single objective. This 

time they considered the three objectives separately, and in each iteration of 

the algorithm, one of the objectives would be randomly selected to be active 

and the focus of the search. 

Being fully multi-objective, the goal of their algorithm was to generate a 

Pareto front of non-dominated solutions that had a wide, even spread that 

covered much of the search space.  

The concept of Pareto dominance and the Pareto front is covered later in 

section 2.2.3.1. 

As before, all the possible single moves would be made and evaluated, but 

this time only for the selected objective. The best non taboo move for the 

selected objective is made and the process is repeated. 

All of the candidate solutions that did not violate any constraints were com-

pared to the Pareto front of non-dominated solutions and if they were not 

dominated, they were added. Any existing solutions in the Pareto set that 

were dominated by the new entries were discarded from the list. 
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In order to promote the spread of the Pareto front, they included a diversifi-

cation procedure. When the algorithm had not found any new undominated 

solutions for a preset number of moves, the algorithm would randomly 

select one solution out of the Pareto set to be the new current solution. At 

the same time the tabu list is reset to empty and the search begins again. 

The algorithm‟s goal of finding a Pareto set of trade-off solutions that had a 

wide spread was achieved, though it was unclear as to how good the solu-

tions in the resultant Pareto set were as they were not compared to previous 

attempts in the literature. 

Multi-objective Evolutionary Algorithm NSGA-II 

Salazar et al. (2006) note that although single objective optimisations can 

be computationally efficient, they only give a very narrow view of the search 

space. Often, a broader set of possible solutions is required, to provide the 

decision maker with a choice amongst trade-off solutions. 

In this situation, the computational efficiency of single objective optimisa-

tions is counteracted by the need to repeat the process many times, each 

time varying the constraints. 

They suggest that using a modern, multi-objective evolutionary algorithm to 

generate a Pareto front of undominated solutions overcomes this, and 

presents the decision maker with rich information for making trade-off 

choices. 

This is demonstrated by applying the Non-dominated Sorting Genetic Algo-

rithm-II (NSGA-II), devised by Deb et al. (2002), to the benchmark 

problem. 

In their discussion of the results, a good comparison is made of the out-

comes of single objective versus multiple objective optimisation. The single 
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objective optimisation is tasked with maximising a single value, which is 

reliability in the case of the benchmark problem. This means that improve-

ments in this dimension are always accepted over other solutions, even if it 

is a relatively small gain in reliability for a very large cost. 

This is illustrated with an example from the result set of the NSGA-II algo-

rithm. When a weight constraint of 191 units is set, the range of reliabilities 

for the solutions in the Pareto set represents only 2.84% of the reliability. 

However, in the cost dimension the range of those solutions is 31.71%. 

A decision maker faced with this may decide that the reliability benefit is too 

small to be worth the extra cost, and opt for the cheaper solution. This is a 

benefit of treating the objectives separately, as a single objective optimisa-

tion could not provide this information. 

Again, as with the multi-objective tabu search algorithm, the goal of the 

demonstration was to produce a wide and evenly spread Pareto front, which 

was shown graphically, and the quality of the solutions with regard to opti-

mality was not covered. 

However, insight into the quality can be derived from their above trade-off 

discussion. The range of reliabilities for the 191 unit weight constraint ex-

ample had an upper value of 0.9834. This gives an MPI for that test case of 

-25.85%, which is relatively low; less in fact than any of the other ap-

proaches. 

They conclude that although a single objective optimisation can be computa-

tionally efficient, it is very difficult to know beforehand whether this would 

be the case compared to a multi-objective optimisation. Further, perhaps a 

multi-objective optimisation could be used to provide information about the 

search space that could be used by the decision maker to formulate as a 

single objective optimisation to further refine the solutions. 
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2.2.2 Limitations of the Reliability Block Diagram 

In the majority of cases where optimisation algorithms are used to optimise 

reliability, a formulation based on the reliability block diagram (RBD) model 

is used to calculate the reliability. 

An advantage of using this method is that the calculation is a simple 

mathematical equation that can be quickly evaluated. 

There are several limitations to this method however. 

The first is that systems are designed using complex engineering models 

that are composed of subsystems that have deep hierarchies and many 

connections to and from each component. 

RBDs conform to a simple arrangement of series-parallel components with 

an input and an output. Conversion between the two is a necessary and 

non-trivial step that can be time consuming and can introduce errors into 

the model. In any case it is a simplification of the original design.  

Once the RBD system has been optimised it will be necessary to reverse this 

procedure in order to determine the modification required to improve the 

reliability of the real design. 

Another disadvantage is that typically the failure model of an RBD allows 

just two failure states: failure and success. In reality a system can fail with 

many failure modes, a fact that is catered for by true safety analysis tech-

niques. 

It would seem an ideal partnership to make use of sophisticated optimisation 

algorithms to optimise the reliability, with respect to other objectives, of a 

full engineering model by using an automated safety analysis tool to calcu-

late said reliability. 
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2.2.3 Multiple objectives versus single objectives 

The first use of meta-heuristics in general, and for the RAP problem in 

particular was for solving single-objective formulations. The goal of the 

optimisation was to maximize (or minimize) a single objective. 

Where problems come with multiple objectives, they need to be combined 

into a single objective. Often this is done through a weighted sum, or prod-

uct, of the objectives. Alternatively, one objective is chosen as the main 

objective and the others are aggregated in the form of constraints. 

One of the problems with doing this is that it takes what is in fact a multi-

objective problem and forces it in to the confines of a single-objective 

method. This was achieved through the a priori weighting, scaling and 

combination of the objectives into penalizing constraints. 

Reliability was not directly maximized but rather a reliability value that had 

been modified by an adaptive penalty function in order to allow for the 

additional objectives of minimizing cost and minimizing weight. 

When the problem is formulated as a single objective it is clear when one 

solution is better than another. There is a single objective value, one is less, 

the other more, with the better one depending on whether the objective is 

being minimized or maximized. 

When you consider them as multiple objectives this becomes more difficult 

because unless one solution clearly dominates another, one cannot be said 

to be better. 

2.2.3.1 Pareto frontiers 

Many multi-objective optimisation algorithms use Pareto dominance to 

distinguish between different solutions.  
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For an individual to dominate another it is necessary for it to be the same or 

better for each of the criteria. In Figure 1 there are three examples where 

one individual (A) dominates another individual (B). In each case individuals 

with lower values of the two criteria of comparison (the axes of the chart) 

are deemed better for that criterion, as with cost and unavailability for 

example. 

Availability is defined as the probability that a repairable system will be 

operating at a specified time. When a system is not repaired, its availability 

is equal to its reliability. The definition of unavailability (Q), is simply that 

the system will not be operating at a specified time and is given by: 

 

 

Figure 1 In each of these examples individual A dominates individual B. 

In the first example, A dominates B because it has a better value (lower in 

this case) for both criteria. In the second and third example A dominates B 

because it has a better value of one criterion and is equal to B in the other 

criterion. 

Figure 2 shows an example where neither individual A nor individual B 

dominates the other; they represent a Pareto optimal trade-off where mov-

ing between them cannot be achieved without making a sacrifice in at least 

one of the criteria. For example individual A may be a low cost, highly 

unavailable solution where individual B is a high cost solution with low 

unavailability. To move from A to B in order to achieve a better unavailabil-

ity requires that more is paid in cost. Likewise a move from B to A to 
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achieve a lower cost is only feasible by sacrificing the availability of the 

solution. 

 
Figure 2 In this example both individual A and individual B are undomi-

nated by one another. 

Figure 3 shows an example Pareto frontier with more individuals. The undo-

minated individuals shown shaded in grey are said to be on the Pareto 

frontier and as such are trade-offs for each other. The unshaded individuals 

are dominated by the individuals on the Pareto frontier (and perhaps by 

each other). 

 

Figure 3 A Pareto frontier (shaded individuals) with dominated individuals 

also shown (unshaded). 

A 

B 
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In all cases it is better to select an undominated individual over a dominated 

individual, but given the tradeoff nature of the solutions on the Pareto 

frontier, it is necessary to use further criteria to distinguish between them.  

A Pareto set contains solutions that do not dominate one another. However, 

there may be undiscovered solutions that dominate some or all of the solu-

tions in a given set. This being the case, unless the Pareto set is globally 

optimal then it represents a snapshot of the current state. For this reason, a 

wide-spreading Pareto front can still contain poor solutions. 

This would normally be left to a human agent to make a decision when 

selecting between tradeoffs. In the simple case how does one mechanically 

choose between a cheap less reliable option and an expensive more reliable 

option? 

2.2.3.2 Pareto pruning 

One of the potential drawbacks of multi-objective optimisation is that the 

resultant Pareto trade-off sets can become very large. This information 

overload can limit the usefulness of this rich information to the decision 

maker; good solutions that meet the more specific requirements of the user 

can be lost in the deluge of alternatives. 

Taboada et al. (2007) suggest 2 different techniques for reducing the size of 

the Pareto set.  

A Priori Objective Preference 

The first is appropriate for use when the decision maker has advance prefer-

ences between objectives. This preference is encapsulated in an ordering of 

the objectives, for example, reliability > weight > cost. Each objective would 

then have a possible weighting range calculated via a weight function, such 

that the sum of the weights is equal to 1. 
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A Monte Carlo simulation method, using this weight pattern, generates a 

large set of actual weighting values. The weighting values are used to ag-

gregate the multiple objectives into a single combined objective, and the 

best solution in the Pareto set for that objective is noted. 

This process is repeated several thousand times, and the most frequently 

identified solutions are retained for the reduced Pareto set. 

The technique has been shown to achieve a 90% reduction in the size of the 

Pareto set. 

A similar technique is used by Kultural-Konak et al. (2008) to prune the 

Pareto set following a multi-objective tabu search.  

Two different order preferences were devised as the basis for the Monte 

Carlo method. The Pareto set is reduced from 3801 solutions to 56 solutions 

for the first preference and 36 solutions for the second preference. By com-

bining the results of both preferences only 5 solutions could be considered 

priority solutions as they frequently appeared in both pruned sets. 

Data clustering analysis 

It may be the case that the decision maker is insufficiently experienced, or 

not in possession of sufficient information, to be able to state a preference. 

This is where their second proposed technique, data clustering analysis, is 

advised. 

The data clustering method is described in detail by Taboada and Coit 

(2007). The purpose of the analysis is to identify groups of solutions such 

that the individuals in the group are highly similar to one another whilst 

being highly dissimilar to members of other groups. 
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Once a number of clusters have been identified, representative solutions can 

be chosen from each cluster. Usually the solution that is closest to the 

centre of the group is chosen as the representative. This substantially re-

duces the number of solutions that a decision maker has to consider. 

If further analysis is required, then attention can be focused on a particular 

cluster. Most useful clusters to focus on are areas where large deterioration 

of one objective is caused by a small improvement in another, a so-called 

„knee‟ region. 

The cluster analysis can be repeated on this chosen region to further reduce 

and refine the solution set; finally the decision maker can select one solution 

from a much smaller set than the original Pareto set from the optimisation. 

A small example demonstrating the clustering technique reduced a Pareto 

set of 46 solutions to just 3. 

Li (2009) also uses a data clustering algorithm to reduce the Pareto set to a 

manageable level. The difference to previous approaches is the use of a Self 

Organising Map to identify the clusters. Another difference is that a data 

envelopment analysis is performed on the clusters to provide the represen-

tative solutions, rather than just selecting the most central one. 

In a small example the Pareto set was reduced from 75 solutions to just 2 

solutions. 

2.2.4 Choosing a Multi-Objective Evolutionary Algorithm 

A historical survey of multi-objective evolutionary algorithms spanning the 

last two decades is provided by Coello (2006).  

It states that whilst there are a wide range of exact mathematical tech-

niques for solving multi-objective problems, they suffer from limitations 
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regarding the shape of the Pareto front, particularly if the front has a con-

cave shape or is disjointed. Some also require that the objective functions 

and their constraints be differentiable. 

A further limitation is that they mostly can only identify a single member of 

the Pareto set per run, requiring the repeat of the calculations from different 

starting locations. 

Both of these limitations are overcome through the use of evolutionary 

algorithms such as genetic algorithms. Not only does their use of a popula-

tion of candidate solutions allow multiple Pareto front members to be located 

in a single run, but also discontinuous and concave Pareto fronts are not 

problematic for a modern evolutionary algorithm. 

Evolutionary algorithms are also able to solve problems for which a mathe-

matical formulation is not available or difficult to construct. 

This survey classifies multi-objective evolutionary algorithms into two cate-

gories: first generation and second generation, where the second generation 

improves and supersedes the first generation algorithms.  

One of the key features that distinguish second generation methods is the 

inclusion of an archive population of non-dominated solutions in order to 

provide an elitism mechanism. 

Elitism is a mechanism that prevents good solutions from being lost from the 

gene pool. This is particularly important when generating Pareto sets as 

individual solutions are only non-dominated with respect to the other solu-

tions in the current population. If non-dominated solutions are lost from the 

population then solutions that they would have dominated could be pre-

sented to the decision maker even though they are not globally non-

dominated. 
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The archive population allows the storage of all non-dominated solutions 

found by the algorithm to be saved so that any solutions that are presented 

to the decision maker are known to be the best of all the solutions found by 

the algorithm. 

The focus of these Pareto-based evolutionary algorithms is to populate a 

Pareto optimal set with solutions that are widely and evenly distributed 

across the search space. The basic framework in which they work is similar; 

they are distinguished primarily by the different mechanisms for moving the 

Pareto front towards the optimum and the different diversification mecha-

nisms for ensuring the spread of the solutions. 

2.2.4.1 PESA-II 

Pareto envelope-based selection algorithm (PESA-II) (CORNE, D W et al., 

2001) is an improved version of the original PESA method (CORNE, D et al., 

2000).  

PESA-II seeks to maximise evenly distributed spread in the Pareto set by 

including crowding in the selection criteria of parent solutions for the genetic 

operators. Solutions that are found in less crowded regions are preferred for 

selection as these regions represent less explored areas of the search space. 

For establishing crowding, the mechanism involves dividing the population 

with a hypergrid in objective space. A pre-specified dimension value deter-

mines the number of hyperboxes dividing up the space.  

Once the grid is laid, solutions can be found to fall within one of the hyper-

boxes. Some hyperboxes will contain several solutions and the more 

solutions there are in a box the more crowded that box is said to be. 

For selecting individuals for breeding, two hyperboxes are randomly chosen 

from all the hyperboxes that contain solutions. The number of solutions 
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within each box, the crowding value, is compared and the box with the 

smallest value is chosen. 

Finally an individual from the chosen hyperbox is randomly selected to be a 

parent. 

The crowding evaluation is also used to select individuals for deletion from 

the population when size limits have been exceeded. Opposite to breeding 

selection, solutions that are in crowded regions are preferred for removal 

over solutions in uncrowded regions. 

In their paper PESA-II  was favourably compared to the original SPEA algo-

rithm (ZITZLER, E and Thiele, L, 1999) and also to Pareto Archived Evolution 

Strategy (PAES) (KNOWLES, J D and Corne, D W, 2000), when applied to a 

test problem. 

2.2.4.2 SPEA2 

Strength Pareto Evolutionary Algorithm (SPEA2) (ZITZLER, E et al., 2001) is 

an improved version of the original SPEA (ZITZLER, E and Thiele, L, 1999). 

Unlike PESA-II, which adopts a pure elitist strategy that allows no dominated 

solutions to exist in the archive, SPEA2 does retain dominated solutions. 

The comparison of different solutions in the SPEA2 algorithm is made with a 

fitness value comprising two parts: dominance strength and a density value. 

The population is surveyed and each solution counts the number of other 

solutions it dominates. This is its dominance strength. A raw fitness for each 

solution is then calculated by summing together the dominance strengths of 

all the solutions that dominate it. 

Non-dominated solutions will therefore have a raw fitness of 0. 
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The density value is calculated by determining the distance, in objective 

space, between the individual and every other solution. These distances are 

then sorted into ascending order and the kth value, where k is the square 

root of the population size, is chosen. 

This value has 2 added to it to ensure that the final value is greater than 

zero and less than one. Finally the density value is calculated by dividing 1 

by it. 

The final fitness value is the sum of the raw fitness, from the strength 

calculation, and the density value. 

Completely non-dominated solutions will have a fitness of less than one. 

Both dominated and un-dominated solutions are allowed in the archive 

population, provided that the limit is not reached. When the limit is ex-

ceeded, first dominated solutions and then un-dominated solutions with high 

density are removed. 

2.2.4.3 NSGA-II 

Non-dominated Sorting Genetic Algorithm (NSGA-II) (DEB, K et al., 2000) 

improved on the criticisms of the original NSGA (SRINIVAS, N and Deb, K, 

1995). 

NSGA-II does not have a separate archive population. Instead both non-

dominated solutions and dominated solutions exist in one population. 

The solutions in the population are sorted into rankings of dominance. In the 

first rank are the completely non-dominated solutions. In the second rank 

are the individuals that are only dominated by the first rank. The third rank 

contains the solutions that are only dominated by the first and second 

ranks; and so on. 
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The elitism is provided by giving selection preference to non-dominated 

solutions. When selecting, two solutions are randomly chosen from the 

population. The individual with the highest non-dominance rank is chosen. 

Where the two solutions are of equal dominance rank they are chosen on 

the basis of their crowding. 

Crowding is calculated by ordering all of the solutions in each of the domi-

nance ranks by each of their objective values in turn. The difference 

between the values of the nearest neighbour on each side is averaged for all 

objectives. This gives an individual crowding distance. 

For breeding selection, as with PESA-II the individual with the largest sur-

rounding space is chosen to promote spread of the Pareto front. 

When the population exceeds its limit, the entire population is ordered, first 

by dominance rank, and then by crowding distance. Solutions are then 

removed from the bottom of the list until the population is within limits 

again. 

This ensures that the undominated solutions with low crowding are pre-

served at the expense of dominated solutions in crowded regions.  

2.2.4.4 Comparison of Techniques 

A survey of different multi-objective GAs (KONAK, A et al., 2006) suggested 

that PESA, and by extension PESA-II, is easy to implement and computa-

tionally efficient. NSGA-II is also described as efficient and is widely used 

and well tested. 

SPEA2, by contrast, is criticised for being computationally expensive. 
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Both NSGA-II and SPEA2 were applied to a hierarchical redundancy alloca-

tion problem by Kumar et al. (2009). The quality of the Pareto set was found 

to be better when NSGA-II was used than when SPEA2 was used. 

In another application (HIROYASU, T et al., 2005), optimising fuel economy 

and emissions in a diesel engine SPEA2 and NSGA-II were compared and 

found to have similar solution quality. 

For the purposes of reliability optimisation using automated safety analysis 

techniques, efficiency is particularly important. Both the PESA variants and 

NSGA-II have been noted for being efficient algorithms. 

Additionally NSGA-II has been successfully applied to many problems, 

including a redundancy allocation problem, and not just by the authors of 

NSGA-II.  

For these reasons NSGA-II and PESA-II have been chosen for investigation 

in this thesis. They will both be implemented and evaluated when applied to 

the benchmark problem with the automated safety and reliability analysis 

tool HiP-HOPS providing the reliability fitness values. 

A more detailed description of their mechanisms and implementation, includ-

ing efficiency improvements, can be found in later sections of this thesis. 
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3. Extending an automated reliability analysis technique 

In chapter 2, HiP-HOPS was identified as a good candidate for providing 

reliability analysis to optimisation algorithms. In this chapter HiP-HOPS is 

discussed in greater detail, providing a basis for the extensions that were 

developed to improve the efficiency of the algorithms. The performance 

enhancements are discussed and evaluated. 

HiP-HOPS is a safety analysis technique based on deductive FTA. It works by 

automatically synthesising, and then analysing, multiple interconnected 

system fault trees for models that have been augmented with component 

failure data.  

In addition to traditional FTA, further analysis of the fault tree cut sets 

automatically generates FMEA tables that, unlike traditional manual FMEA, 

consider more than one failure mode.  

As discussed in the background section, many safety analysis techniques are 

inductive, with high computational expense, making them unsuitable for use 

with optimisation algorithms due to the need for many iterations. 

The automatic fault tree synthesis of HiP-HOPS is deductive and scalable, 

opening up the possibility of optimisation of system models with dependabil-

ity objectives.  

The rest of this chapter describes the three HiP-HOPS phases, annotation, 

synthesis, and analysis, along with the performance enhancements that 

have been developed to minimise the evaluation overhead in optimisation. 

In order to introduce some of the major concepts, a simple example of a 

standby recovery system, shown in Figure 4, will be used. 
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Figure 4 - A simple example of a standby recovery system 

It is composed of one input component, „SensorInput‟, and one subsystem, 

„Standby Recovery Block‟, which is composed itself of two sub-components, 

„Primary‟, and „Standby‟. „Primary‟ is the main subcomponent of the standby-

recovery system and processes the input from the „SensorInput‟. The 

'Standby' component monitors the output from 'Primary' and is designed to 

take over operation if it detects a failure of the „Primary‟. 

3.1 Annotation Phase 

HiP-HOPS can be performed on any system model that identifies functions or 

components along with the energy, material, or data connections between 

them. For the purposes of HiP-HOPS, the components of the system are 

augmented with failure behaviour annotations. These annotations describe 

the causes of deviations of the normal output of the component. Output 

deviations can be caused either by internal failure modes of the component, 
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or through the propagation or transformation of deviations of component 

input.  

The relationship between the output deviations and their causes is described 

using Boolean logic. 

The deviations, both input and output, are composed of two parts: the 

failure class of the deviation and the port of the component that it occurs at. 

Failure classes generally fall into one of several categories: 

 Omission: input or output expected but none provided 

 Commission: input or output unexpectedly provided at a port 

 Value failure: input or output provided at a port but with a value 

outside of intended range 

 Timing failure: input or output provided at port either before ex-

pected (early), or after expected (late) 

In principle, however, HiP-HOPS can cope with any definition of failure class 

providing that they are used consistently throughout the model. An example 

of a complete deviation is „Omission – Primary.Output‟, which states that the 

output of component named „Primary‟ is omitted. 

Table 1 shows the failure modes of the components in the example system. 

Table 1- Failure modes for standby recovery system 

Component Failure Modes Probability 

Standby Recovery 

Block 
ElectroMagneticInterferance 0.001 

Primary InternalFailure 0.03 

Standby InternalFailure 0.02 

SensorInput InternalFailure 0.05 
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Table 2 shows the failure annotations for the components in the example 

system. 

Table 2- Failure data for standby recovery system 

Table 2 defines that the omission of output of the SensorInput component is 

caused only by its internal failure. 

The „Monitor‟ port detects omissions of output of the „Primary‟ component 

before activating the „Standby‟ component. If the „Primary‟ component is 

functioning then the „Standby‟ cannot fail (or its failure is irrelevant) as it is 

inactive. If the „Standby‟ component is thus activated then an output omis-

sion is caused by either an internal failure or the propagation of input 

omission.  

An omission of „Primary‟ output is caused by an internal failure or the propa-

gation of an omission of input. 

At the top level, the system output of the „Standby Recovery Block‟ has an 

output deviation of type „Omission‟ that is caused by either the failure mode 

„electromagnetic interference‟, or by the conjunction of omissions occurring 

at the outputs of both the primary and standby components.  

The Boolean failure expressions in the component annotations each define a 

CFT that describes propagation of failure through it. However, such a fault 

Component Output deviations Failure expressions 

Standby Recovery 

Block 
Omission - Output 

Omission – Primary.Output 

AND 

Omission – Standby.Output 

OR 

ElectoMagneticInterference 

Primary Omission – Output Omission – Input OR Failure 

Standby Omission – Output 

Omission – Monitor 

AND 

(Omission – Input OR Failure) 

SensorInput Omission - Output Failure 
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tree is incomplete because its leaf nodes will not all be failure modes – some 

may be input deviations, which are failures originating in other components. 

Similarly the top node is an output deviation that may be relevant in further 

components in the system. 

These CFTs for the example are shown in Figure 5 (for the „Standby Recov-

ery Block‟), Figure 6 (for the „Primary‟ component), Figure 7 (for the 

„Standby‟ component), and Figure 8 (for the „SensorInput‟ component). In 

these diagrams the circles with an arrow denote an input deviation where 

the arrow is entering the circle and an output deviation where the arrow is 

leaving the circle. 

 

Figure 5 CFT described by annotation for standby recovery block subsystem 
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Figure 6 - CFT described by annotation for primary component 

 

 

 

Figure 7 - CFT described by annotation for standby component 
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Figure 8 - CFT described by annotation for SensorInput component 

Once the components of the model have been fully annotated, the manual 

phase of HiP-HOPS is complete and the remaining stages are fully auto-

matic. 

3.2 Synthesis Phase 

During the annotation phase the designer manually adds failure expressions 

to each component. As explained before, these expressions represent CFTs 

that describe the propagation, generation, and transformation of failure 

between the inputs of the component and its outputs. 

As the components are linked through their ports to other components, 

failures can be propagated between components.  

The synthesis phase begins with deviations of the system outputs. The 

algorithm locates the CFT for each output deviation and traverses the tree 

until it locates a terminal input deviation. The input port that is associated 

with that input deviation is then selected.  

The algorithm then follows the connections from the selected component 

port to the output ports of the connected components. The output deviation 

matching the failure class of the connected input deviation is then selected. 

Its CFT is joined to the input deviation from the connected component. 
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This cycle of traversing CFTs and connections is repeated until there are no 

more unconnected input deviations and the system fault trees are complete. 

In the standby recovery example in Figure 4, the system output is the 

omission of output of the „Standby Recovery Block‟. This is the top node of a 

CFT in the „Standby Recovery Block‟ and marks the start of the synthesis for 

this example.  

This CFT has two input deviations at its leaves, „omission of Primary output‟ 

and „omission of Standby output‟, and so the algorithm finds the correspond-

ing components where it discovers further CFTs. The top nodes of these are 

added as child branches to the input deviation leaf nodes and the process is 

repeated, each time connecting output deviation CFTs to input deviation leaf 

nodes.  

The omission of „Primary‟ output is partly caused by an omission of its input, 

so the connection at the input is followed to the „SensorInput‟ component 

where the output deviation that exists there is connected to the growing 

system fault tree. As the deviation of „SensorInput‟ output is only caused by 

an internal failure, the propagation of that branch is terminated. 

The „omission of Standby input‟ branch is treated in the same way and thus 

a complete system fault tree, describing the propagation of failure through-

out the whole model, is synthesised from the failure expressions. The result 

of synthesis of the example model is shown in Figure 9. It can be seen from 

this diagram how the system fault tree is composed of the mini fault trees 

shown in Figure 5 to Figure 8. The output deviations that are the top nodes 

of the component fault trees are shaded.  

In the next HiP-HOPS phase the fault tree is analysed to extract quantitative 

and qualitative information. 
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Figure 9 - Fault tree synthesised from standby recovery example. 
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3.3 Analysis 

The result of the synthesis process is a set of one or more interconnected 

fault trees and therefore the next stage of the HiP-HOPS technique is to 

analyse those fault trees using FTA. 

The fault trees represent the propagation of failure logic through the system, 

but they can often be large and complex. By reducing the fault trees to their 

minimal cut sets we retain the relationship between the basic events and the 

top level system event but strip out the intermediate propagation paths. 

The primary cut set generating algorithm used by HiP-HOPS is MICSUP 

(MInimal Cut Sets UPwards) (PANDE, P K et al., 1975). MICSUP, as the 

name suggests, is a bottom-up algorithm for obtaining minimal cut sets 

from a fault tree.  

One advantage of MICSUP is that the cut sets can be stored in the interme-

diate nodes as they are generated and minimised as the algorithm returns 

from the basic events. This ability to reuse the results in shared branches 

without needing to reanalyse saves computational effort.  

A second advantage is that it is easy to use cut set order pruning: when a 

cut set exceeds the maximum size limit, it is simply discarded at that point 

and cannot contribute to cut sets further up the tree.  

The main computational expense when minimising the cut sets is the redun-

dancy checking. Several methods of increasing the performance of this 

process, including modularisation, fault tree contraction, and use of cut set 

cataloguing, are discussed in a later section on performance increases. 

The following Boolean laws can be applied to obtain minimal cut sets: 

The law of absorption: E1 + E1.E2 = E1 
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The cut set containing E1.E2 was removed as the action of E1 alone is 

sufficient to cause the top event and is therefore in its minimal form. 

The laws of idempotence: E1.E1 = E1 and E1 + E1 = E1 

The former removes repeated events within cut sets and the latter removes 

repeated cut sets. 

In order to keep the number of checks to a minimum the cut sets are 

checked for redundancy as they are created so that redundant combinations 

are quickly identified and removed. This ensures that they cannot affect or 

be combined with more cut sets later in the traversal of the fault tree. 

Once the minimum cut sets have been identified, they can subsequently be 

used for quantitative analysis to calculate the system unavailability Qs 

(where basic events have quantitative data) using the approximate Esary 

Prochan (1970) method: 

 

(Where n is the number of independent cut sets and QCS is the unavailability 

of the cut set i). 

In addition to the quantitative analysis that can be performed on the mini-

mal cut sets, a further qualitative stage can be applied to generate an FMEA. 

Figure 10 shows the inverse relationship between the diagnostic failure 

propagation information in the fault trees, where the component failure 

modes that cause a system failure can be determined, and the causative 

nature of the FMEA, where a basic event (or combination of several events) 

have an effect on the system level. 
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Figure 10 - Inverse relationship between fault trees (left) and FMEA (right) 

The minimal cut sets contain the non-redundant propagation of failure in the 

fault tree and an algorithm is used to catalogue each component failure 

mode in each fault tree and note which system failures they cause and in 

combination with which other component failure modes. This information is 

the core of an FMEA. 

The deductive nature of this process is important for safety analysis as it 

allows large combinations of basic events to be considered in the FMEA, 

unlike traditional manual methods that could only consider single points of 

failure or fault injection simulation methods that are similarly limited by 

combinatorial explosion. 

The method and data structure for FMEA cataloguing is discussed further in 

the following section on performance enhancements that were done in the 

context of this work in order to support fast iterations of analysis in optimi-

sation. 
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3.4 Performance Enhancements  

It is desirable when conducting single safety analyses to have computation-

ally efficient algorithms that minimise the time needed to perform the 

calculations. However, when those analyses are used to provide fitness 

evaluations for optimisation algorithms, it becomes crucial.  

Optimisation algorithms require many iterations, not just one or two or three 

but thousands, resulting in possibly millions of analyses. To put this into real 

values, consider two algorithms, one of which takes a second longer than 

the other. This is a negligible difference for a single analysis, but when it is 

applied to an optimisation algorithm requiring the analyses to be run a 

million times, that one second difference becomes a 12 day difference. 

These apparently small delays can be the difference between optimisation 

being viable and impractical. 

It is with this context in mind that the remainder of this section discusses 

algorithms that have been implemented to increase the performance of the 

HiP-HOPS fault tree analysis. 

3.4.1 Fault tree contraction 

The automatic process of fault tree synthesis in HiP-HOPS constructs a fault 

tree by traversing the compositional system model and combining the failure 

logic. The resultant fault tree is not necessarily in its most compact or sim-

plified form and may contain redundant elements that can be removed 

without changing the meaning of the fault tree.  

This can be seen in the example fault tree in  which was synthesised for the 

standby recovery example system.  

Firstly all nodes in the tree which only have a single child act merely as a 

proxy label and can be removed. 
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Once this is done (see Figure 11), note how two AND gates appear together 

near the top of the tree. The extra logic causes extra computational ex-

pense, and in their description of SETS, Worrell and Stack (1978) explain 

how two or more gates of the same kind appearing consecutively in the fault 

tree may be coalesced to produce a simpler structure for analysis. An exam-

ple of this can be seen in Figure 12. 

 

Figure 11 – Synthesised fault tree example with proxy nodes that have 

single children removed. 
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Figure 12 - An example of coalescing fault tree gates where two or more 

consecutive gates of the same type get combined. 

The combination of these simplification rules leads to a much simpler, 

smaller fault tree that still contains the same logical information, as shown 

in Figure 13. 

The contraction method was tested on a large, complex fault tree to deter-

mine the effectiveness of the contraction algorithm. The fault tree is 

synthesised from a model with hundreds of components and generates over 

7000 cut sets (PAPADOPOULOS, Y and Grante, C, 2005). 

The timings were measured using MicroFocus Devpartner, which instruments 

the development code, thus allowing detailed analysis. It is worth noting 

that the instrumentation has a timing overhead. This does not affect the 
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consistency of the results, only that real world timings are less than the 

figures displayed. 

For each timing test, the algorithms were run 3 times and the mean result 

was taken. 

 

Figure 13 - The fault tree synthesised from the standby recovery example 

model shown in after it has undergone contraction. 

 

Table 3 contains the combined times taken to contract the fault tree and 

then analyse it, compared to performing analysis on an un-contracted fault 

tree. Contraction of the fault tree led to an overall 61.34% reduction in the 

time taken despite the extra computational overhead of contracting the tree. 
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Table 3 - Comparison of times taken to minimise cut sets of a large fault 

tree with and without fault tree contraction 

 Contracted Un-Contracted % Reduction 

Time taken 1.83s 4.75s 61.34% 

 

3.4.2 Modularisation 

In SETS, Worrell and Stack (1978) talk about the use of independent sub 

trees (also called modules). If a branch of a fault tree contains only basic 

events that do not occur elsewhere in the tree, it is an independent sub tree 

and the cut sets that are generated from this branch do not need to be 

checked for redundancy. This can clearly result in a reduction in effort; 

however, there is also an overhead involved in identifying the modules.  

In their paper, Dutuit and Rauzy (1996) propose an algorithm for identifying 

fault tree modules in linear time. This is achieved in two passes of the fault 

tree. The first pass is a depth-first, left-most traversal of the fault tree. At 

each step the „date‟ counter is incremented and for each node in the tree the 

date of the first arrival at that node, the second arrival, and the latest arrival 

at that node is stored.  

When visiting a gate node the first visit date is the first time that the gate is 

visited. The second visit is counted when returning from the last child of that 

gate. The last visit is updated on each subsequent visit. When visiting basic 

events, which occur as leaf nodes, the first and second visit are set as the 

same as there are no children. The latest visit is updated as normal. 

After this first pass is completed, a second pass is carried out where for each 

gate the minimum date of the first visit of all its children and the maximum 

last visit of all its children is stored.  
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A gate is a module if and only if the minimum visit of its children is more 

than the date of the gate‟s first visit and the maximum visit of its children is 

less than the gate‟s second visit. 

In Figure 14 there is a fault tree with such modules where the modules are 

shown enclosed in the dashed boxes (G3, G6, G7, G8).  

 

Figure 14 - Fault tree containing independent sub trees (modules). Modules 

are shown in the dashed boxes. 

In Table 4 can  be found the results from the linear module identifying 

algorithm for the example fault tree in Figure 14. Note that G3 is correctly 

identified as a module because the minimum visit of its children (12) is more 

than the date of the first visit to G3 (11) and the maximum visit of its chil-

dren (19) is less than the date of the second visit to G3 (20). This is also 

true for G6, G7, and G8. 
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Table 4 - Results for the modularisation visit counting algorithm for exam-

ple Figure 14 modules are shown in bold 

Table 5 shows the results of the timed runs of cut set minimisation of a large 

fault tree (PAPADOPOULOS, Y and Grante, C, 2005). Again, the fault tree is 

synthesised from a model with hundreds of components and generates over 

7000 cut sets. The fault tree contains 10 modules and the analysis is con-

ducted with and without modularisation.  

This shows that there is a significant performance increase shown when 

modularisation is used. The run using modularisation is 440 times faster 

than when modularisation is not used. Obviously this benefit is only achieved 

in fault trees that contain modules. 

Table 5 - Comparison of times taken to minimise cut sets of a large fault 

tree with and without modularisation 

 Modularised Not Modularised % Reduction 

Time taken 1.836s 808.54s 99.773% 

As explained previously, the main computational expense during analysis is 

checking for redundant cut sets. The speed increase offered by modularisa-

tion is tied to a reduction in the number of redundancy checks required. This 

can be seen in Table 6 where modularisation results in nearly 650 times 

fewer redundancy checks. 

The discrepancy, between the 650 times fewer redundancy checks and the 

440 times faster timings, is accounted for by the overhead of the modulari-

sation algorithm. 

 Nodes 

Visits G2 G3 G4 G5 G6 G7 G8 G9 E1 E2 E3 E4 E5 E6 E7 E8 E9 

1st 1 11 21 2 12 16 23 3 9 4 5 13 14 17 18 24 25 

2nd 10 20 27 8 15 19 26 6 9 4 5 13 14 17 18 24 25 

Last 10 20 27 8 15 19 26 6 9 22 7 13 14 17 18 24 25 

Min. 4 12 4 4 13 17 24 4          

Max. 22 19 26 22 14 18 25 22          
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Table 6 - Comparison of number of redundancy checks minimising cut sets 

of a large fault tree with and without modularisation 

 Modularised Not Modularised % Reduction 

Number of 

redundancy 
checks 

38140 24765075 99.846% 

 

3.4.3 Cut set order pruning 

Performance in terms of algorithm speed can also be balanced with the 

accuracy of the estimation of unavailability. By limiting the maximum size of 

the cut sets allowed one can significantly reduce the time taken to generate 

the cut sets. The sacrifice is that as the cut sets are used to calculate the 

reliability of the system, omitting some of the cut sets from this calculation 

reduces its accuracy. As mentioned before there is a balance to be made and 

higher order cut sets reduce in significance with regard to system unavail-

ability. 

Table 7 shows the result of reducing the maximum allowed cut set size on 

the large fault tree previously used to test contraction and modularisation. 

The unavailability calculation is heavily influenced by the single order cut 

sets and so reducing the cut set size down to 1 has no effect on the accu-

racy of the calculation. 

There is however a significant reduction in the time taken to analyse the 

fault tree. Reducing the cut set order limit from 4 to 3 decreased the number 

of final cut sets 1.44 times with a 1.47 times reduction in time taken. Fur-

ther reducing the cut set limit to 2, results in 48 times fewer cut sets and a 

5.28 times reduction in computation time. Finally, reducing to cut set order 

1 gives 750 times fewer cut sets and takes 10.3 times less processing time. 
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Table 7 - Comparison of times taken to minimise cut sets of a large fault 

tree with varying cut set order pruning 

 4 3 2 1 

Number of Cut Sets 7498 5194 154 10 

Unavailability 1.74E-11 1.74E-11 1.74E-11 1.74E-11 

Time taken 1.836 1.243s 0.348s 0.178s 

% Reduction of Max n/a 32.32% 81.03% 90.31% 

% Reduction in 
Unavailability 

n/a 0% 0% 0% 

In the case of this model, reducing the cut set order did not affect the 

resultant probability calculation, so the reduction in computational effort is 

without cost. This is certainly not the general case. 

Table 8 shows the results of the same experiment carried out on a different 

large fault tree (PAPADOPOULOS, Y et al., 2001). This tree has 6319 cut 

sets up to order 6. Reducing the maximum cut set order to 5 generates 3.77 

times fewer cut sets and takes 2.49 times less time to process; the calcu-

lated probability is only 0.037% reduced. Reducing from cut set order 6 to 

order 3 and the time taken to perform the analysis is reduced by 7 times 

with only a 2.3% reduction in the calculated probability value. 

Table 8 - Comparison of times taken to minimise cut sets of another large 

fault tree with varying cut set order pruning 

 6 5 4 3 

Number of Cut Sets 6319 1676 324 133 

Unavailability 0.857977 0.857657 0.846941 0.838377 

Time taken 0.546s 0.219s 0.125s 0.078s 

% Reduction of Max n/a 88.07% 93.19% 95.75% 

% Reduction in 

Unavailability 
n/a 0.037% 1.286% 2.284% 

It seems that there is definitely scope for using this feature, although it may 

vary in its effectiveness depending on the model and the cut sets that it 

produces. In any case where greater accuracy is required for a particular 
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problem it may be possible to quickly reduce the search space using the 

pruned cut sets and then refine the search with unpruned sets. 

One potential problem with using this technique would occur when the 

maximum cut set order is set to below the maximum number of components 

that are permitted in parallel in a redundant configuration. In this situation, 

pruning the cut sets would make the selection of higher parallel redundan-

cies impossible because there would be no reliability benefit (due to the 

pruning) for doing so, yet still an increased cost. 

3.4.4 FMEA Catalogue 

Consider the following example involving 7 non-redundant cut sets: A.B, 

B.C, B.E, B.F.G, C.E, C.F.G, D. Now assume a new cut set A.C.D is being 

added and has to be checked for redundancy.  

With a naive algorithm it would be necessary to compare the new cut set for 

redundancy against the complete non-redundant set, totalling 7 compari-

sons, before discovering that it is redundant because of cut set D and the 

law of absorption. 

However, if the cut sets are arranged in a cataloguing data structure, then 

the number of redundancy checks can be reduced by skipping checks on cut 

sets that could not possibly cause redundancy.  

The catalogue structure for each top event has 3 levels. The first level is a 

list of all the basic events that contribute to the top event. Below this each 

basic event has a list of the sizes of all the cut sets that contain that basic 

event.  

Note that if there is a single order cut set then there will only be one entry in 

this list as all higher sized cut sets for this basic event would be redundant 

due to the law of absorption.  
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Finally in the third layer is a list of all the cut sets that are of the given size. 

These levels can be seen in Figure 15 where, for example, the top event has 

cut sets that contain the basic event B. Of these cut sets there are 3 that are 

of order 2 and 1 of order 3. 

All of the cut sets that are stored in the data structure have their basic 

events sorted in order of their unique identifier. That way, a combination of 

basic events always appears the same, e.g. A.B.C always appears in that 

order and never B.A.C or C.A.B or B.C.A, etc.  

Within the final level, the cut sets are separated into 2 groups: one where 

the basic event of the first level is the first basic event in the sorted cut set 

and the other group where the basic event appears in subsequent positions 

in the cut set.  

This enables a reduction in the number of checks required, for example, 

when checking cut set A.C.F against cut sets B.C, C.E, and C.F.G in the basic 

event C column. As basic event C appears in the second position in A.C.F 

(and not the first) we only need to check against cut sets that start with 

basic event C, thus avoiding the check against B.C.  

Similarly, when we are checking only the cut sets that start with the basic 

event of the column, we can also limit the checks to cut sets that are of an 

order less than or equal to the new cut set as the new cut set would have to 

contain at least one basic event not contained in the higher order cut sets, 

thus making redundancy impossible in those cut sets. 

In Figure 15 the non-redundant cut sets from the naïve example are cata-

logued in the FMEA data structure. When doing a redundancy check on the 

new cut set (A.C.D), we consider each of the basic events of the new cut set 

in turn: A, C, and D.  
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Figure 15 - Example showing the cut sets catalogue structure for 7 cut sets 

(A.B, B.C, B.E, B.F.G, C.E, C.F.G, D) 

First we check the A column where there is one cut set (A.B) which does not 

cause redundancy. The basic events in a cut set are ordered by their unique 

identifier and within each column of cut sets they are separated into two 

groups, those that have the basic event of the column as the first event in 

the cut set and those that contain the basic event but not as the first event. 

As when we check the C column we are not checking the first event in the 

cut set, we can skip the group of cut sets that do not start with that event as 

those cut sets contain at least one event that does not appear in the new cut 

set and so cannot cause redundancy. This means that even though an 

existing cut set B.C will be indexed in both the B and the C lists it will only 

be checked in the first instance when looking in the B column. 

That just leaves one order 2 cut set to check (C.E) and one order 3 cut set 

(C.F.G), neither of which cause redundancy. Finally we check the D column 

where there is one order 1 cut set (D) and this causes redundancy in the 
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new cut set through the law of absorption. A total of 4 redundancy checks 

were required as opposed to the 7 checks required by the naïve approach. 

Using the FMEA catalogue for checking redundancy significantly reduces the 

number of checks required and will never perform worse than the naïve 

approach. The performance benefit would also be more marked as the 

number of cut sets involved increases. 

In addition to the performance increase in cut set minimisation, using the 

FMEA catalogue also maintains the cut sets in a data structure that directly 

relates to the FMEA information contained within them.  

This is achieved because the structure (as in Figure 15) contains all the cut 

sets for each failure mode for a particular fault tree. The only additional 

requirement is to link the failure modes directly to the multiple system 

failures that they cause.  

Figure 16 shows such an example where there are 3 basic events that 

directly (or indirectly) cause 2 top events. Using the structure it is possible 

to see that failure modes B and C contribute to both top events but that A 

only contributes to top event 1. It can also be seen that B is a single point of 

failure in top event 2 but that it only contributes to top event 1 as it must 

occur either with A or C in order to cause the top event. 

As this information is inherent in the catalogue structure, it is not necessary 

to perform extra passes of the cut set data in order to collate the FMEA. A 

naïve approach would require this extra step. 
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Figure 16 - Example showing complete FMEA structure for 3 basic events 

causing 2 top events as part of different cut sets. 

Table 9 shows that using the FMEA structure reduces the time required to 

analyse the large test fault tree by 6.3 times. 

Table 9 - Comparison of times taken to minimise cut sets of a large fault 

tree using the FMEA structure for storing cut sets 

 FMEA Structure Standard % Reduction 

Time taken 1.836s 11.55s 84.108% 

This increase in performance is again achieved by reducing the number of 

redundancy checks required. Table 10 shows that the FMEA cataloguing 

structure resulted in 15.9 times fewer redundancy checks, when analysing 

the test fault tree. 

Table 10 - Comparison of number of redundancy checks needed to minimise 

cut sets of a large fault tree using the FMEA structure for storing cut sets 

 FMEA Structure Standard % Reduction 

Number of redundancy 
checks 

38140 605395 93.700% 
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3.4.5 AnalySynth 

AnalySynth was developed to specifically improve the performance of the 

RAP benchmark analysis, though it has a wider application. Despite the 

conceptual simplicity of the RAP model, its fault tree (see also section 3.5) is 

very large and took a long time to traverse with the techniques described so 

far. 

In the case of the RAP problem, there is a series of parallel components 

logically conjoined with an AND gate. There are always 14 series units, but 

the number of parallel components in each unit can vary up to 4. In the 

worst case scenario there are 14 units in series, each with 4 components in 

parallel. 

As the synthesis algorithm traverses it encounters the first unit. There are 4 

components in parallel in this unit so that creates 4 branches. Each of the 

branches connects to the next unit in the series, which also has 4 compo-

nents in parallel. The 4 branches that are generated from this unit are 

connected to the bottom of each of the 4 branches from the original unit; 

now there are 16 branches. 

This is repeated at each of the 14 units until finally there are 414 = 

268,435,456 branches. Merely traversing a fault tree of this size takes a 

long time and at each gate during analysis redundancy checks would need to 

be repeated. 

To solve this problem, AnalySynth was developed to combine the action of 

Analysis and Synthesis. The basic principle behind it is that the CFT for each 

unit could be minimised using the MICSUP algorithm before it is synthesised. 

The cut sets can then be converted back into a mini-fault tree that is of the 

sum of products form. 
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In the case of the RAP problem, the branching AND gate in each unit is 

terminated by component failure modes. This leaves only a single branch 

that propagates to the next unit. Instead of the number of branches growing 

exponentially with each unit, the number of branches remains constant and 

the resultant fault tree can be traversed quickly. 

Another benefit of this technique is that analysing small fault trees is dispro-

portionately easier than analysing large fault trees. By performing the 

analysis as soon as possible on the small CFTs when the analysis is easier, it 

reduces the effort required as the tree grows larger. 

In order to test this, a model was created to represent the worst case RAP 

benchmark. All 14 series units had 4 components in parallel. It was tested 

with both AnalySynth activated and with the standard separate synthesis 

and analysis algorithms. 

Table 11 shows the different timings for the Synthesis and Analysis phases 

and the combined time of both phases. With the standard algorithms the 

total time taken to synthesise and analyse the model was completely im-

practical in an optimisation setting. With AnalySynth activated the total time 

taken is a staggering 236086 times less. 

Table 11 - Comparison of times taken for the synthesis and analysis phases 

of the Fyffe RAP model using the Analysynth algorithm 

 AnalySynth Standard % Reduction 

Synthesis 0.228s 56729.97s 99.9996% 

Analysis 0.027s 3472.30s 99.9992% 

Total 0.255s 60202.26s 99.9996% 

There is a reduction in both the synthesis phase where fewer branches are 

created, and the analysis phase because the resultant fault tree will be 

mostly minimal already. 

Further testing of this technique is necessary to establish a general useful-

ness in other models. It is postulated that it would yield particular benefit in 
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models with deep hierarchies as the resultant tree for each top level subsys-

tem would be the minimised combination of all the sub trees. 

Another area to improve is that if there was a single, unique, working copy 

of each CFT then the excessive branching would be tamed because each 

branch would link back to the single copy. This remains as a future devel-

opment, though it is thought that even if this was successful there would still 

remain a useful application of AnalySynth, particularly, as mentioned, on 

highly hierarchical models.  

3.4.6 Performance enhancement summary 

Several performance enhancements have been implemented to reduce the 

computational effort required for HiP-HOPS safety analysis. These include 

fault tree contraction, fault tree modularisation, cut set pruning, AnalySynth, 

and FMEA cataloguing.  

The first three methods are implementations of existing algorithms from the 

literature and general practice. AnalySynth and the FMEA cataloguing algo-

rithm are both novel approaches and appear to offer increased performance. 

Table 12 shows the performance benefit of applying fault tree contraction, 

fault tree modularisation, and FMEA cataloguing on a large fault tree. Cut set 

pruning generally results in a reduction in probability calculation accuracy so 

it is not included in this test. AnalySynth is also not included as it is de-

signed to resolve a particular problem not present in this test model. 

Table 12 - Comparison of times taken for synthesis and analysis phases for 

a large fault tree with contraction, modularisation, and FMEA cataloguing 

on versus off. 

 All enhancements Standard % Reduction 

Time taken 2.56s 8301.19s 99.969% 



106 

     

The result for this test model is that the combined synthesis and analysis 

phases complete over 3200 times quicker with the performance enhance-

ments in place. This greatly improves the feasibility of using HiP-HOPS in an 

automatic optimisation application. 

It is worth noting that the long term trend in computing advances has been 

for a doubling in performance roughly every two years. This trend only 

increases the feasibility of computationally expensive tasks such as optimi-

sation, although clearly it is not something that should be relied on to the 

exclusion of algorithmic improvements. 

3.5 Modelling the benchmark system with HiP-HOPS 

Previous approaches for solving the benchmark RAP problem used an RBD 

model to calculate the reliability. HiP-HOPS can be used to replace the use of 

RBDs as a means of calculating reliability, as discussed in the preceding 

chapter.  

In the first instance, this hypothesis will be tested on the benchmark RAP 

model. For this, it is necessary to have a HiP-HOPS model of the benchmark 

system and the SimulationX modelling environment was used to create this. 

Each of the subsystems has a single input and output port and the output of 

each component is connected to the input of the following subsystem in a 

series configuration. This is illustrated in Figure 17 which is a modified 

screen capture from SimulationX where the middle subsystems (3 – 12) 

have been omitted to fit. 

 

Figure 17 - HiP-HOPS model template for Fyffe et al. (1968) RAP problem 
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The failure model of each alternative component comprises one output 

deviation occurring at the output port. In each case the output deviation is 

an omission and is caused by either a corresponding omission at the input 

port or an internal failure, as shown in Figure 18.  

 

Figure 18 - CFT for each of the alternative implementations 

Table 13 shows the cost and weight for each of the alternative components 

for the 14 subsystems, duplicated from (FYFFE, D E et al., 1968). It also 

shows the reliability probability for the internal failure modes. 

Table 13 - Table of alternative implementation attributes for the Fyffe et al. 

(1968) RAP problem 

subsystem 

Alternative components 

1 2 3 4 

r c w r c w r c w r c w 

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5 

2 0.95 2 8 0.94 1 10 0.93 1 9 - - - 

3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4 

4 0.83 3 5 0.87 4 6 0.85 5 4 - - - 

5 0.94 2 4 0.93 2 3 0.95 3 5 - - - 

6 0.99 3 5 0.98 3 1 0.97 2 5 0.96 2 4 

7 0.91 4 7 0.92 4 8 0.94 5 9 - - - 

8 0.81 3 4 0.90 5 7 0.91 6 6 - - - 

9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8 

10 0.83 4 6 0.85 4 5 0.90 5 6 - - - 

11 0.94 3 5 0.95 4 6 0.96 5 6 - - - 

12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7 

13 0.98 2 5 0.99 3 5 0.97 2 6 - - - 

14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9 

Component 
Omission of Output 

Component 
Omission of 

Input 

Component 
Internal Failure 



108 

     

4. Method for Architectural Optimisation using Genetic 

Algorithms and Automatic Safety Analysis 

In chapter 2, two Multiple Objective Evolutionary Algorithms (MOEAs), PESA-

II and NSGA-II, were selected for further investigation.  In this chapter, the 

general MOEA approach is described, with specific details of the different 

GAs where appropriate. 

In addition to the two MOEAs, Coit and Smith‟s (1996b) penalty-based GA 

will also be implemented, using HiP-HOPS to calculate the solution reliability. 

The reason for including this is that it is a successful use of a GA for solving 

the benchmark problem. The principle GA framework remains the same for 

the two MOEAs and the penalty-based GA, with only the details of the selec-

tion mechanism being significantly different. This will permit a useful 

comparison of the techniques. 

The structure of this chapter follows the pattern of a GA, with subsections 

detailing each of the parts. 

1) Devise an encoding for the solutions. 

2) Randomly initialise population of encodings. 

3) Select some „fit‟ individuals from the population for breeding 

4) Generate child solutions by applying genetic operators, muta-

tion and recombination, to the selected parent solutions. 

5) If population size exceeds maximum then select „unfit‟ individu-

als for culling from the population. 

6) If maximum generations not reached then return to step 3. 
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4.1 Solution encodings 

The operators of a GA act on an encoding of the potential solution and not 

the actual solution itself. One of the keys to the successful application of a 

GA to a problem is the selection of an encoding mechanism. The encoding 

mechanism is required to store the variable information necessary to recon-

struct and configure a potential solution for evaluation and comparison to 

other potential solutions. 

Two different encoding systems will be considered; one a fixed length string 

containing integer numbers and the other a tree-based encoding structure. 

4.1.1 Fixed length real number string encoding 

Coit and Smith (1996b) used a fixed length encoding for their penalty-based 

GA. The complete encoding for the system is made up of smaller fixed 

length encodings, one for each of the subsystems that can be altered in the 

system.  

Each subsystem can consist of up to 5 component slots in parallel, with each 

of the available „slots‟ able to be filled by one of 3 or 4 functionally equiva-

lent alternative components. For each subsystem the fixed length encoding 

is 5 digits long. Each of the digits in the encoding can hold the value 1, 2, 3, 

or 4 to represent the specific alternative component being used in that „slot‟.  

It can also be set to a value to represent the „slot‟ being empty; Coit and 

Smith‟s version used a value that was equal to the number of alternative 

components for a subsystem plus 1, so if there were 4 different alternative 

components the value to represent an empty slot would be 5. Coit and 

Smith do not explain the reason for this choice; one possible reason for this 

could be than when sorting the encoding in ascending order the empty slots 

would always appear at the end of the string (the significance of ordering 
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the encoding is explained below). In the experiments for this thesis the 

value 0 was used instead as this better represents the concept of an empty 

or unused slot.  

The encoding used in this experiment differs from the encoding used by Coit 

and Smith (1996b) in another way. In Coit and Smith‟s 1996b paper, before 

assigning the identifying integers to alternative components, the compo-

nents were ordered by their reliability value, such that component 1 is the 

most reliable, component 2 the second most reliable and so forth. Again the 

reason for this is not given by Coit and Smith. 

For this thesis this was not done because it is not a requirement (either 

practical or conceptual) of the GA and, whilst it makes direct comparison 

with Coit and Smith‟s (1996b) results easier, the majority of examples in the 

literature that use the RAP benchmark do not do this and so comparison 

across the board becomes more difficult.  

Where, in this thesis, the encodings of solutions found by Coit and Smith 

(1996b) are compared with the rest of the literature examples they have 

been converted to the common form.  

The use of real integer values in the encoding has been shown to be more 

efficient (ANTONISSE, J, 1989) in combinatorial optimisation applications 

than the traditional use of binary encodings using only 1 and 0 values.  

The encoding for the subsystem is then ordered by the ordinal value of the 

integers. This reduces the size of the search space by removing solution 

duplicates with different encodings. For example, a subsystem with a con-

figuration of component 1 in parallel with component 2 and component 3 

could be encoded in the following 6 combinations: 123, 132, 213, 231, 312, 

321; all of which decode to the same solution.  

By ordering the encoding digits they all resolve to the same encoding: 123.  
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To make it easier to see the components being used in the encodings the 

empty slots value 0 always appear at the end of the ordered sequence; for 

example: 12300. 

In order to evaluate the solution described by the encoding it is necessary to 

configure the HiP-HOPS model with the encoding. The HiP-HOPS model for 

the fixed length encoding experiments consists of 14 subsystems in a series 

configuration. Each of the subsystems has either 3 or 4 alternative imple-

mentations (depending on the subsystems).  

When the model is configured, the encoding is split in to its separate alleles, 

one for each subsystem, and this part-encoding is used to configure the 

individual subsystems. 

The part-encoding is stripped of zeros so, for example, 12300 becomes 123. 

The remaining part-encoding now fully describes the subsystem with the 

number of digits giving the number of parallel components in the subsystem 

and the digits themselves identifying the implementation for each of the sub 

components.  

So to configure the subsystem the digits are counted. With our example, 

encoding 123 there are three digits so three components are generated in 

the subsystem.  

The inputs and outputs are connected to the corresponding input and output 

of the subsystem with the connection between the outputs having a logical 

AND to produce the parallel redundancy effect.  

Finally each of the components has its implementation set to the value of 

the corresponding digit from the encoding; in our example the first compo-

nent is set to implementation 1, the second to implementation 2, and the 

third to implementation 3. This example can be seen in Figure 19. 
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Figure 19 Example configuration of a single subsystem with the part-

encoding 12300. 

4.1.2 Tree encoding 

The fixed length encoding is easy to implement and its use has been well 

documented in many examples with Coit and Smith‟s use just being one. It 

does however have a drawback: its lack of flexibility when applied to arbi-

trary system hierarchies.  

Its demonstrated use with redundancy allocation problems has been for 

systems that are decomposed to just a single level and where the failure 

model is that of the reliability block diagram, restricting it to use with sys-

tems that can be represented in this way as series-parallel topologies. 

A tree-based encoding frees us from these restrictions, thus allowing the 

optimisation of models with both variable levels of hierarchy and variable 

3 

2 

1 
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topologies. The use of tree encodings, however, brings complications ensur-

ing the viability of encoding solutions that are generated via recombination. 

These will be discussed in section 4.2.2.2. The tree-based encoding pro-

posed here is similar to that described by Kumar et al. (2009).  

Creating a HiP-HOPS model for use with a tree encoding involves more effort 

than the simpler model for the fixed length encoding as the user must 

specify the alternative hierarchies. This however is not necessarily a problem 

as hierarchy is typically employed in design as means of managing large 

scale and complexity. An additional benefit is that, once hierarchical model-

ling has been done, one can then optimise these alternative hierarchies in 

addition to the alternative components to be used in those hierarchies. 

Figure 20 shows how alternative implementations of the subsystems in the 

benchmark system could be represented in a HiP-HOPS model for use with a 

tree encoding.  

 

Figure 20 Alternative hierarchies for a subsystem in the Fyffe et al. bench-

mark problem. 
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The first implementation of the top level subsystem contains just one com-

ponent. The second implementation contains two components connected 

with AND logic (not shown) to the output of the subsystem. The third im-

plementation contains 3 components and so on.  

Although in this example the hierarchy is simple in order to allow compari-

son to the benchmark problem, there is no reason why the alternative 

architectures could not be anything the designer chooses; different redun-

dancy architectures for example. This allows a great deal of flexibility in the 

system to be optimised. 

In addition to alternatives to the hierarchy being represented, it is still 

possible to optimise the choice of components in that hierarchy through the 

selection of alternative implementations of the leaf node components (shown 

in Figure 20 by an X). Figure 21 shows a tree encoding example that would 

configure a HiP-HOPS model to the equivalent of the fixed length encoding 

12300|44000|11200. 

  

Figure 21 Tree encoding example for a small three subsystem model that 

has the equivalent fixed length encoding 12300|44000|11200. 
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To illustrate this with an example we will use the equivalent encoding of the 

12300 fixed length encoding to configure a subsystem in a HiP-HOPS model.  

Figure 22 shows a tree encoding in the left side of the panel. Each node 

describes the implementation of a component or subsystem in the model. In 

order to configure the model the tree encoding is traversed in a depth first 

traversal, and when a node is encountered, its corresponding subsys-

tem/component has its implementation set to the value indicated by the 

encoding node. 

  

Figure 22 Example tree encoding shown on the left with the configured 

subsystem on the right. 

In the example the top encoding node is 3 so the implementation of the top 

level subsystem, which the node corresponds to, is set to implementation 3. 

3 

3 

2 

1 

3 

1 2 3 



116 

     

Implementation 3 of the subsystem has a sub-architecture that contains 3 

components connected by AND logic to the output of the subsystem.  

Next the sub nodes of the tree encoding are visited, setting the implementa-

tion of the subsystem‟s sub-components.  

This achieves the same as the equivalent fixed length encoding with value 

12300 and for this benchmark problem does not add anything. However, it 

should be seen how, as the tree encoding structure can work to any arbi-

trary depth, it allows unlimited flexibility in the kind of models it can 

represent and consequently the complexity of the models that can be opti-

mised. 

4.2 Fill child population 

For each of the generations of the GA it is necessary to generate a new 

population of child solutions to try to improve the general population. The 

mechanism for producing this child population is different during the initiali-

sation phase to that of a normal, subsequent, generation.  

Both procedures are described below and generate a child population that 

has a number of encodings specified by the child population limit variable. 

For example if the child population limit is set to 150, then 150 new encod-

ings are created each generation, as well as during initialisation. 

4.2.1 Random initialization of new population 

When the GA is being initialized the population of encodings is generated 

completely at random. The differences between randomly generating a fixed 

length and a tree encoding are described below. 
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4.2.1.1 Fixed length encoding 

In order to randomly generate a fixed length encoding for the redundancy 

allocation problem the HiP-HOPS model needs to provide two pieces of 

information.  

The first is the maximum number of components that are permitted in 

parallel for each subsystem as this determines the length of each allele (and 

combined with the number of alleles, the entire encoding length).  

The second is the number of alternative implementations there are for each 

component as this determines the range of values that can be used in the 

encoding digits. 

For the benchmark problem the maximum number of components permitted 

in parallel is 5 and the number of subsystems in series is 14. Therefore the 

length of the encoding string is 5 x 14 = 70 with five digits per subsystem 

allele. 

The subsystem alleles are generated by selecting an integer number to fill 

each of the slots in the allele. For each of the slots the number has a 50% 

chance of being non-zero, where zero denotes an empty slot. Where the 

number is non-zero, it is randomly selected in the range of 1 to the number 

of alternative implementations for the component.  

Once the allele has been filled, it is sorted in ascending order but with all the 

empty slots at the end of the allele as explained before. 

For an example, consider one subsystem where the maximum number of 

parallel components is 5 and the number of alternative implementations is 4. 

For the first of the five allele slots a virtual coin toss is made and the result 

is heads so the slot is set to zero.  
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For the second slot the result of the coin toss is tails so the slot is set to a 

number randomly chosen between 1 and 4, the number of alternative im-

plementations. In this case the result was 3.  

For the third slot the coin toss is tails again and the randomly selected 

implementation is 1. The last two slots are filled with zeros following two 

virtual coin tosses resulting in heads.  

This gives an allele with the slots filled as follows: 03100. This is then sorted 

giving the completely generated allele for that subsystem of 13000, two 

components in parallel with the implementations 1 and 3 respectively and 3 

empty slots. 

Finally, the alleles from all the subsystems are joined together to make the 

complete fixed length encoding. 

4.2.1.2 Tree encoding 

In some respects generating a tree encoding for a model is easier as you 

don‟t need to store and retrieve the maximum number of parallel compo-

nents; this information is inherent in the topology of the model and the 

alternative architectures. 

There is one node in the tree for each component/subsystem that can be 

optimised and the tree is constructed randomly in the following way. 

A depth first traversal of the model is performed, and where a subsystem is 

visited, a node is created with the fully-qualified name of the subsystem. 

Also a randomly selected implementation is chosen from the alternatives for 

that subsystem. 
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The implementation for that subsystem is then set according to the selection 

and the substructure of that subsystem is traversed. Any nodes created 

whilst in that substructure are added as child nodes to the encoding. 

For example, consider a single subsystem called Subsystem1 that has 5 

different implementations. One of the implementations has a substructure 

with just one component in it; the second has two subcomponents; the third 

three; and so on.  

In a depth first traversal an encoding node is created for this top level 

subsystem and its name is set to Subsystem1. A number between 1 and the 

number of alternative implementations is selected for that subsystem. In 

this case the number is 2 and this value is set in the encoding node and the 

implementation for the subsystem is set to implementation 2. 

Implementation 2 for this subsystem has two sub-components, named 

Component1 and Component2, each with 4 alternative implementations. The 

components are visited in turn creating two new encoding nodes called 

Subsystem1.Component1 and Subsystem1.Component2, the fully qualified 

names for the components.  

Their implementations are randomly selected as 3 and 1 and they are added 

as child nodes to the encoding node Subsystem1. As they have no substruc-

ture the traversal finishes resulting in the encoding tree shown in Figure 23. 

This encodes the same subsystem as the above example for the fixed length 

encoding. 
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Figure 23 Example randomly generated tree encoding for a single 

subsystem. 

4.2.2 Generate child population from main population 

During each normal generation of the GA (not the initialization phase de-

scribed above) the child population is not purely randomly generated, but 

rather through the action of three operations: selection, recombination and 

mutation. These are explained below. 

4.2.2.1 Selection algorithms 

The operators, mutation and recombination, directly alter the encoding 

representation of the potential solutions, but before they can be applied it is 

first necessary to select individuals in the population to act as the operands.  

It is necessary to guide the optimisation search and so the use of a purely 

random selection mechanism is not desirable. Evolutionary algorithms are 

modelled on biological evolution and the selection mechanisms mimic natu-

ral selection: survival of the fittest. In any given population the individuals 

best adapted to survive in the environment are most likely to survive long 

enough to reproduce, passing their successful genetic encoding to the next 

and subsequent generations.  

The selection mechanism in a GA uses the same concept; based on the 

evaluated fitness of the potential solution it represents, an encoding is more 

likely to be chosen for genetic operation if it has a higher fitness.  

Subsystem1 

Implementation 2 

Subsystem1.Component1 

Implementation 3 

Subsystem1.Component2 
Implementation 1 
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A key thing to note at this point is that the better (more fit) individuals are 

more likely, but not exclusively likely to be chosen. It is possible that the 

optimum solution is found as a variation of one of the worst (least fit) indi-

viduals in the population at the time. 

The three selection algorithms for the different GAs being compared are 

given below; they are for the Coit and Smith‟s penalty based GA (1996b), 

the PESA-II GA, and the NSGA-II algorithm. 

Penalty-based fitness 

In the selection algorithm used by Coit and Smith (1996b), selection is 

based on establishing a penalised fitness which is the defining characteristic 

of the approach. The approach is explained below. 

As stated before, most real world optimisation problems have multiple 

objectives. The general case of the RAP benchmark has three objectives: 

maximize reliability, minimise cost, and minimize weight. This presents a 

problem for the traditional GA as it is designed to optimise a single objec-

tive.  

There are several strategies for overcoming this restriction by combining the 

different objectives in to one hybrid objective, perhaps a weighted sum or 

product of the objectives. This is a complicated task because of difficulties in 

determining how much importance to assign each objective for the weight-

ings, or if the magnitude of the values of the objectives is hugely different 

should they be normalized to compensate.  

Another way of crafting multiple objectives as a single objective is to opti-

mise one of the objectives and define the remaining objectives as 

constraints that should not be violated. For example: maximize reliability 

whilst ensuring that the solutions do not cost more than a threshold value 

and do not weigh more than a corresponding weight threshold.  
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There are a number of methods for handling constraints. The so called death 

penalty removes infeasible (constraint violating) solutions from the popula-

tion. Another approach is to either ensure that the genetic operators always 

produce feasible solutions or applying repair functions to change infeasible 

solutions to feasible ones.  

The death penalty is too blunt a tool, however, as the most efficient route to 

a feasible optimum solution can often be through an infeasible region of the 

search space. Equally it is important to end up with a feasible solution so 

allowing unrestricted wanderings in the infeasible regions is also undesir-

able.  

Coit and Smith (1996a) describe a dynamic adaptive penalty scheme which 

applies a penalty for constraint violations that becomes increasingly strict as 

the generations of the GA increase.  

The formula for calculating the penalised fitness is shown below: 

 

It shows that the penalised fitness of a solution Fip is given by the reliability 

of the solution Ri less the penalty for constraints violations.  and  are 

the magnitude of the weight and cost constraint violations. For example, if 

the cost constraint is maximum 130 and the solution cost is 136 then  = 

6. 

The  portion of the equation ensures that if the solution with the 

highest reliability found so far (feasible or infeasible, given by ) is a 

feasible solution (  is the feasible solution with the highest reliability 

found so far) then no penalty will be applied. 

The k exponent is a severity parameter preset to 2 by Coit and Smith. 
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The last part of the equation is the near feasibility threshold (NFT). The NFT 

marks an infeasible area of the search space that is close to the feasible 

region. Solutions in this near feasible region have only a minor penalty 

applied whereas solutions that lie outside of this region are more heavily 

penalised. 

Below the NFT formula is given: 

 

 is given as an upper bound for the threshold and is 100 for the cost 

constraint and equal to a third of the weight constraint.  is a constant to 

ensure that the entire infeasible region is considered and is chosen to ensure 

that the NFT is not contracted too quickly by the generation parameter .  

is set to 0.04 for both cost and weight constraints by Coit and Smith. 

In summary: An NFT is defined whose size depends on the current genera-

tion of the GA. In the early stages of the search, the NFT is relatively large 

allowing free search of the infeasible region. As the GA progresses the size 

of the NFT decreases, with solutions outside of the NFT increasingly penal-

ised. Hence infeasible solutions considered fit at the beginning of the search 

will be considered relatively unfit at the end. 

Penalty-based fitness selection 

The first selection algorithm used in this work is the same as Coit and Smith 

used from Tate and Smith‟s 1994 paper.  

The individuals in the population are ranked by their (penalised) fitness and 

then a number is randomly chosen from the range 1 to √P, where P is the 

size of the population. The individual with the rank closest to the square of 

that number is selected. Tate and Smith (1994) used this selection method 
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as the degree of fitness bias could be dynamically altered by varying the 

power of the root of P, though this feature was not used by Coit and Smith 

(1996).  

In the example below is a population of 7 individuals. 

It is first ordered by the individuals‟ fitness. 

Then a random number is chosen in the range 1 to √7, in this example 

1.922, and then squared, giving 3.692. This value is rounded to give the 

index of the individual being selected, as highlighted below the individual 

with rank 4. 

 

Fitness 

12 

16 

27 

13 

11 

29 

9 

Rank Fitness 

1 9 

2 11 

3 12 

4 13 

5 16 

6 27 

7 29 

Rank Fitness 

1 9 

2 11 

3 12 

4 13 

5 16 

6 27 

7 29 
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Pareto-based selection 

The penalty based approach reduces the multiple objectives of the bench-

mark problem to a single objective that can be maximised. The general 

problem, however, is still a multiple objective one, and Pareto-based MOEAs 

are designed to consider all objectives simultaneously. 

It is desirable for the returned Pareto set to be an evenly spread set of 

solutions to covers the whole of the Pareto-optimal set. Thus it is important 

to minimize the crowding of solutions in particular areas of the search space 

by encouraging search in relatively less crowded regions of the frontier. 

Figure 24 shows a Pareto frontier with gaps representing areas of low crowd-

ing highlighted. Search should be directed in these regions as it represents 

an area of unexplored search space. Both of the Pareto-based selection 

algorithms used in this work, PESA-II and NSGA-II use the concept of 

crowding to select between individuals to perform genetic operations on. The 

differences in the way that the crowding is calculated are described for each 

of them below. 

 
Figure 24 Example of relative crowding on a Pareto frontier. 

Regions of low crowding 
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Pareto envelope-based selection (PESA-II) 

The Pareto envelope-based selection algorithm (CORNE, D W et al., 2001) 

creates a hypergrid of a specified size. This hypergrid divides up the normal-

ized solution space and all of the individuals then fall into one of the 

hyperboxes that make up the hypergrid. The number of individuals that 

populate a hyperbox gives the crowding density for that hyperbox. 

As the hypergrid divides up normalized solution space it is necessary to 

obtain a normalized value for each of the objectives. In order to minimize 

the overhead for such a step the maximum and minimum value for each 

objective in the population was maintained and the normalized values for 

the individuals in the population were only recalculated when the maximum 

or minimum value changed, invalidating the existing normals. The normal 

value for each objective was calculated according to the following formula: 

 

 

For example an individual with a raw cost of 535 in a population with a 

maximum cost of 1300 and minimum cost of 400 has the following normal-

ized cost: 

 

And the individual‟s raw unavailability is 0.01 in a population with unavail-

ability that ranges from 0.001 to 0.28 giving a normalized unavailability of: 
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The normalization calculation scales the objective values into a range be-

tween 0 and 1, which can then be scaled into the hypergrid dimensions by 

multiplying by the grid size and rounding the figure down to give a whole 

number. 

 

So for the hyperbox for the individual in the previous example, given a 

hypergrid size of 4, has the coordinates: 

 

 

Which rounded down to give a whole number gives the hyperbox coordinate 

(1,1). 

Figure 25 shows a solution space that has been divided into a hypergrid of 

size 4. The binary tournament selection method is used to select an individ-

ual. First two hyperboxes are randomly selected from the hypergrid. Then 

the hyperbox with the lowest crowding value is selected and the other 

ignored. For example if hyperbox A and hyperbox B are chosen from the 

example then hyperbox A would be selected as it has a crowding value of 2, 

which is less than hyperbox B‟s value of 4 and thus deemed to be in a less 

explored region of the search space. 

Once a hyperbox is selected, one individual from the hyperbox is randomly 

chosen as the operand. One disadvantage of using the hypergrid mechanism 

to establish crowding is that it requires an additional parameter for the 

algorithm to work, the hypergrid size, and the choice of that parameter 

seems non-trivial. The effect of altering the hypergrid size will be investi-

gated later. 
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Figure 25 Solution space divided by a hypergrid with size 4. 

In addition to using the hypergrid crowding value for selection a further step 

was added to allow the search to be focused inside a constrained area. 

PESA-II did not make use of constraints. 

Figure 26 shows how the use of a lower and upper bound to objective values 

can divide the search space into a feasible and infeasible region. Though it is 

desirable to focus the search on feasible solutions it is important to not be 

too strict when applying the constraints as the most efficient route to an 

optimum feasible solution can often be through an infeasible region of the 

search space. 

In order to add feasibility as a criterion during selection each individual‟s 

feasibility was calculated as a true or false value, feasible or infeasible. If 

any of the constraints in any of the objectives was violated then the individ-

ual was infeasible. 

A 

B 

C 
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Figure 26 Example showing a constrained search space with a feasible and 

infeasible region. 

As the crowding mechanism in PESA-II is region based and the feasibility is 

individual based, the order of the selection is tricked slightly. First the algo-

rithm selects two hyperboxes at random as before, but this time, as we want 

to select based on feasibility and then crowding, we skip the discard of one 

of the boxes and choose one individual from each hyperbox at random (as 

before). Then the feasibility of the individuals is compared and if one is 

feasible and the other is not then the feasible individual is chosen. Other-

wise, when the feasibility is equal (either both feasible or both infeasible) 

then the individual that is from the box with the lowest crowding is selected. 

If the crowding value is equal, then one is randomly chosen to break the tie. 

If no boundary constraints are included then the algorithm uses only hyper-

grid crowding to select individuals. 

 

 

Feasible region 
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Non-dominated Sorting (NSGA-II)  

Unlike PESA-II, which is a pure elitist algorithm allowing only undominated 

individuals, NSGA-II allows dominated solutions to remain in the population. 

The population is sorted into sub-populations based on its Pareto-

dominance.  

Conceptually, this is achieved by first determining the undominated solutions 

in the population and putting these into a sub-population. The remaining 

solutions, which are dominated by individuals in this first sub-population, are 

then separated again based on dominance amongst the remaining solutions; 

the previously undominated solutions are excluded from this sort. This is 

repeated until all of the solutions have been allocated to a sub population. 

This process provides the solutions with a dominance ranking determined by 

which sub-population it was allocated to.  

Figure 27 shows a population of undominated and dominated solutions 

divided into separate subpopulations based on their domination rank. Indi-

viduals in the first population are completely undominated, and they have a 

domination ranking of zero. Individuals in the second sub-population are 

dominated by only the individuals in the first population and have a domi-

nance ranking of one; and so on.  

This dominance ranking is the first criteria for selecting between two solu-

tions. However, if both solutions have the same level of dominance then an 

extra factor is required to choose between them; this is the crowding den-

sity. 

Since the solutions are already selected based on their dominance ranking, it 

is only necessary to determine the crowding density within each undomi-

nated sub-population. This is done by sorting the sub-population by each of 

the objective values in turn. So if, as in the RAP benchmark, the search 
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objectives are cost, weight, and reliability, each sub-population is sorted by 

cost, then its crowding density in the cost domain is calculated. This is 

repeated for the weight domain, and the reliability domain. 

 
Figure 27 Example showing multiple nondominated layers with different 

domination rank. 

The crowding density for each domain is given by the difference between the 

objective value in that domain of the previous and next individual in the 

sorted order. To ensure that individuals that exist at the edges of the Pareto 

frontier are preserved, the crowding density is set to infinity. For example, in 

the cost domain, given a individual cost sequence of 5, 9, 12, 15, 19 the 

individual that costs 12 has a crowding density of 6 (15-9). The individuals 

with costs 5 and 19 have crowding densities of infinity as they appear at the 

edge of the frontier. 

Rank 1 Rank 2 Rank 0 



132 

     

 
Figure 28 Example showing the crowding density for individual A. 

Figure 28 illustrates how the distance between the two closest individuals 

relates to the solutions space. 

The individuals crowding densities calculated for all domains are then 

summed to give the solution‟s crowding density. For example: 

 

We can now select between two individuals that have the same dominance 

ranking by choosing the individual that has the largest crowding value as 

this solution will be in a less crowded region of the Pareto frontier, indicating 

a region of search interest. 

In the penalty-based GA, a penalty function was used to roll the constrained 

objectives into a single fitness value for all three objectives. The constraints 

act to focus the search on particular areas of interest in the search space. In 

this purely multi-objective algorithm, however, each objective constraint is 

considered separately and a solution is considered either feasible or infeasi-

ble based on whether or not it violates any of the constraints. The simple 

distance x 

distance y 

A 

B 
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Boolean value of feasibility is established in the same way as the modified 

PESA-II algorithm described earlier, but it is more straightforward to include 

as all the selection mechanisms in NSGA-II are individual based and not 

region based. The feasibility criterion is then inserted between the domi-

nance ranking and the crowding density check so that two individuals can be 

differentiated first by their dominance ranking, then by feasibility, then by 

crowding distance.  

An individual A is better than individual B if: 

A has a lower dominance ranking than B  

OR 

They have equal dominance ranking  

AND  

A is feasible 

AND 

B is infeasible  

OR 

They have equal dominance  

AND  

they have equal feasibility  

AND  

A is less crowded than B 

This gives priority to the dominance ranking but favours the feasibility of the 

solution over its crowding value. 

In an update to their original description of NSGA-II (DEB, K et al., 2002) a 

similar method for handling objective constraints is described, except that 

the feasibility of the solution is given priority over the dominance ranking. In 

fact the feasibility is rolled into the definition of dominance in a new con-

strained-dominance.  
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Individual A will constrained-dominate individual B if: 

A is feasible  

AND 

B is unfeasible  

OR 

A is unfeasible  

AND 

B is unfeasible  

AND 

A has a smaller constraint violation than B  

OR 

A is feasible 

AND 

B is feasible  

AND  

A dominates B. 

This constrained-dominance is then used in sorting and separating the 

population into the sub-populations and the remainder of the algorithm is 

unchanged. 

Another difference is that the feasibility metric they describe is not a simplis-

tic Boolean value but a measure of the extent of the boundary violations. 

4.2.2.2 Genetic operators 

There are three operators in a GA that work to effect change in the popula-

tion; one is the selection mechanism that has been described already, and 

the other two are mutation and recombination. It is the emergent behaviour 

of the combination of these operators that generates the optimisation effect 

associated with evolutionary algorithms. 
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Mutation 

The purpose of the mutation operator is to randomly perturb the population 

to encourage diversity and discourage the GA from becoming stuck in local 

minima. 

Fixed length encoding 

The mutation operator used by (COIT, D W and Smith, A E, 1996b) is used 

for the experiments that use a fixed length encoding.  

Each digit in the encoding of the selected individual is considered in turn. 

With a mutation probability of 0.05 the digit is altered with an equal chance 

of either being changed to a zero, representing an empty slot, or to the 

value of any of the possible component alternatives for that subsystem. In 

the penalty based GA the current fittest individual in the population is never 

selected for mutation so as not to be changed and subsequently lose that 

information. The Pareto-based GAs do not have to do this as mutations are 

carried out on a copy of the selected individual. 

Consider as an example the encoding below. 

It has 5 digits resulting in 5 mutation tests. This is done by generating a 

random number between 0 and 1. If the random number is below the muta-

tion probability, 0.05, then the digit is mutated. In this example the second 

digit is mutated. A virtual coin flip is performed to determine if the new 

value will be 0, an empty slot, or one of the other component identifiers, 

each with equal probability. In the example the result is to choose one of the 

other component alternatives. As there are 4 possible component alterna-

tives, a random number between 1 and 4 is chosen and the mutated digit is 

1 1 2 3 0 
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changed to it. In this example the random digit is 4 and so the encoding 

string becomes: 

After any change has been made to an encoding, it is put in numerical order, 

with all 0s at the end of the encoding: 

 

Tree encoding 

For experiments using a tree encoding a mutation operator similar to that 

described in (KUMAR, R et al., 2009) is used. 

As an example, consider the tree encoding below, describing a subsystem 

with 2 sub components. This is implementation 2 of the subsystem and the 

subcomponents are implementation 1 and implementation 3 respectively.  

 

Figure 29 Example tree encoding 

A depth first traversal of the tree in made and the first time that each en-

coding node is encountered a 50-50 random coin flip is performed to 

determine whether that node is mutated. In the simplest case a leaf node is 

selected for mutation as in Figure 30. The new implementation is randomly 

1 4 2 3 0 

1 2 3 4 0 

2 Subsystem 

Sub-components 1 3 
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selected from the available alternatives; in the example the implementation 

of the subcomponent changes from 3 to 2. 

 

Figure 30 Example tree encoding has bottom level mutated 

If an encoding node is selected that is not a leaf node (has sub nodes), as in 

Figure 31, then the simple case does not apply because a change of imple-

mentation of the subsystem invalidates the component choices below. The 

change in subsystem may be between two entirely different architectures 

with incompatible component choices. Thus, when a non-leaf node is se-

lected for mutation, the sub-branch must be randomly generated as in the 

initialization phase of the algorithm. 

 

Figure 31 Example tree encoding has top level mutated 
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Recombination (Crossover) 

The recombination operator in a GA mimics biological sexual reproduction; it 

is a method to produce new potential solutions by mixing and combining the 

encodings of existing potential solutions. As the parents of this new child are 

selected with a bias towards the fitter individuals, it is more likely that the 

new genetic information will contain successful traits. Recombination acts to 

search an area of the search space that is local to known current good 

solutions and promotes convergence in the GA. 

Fixed length encoding 

 

Figure 32 Two parent fixed encodings produce child encoding through 

crossover 

Syswerda (1989) showed that in optimising combinatorial problems, such as 

this one, the use of uniform crossover is superior to traditional single cross-

over points. In uniform crossover the new child potential solution is created 

by considering each of the encoding digits from the parent solutions in turn 

and selecting one or either of them with equal probability to exist in the child 

solution.  

1 2 3 4 0 

1 1 3 4 0 

1 1 3 0 0 

parent 

parent 

child 
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This is illustrated in the following example (Figure 32) using two selected 

parent encodings. The child‟s encoding is comprised of a corresponding digit 

from one of the parents. As in this example there are often occasions when 

the corresponding digits from each of the parents are the same making the 

child‟s digit a certainty. This is in keeping with the idea that successful 

genetic information is more likely to be propagated through each generation.  

Although not necessary in this example the encoding is ordered after a 

change as with mutation. 

Tree encoding 

For experiments using a tree encoding a crossover operator similar to that 

described by Kumar et al. (2009) is used. 

In Figure 33 there are two parent encodings selected for producing a child 

from recombination. 

 
Figure 33 Example tree encodings 

The child is constructed by performing a simultaneous depth first traversal of 

the two parent trees. Where the encountered nodes are the same, the 
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child‟s new node is certain (as both parents carry the same gene). When the 

encountered nodes in the two parents differ, the child‟s new node is chosen 

at random with a 50% chance from either of the parents.  

In the example, Figure 34, the top node is the same in both parents (imple-

mentation 2) so it is chosen for the child node. The next node in the 

traversal of the parent encodings is also the same (implementation 1) and 

added to the child encoding tree. The leaf node of this branch is different in 

the two parents (implementation 1 and implementation 2 respectively) and 

so the child node is randomly chosen from between them; in the example 

implementation 2 is selected and added to the child encoding. 

Finally, the other branch in the parent encoding trees has a different vertex 

node (implementation 2 and implementation 3 respectively) so again one is 

randomly selected from the two; implementation 2 is selected in this exam-

ple. This node in the tree encoding has a sub branch. In order to maintain 

the validity of the node that is selected the entire sub-branch is also selected 

for the child encoding and the traversal of this branch is terminated. 

4.3 Merge populations 

In the penalty-based GA, the new individuals created in each generation are 

simply added to the main population but in the Pareto-based GAs, a new 

individual can only be added to the main population based on its dominance. 

In addition to this, a new individual may also dominate one or more indi-

viduals of the existing population and require that the existing individual is 

removed from the population. 
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Figure 34 Recombination of example tree encodings to produce new child 
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What happens exactly differs slightly between when there is only one non-

dominated population such as in the pure elitist PESA-II and when there are 

multiple populations of decreasing dominance as in standard NSGA-II. 

4.3.1 Multiple Pareto fronts 

With the standard NSGA-II algorithm, (DEB, K et al., 2002) describe a 

sophisticated indexing and cataloguing system in order to establish the 

dominance level of all the individuals in an efficient manner. This process, 

for merging the existing population with the new child population, starts with 

simply adding all the new individuals into the main population. 

The next stage is to establish which dominance level each individual has and 

this is achieved by doing a dominance comparison against every other 

individual in the joint population. If an individual is dominated then the 

count of individuals that dominate it is incremented and it is added to the list 

of dominated individuals in the other individuals. 

The dominance level is then established by processing the dominance infor-

mation that was collected in the previous step. 

All the individuals in the population that had a dominance count of zero were 

undominated by any individuals; they therefore are dominance level zero 

and are added to a list of individuals at the current dominance level (in this 

case level 0). For each of these individuals in the current dominance level 

list, the list of individuals that are dominated by them are processed, dec-

rementing the count of individuals that dominate it. If the dominance count 

reaches zero, then the individual is at the current dominance level and 

added to the list of individuals at this level. This new list of individuals at the 

current dominance level (now level 1) is processed in the same way and this 

sequence is repeated until the individuals in the current level have no list of 
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individuals that they dominate and thus all the individuals have been as-

signed a dominance level. 

This process is repeated each generation and requires that each individual is 

compared to every other individual.  

An alternative to this algorithm is described here that seeks to improve the 

efficiency of this section of the algorithm by significantly reducing the num-

ber of dominance comparisons that are required. A similar approach is given 

by Johnson et al. (2007) for their SNDL algorithm. 

The method improves on the NSGA-II method in two ways: maintaining an 

undominated population level store that is persistent (i.e. not recreated 

every generation), and by not checking every individual against every other 

individual. 

During the initialization period of the GA the undominated population has no 

individuals in it; only a population of random new untested individuals 

exists. This random population may contain individuals of varying dominance 

levels which must be added to the correct population.  

The first efficiency benefit comes from the fact that it is only necessary to 

make dominance comparisons against individuals that are known to be 

undominated. When you add the first individual to the undominated popula-

tion there is no need to check it as it must be undominated being the only 

individual in there. Subsequent individuals from the new population only 

need to be checked against the individuals that already have been added to 

the undominated population; thus the second individual only has to compare 

against the first. 

If during the comparison one individual is found to dominate the other 

(either the new individual or one of the individuals in the undominated 

population) then it is immediately removed and added to a list of rejects, 
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and further tests are not carried out at this level. If, after the new individual 

has been compared to all undominated individuals, it has not been rejected, 

then it is added to the undominated population. 

Once the new population is empty you are left with a population of undomi-

nated individuals (with dominance level 0) and a list of rejects. The above 

process is repeated with a new undominated population and the rejects from 

the previous undominated population. 

Each repeat, the rejects list gets smaller until eventually you are left with no 

rejects and a list of undominated populations each at an increasing level of 

dominance. 

The second improvement in efficiency comes from having this list of undo-

minated populations remain persistent from generation to generation. The 

only thing that affects the dominance of existing individuals is new individu-

als, therefore it is not necessary to retest existing individuals against all 

other existing individuals as the datastructure already holds that informa-

tion. 

The process of merging the new and existing populations is very much the 

same after the initialization period (when the undominated populations 

structure is created and populated). The only difference is that there is an 

existing set of undominated populations and the new individuals are first 

checked against the top level (level 0) and the rejects are then checked 

against level 1 and so on. 

It is believed that the use of persistent populations offers an improvement 

upon the „test everything‟ approach. Instead of re-evaluating the whole 

population each generation, including new individuals, it is only necessary to 

check the new individuals and existing individuals that are dominated by the 

additions process. 
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The efficiency of the two methods will be experimentally compared measur-

ing the differences in the number of dominance evaluations that are 

required. 

4.3.2 Pure elitist 

The PESA-II algorithm is pure-elitist: it only holds completely undominated 

individuals in its population. All dominated individuals are discarded.  

The standard NSGA-II algorithm, as explained above, holds multiple popula-

tions in addition to the completely undominated level 0 population. However, 

the differences between the performance of the algorithm in its standard 

form and if changed to be pure elitist is a matter of interest. 

In order to make NSGA-II pure elitist (and to provide the pure elitism in 

PESA-II), all that is required is to discard any dominated individuals when 

they are discovered and not maintain additional dominated populations. 

4.4 Crop population 

When the population size is limited, it is necessary to remove some individu-

als from the population to ensure that the population remains within limits 

after new individuals are added each generation. How the individuals are 

selected for this differs between the algorithms and these differences are 

discussed separately below. 

4.4.1 Pareto envelope selection (PESA-II) 

In PESA-II the same selection algorithm is used for cropping the population 

as for selecting the operands for the genetic operators. The only difference is 

that individuals in more crowded regions are chosen for removal as opposed 

to selecting uncrowded regions. 
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The two actions of removing individuals in crowded regions and encouraging 

new individuals in uncrowded regions encourages the algorithm to produce 

an evenly spread Pareto frontier which is the goal. 

Similarly, when objective constraints are applied, individuals that are infea-

sible are preferred for deletion over feasible individuals. 

4.4.2 Non-dominated sorting (NSGA-II) 

There are multiple populations of decreasing dominance levels in the NSGA-

II GA but not all levels are created equal. Most notably the completely 

undominated population at level zero is given precedence with each level 

beneath decreasing in order of dominance ranking. Each undominated 

population is sorted by its individuals‟ feasibility and then by their crowding 

density. The populations are then stacked one on top of the other in order of 

dominance ranking with the completely undominated population (rank zero) 

at the top. 

Counting down the individuals in the sorted population tower, the individuals 

that have a count below the population limit are kept and all the others are 

deleted. Any sub-populations that are emptied by this process are also 

deleted as shown in Figure 35. 
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Figure 35 Cropping the ranked populations in NSGA-II. 

4.5 Rinse and repeat 

After the population has been cropped to the population limit, the generation 

is complete and a new child population is created for the next generation. 

This process is repeated for a specified number of generations before the GA 

is terminated. 

4.6 Summary 

The state of the art was examined, and various algorithms were discussed 

and theoretically evaluated in terms of their suitability for the problem 

examined in this thesis. A number of algorithms were chosen and it was 

shown how they can be adapted to enable multi-objective optimisation of 

models expressed in HiP-HOPS.  

Overall, the contribution of the chapter is the definition of a method for 

genetic encoding and optimisation of HiP-HOPS models using a variety of 

algorithms and variants of those. In the next chapter, experiments using 
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those algorithms are reported and the effectiveness and efficiency of the 

various algorithms are compared. 
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5. Experimentation and Evaluation 

In this chapter a number of experiments are conducted and evaluated. In 

each case there are two (linked) goals: maximise the effectiveness of the 

algorithms by finding as many of the optimum solutions as possible, and 

maximise the efficiency off the algorithms by finding the optimums as 

quickly as possible. 

5.1 Can’t we just use trial and error? 

The optimum allocation of components and redundancy as it was defined in 

section 2.2.1 is not a trivial problem. In general the problem has been  

shown to be an NP-hard problem by Chern (1992). A particular formulation 

of the problem which has become a benchmark and forms one of the case 

studies in this thesis was calculated by Coit and Smith (1996b) to have 7.6 x 

1033 combinations making the solution search space very large and well 

beyond the realms of an exhaustive search. In order to show just how badly 

a random search performs an implementation was created that would ran-

domly generate a certain number of solutions. The best solutions for each of 

the 33 weight constraints would be kept.  

In their paper, Coit and Smith (1996b) use a penalty-based GA to solve the 

benchmark problem. This is considered in more detail in the next section but 

their method evaluates 15,840,000 solutions. Since the effort required to 

perform the evaluation is the major overhead in the process, this number of 

evaluations will be set as a limit for the approaches described in subsequent 

sections to allow for a direct comparison of results for a given effort. For this 

reason 15,840,000 is the number of random solutions that were generated 

and the results are given in Table 14. As expected, simply using a random 

approach of trial and error produces poor results, generating significantly 

worse than optimum solutions with the average MPI being -273%.  
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Table 14 - Best individuals after the random generation of 15,840,000 

individuals compared to the optimum results calculated by ISC method 

(2007).  

 

 

 

ISC 

(ONISHI, J et al., 

2007) 

Results of random search 

Weight Cost Reliability Weight Cost Maximum Reliability MPI 

191 130 0.98681 189 110 0.95321 -254.74% 

190 130 0.98642 189 110 0.95321 -244.43% 

189 130 0.98592 189 110 0.95321 -232.34% 

188 130 0.98538 187 112 0.95166 -230.60% 

187 130 0.98469 187 112 0.95166 -215.70% 

186 129 0.98418 184 106 0.94208 -266.06% 

185 130 0.98351 184 106 0.94208 -251.17% 

184 130 0.98299 184 106 0.94208 -240.62% 

183 129 0.98226 183 106 0.93227 -281.70% 

182 130 0.98152 181 102 0.92185 -322.85% 

181 129 0.98103 181 102 0.92185 -311.91% 

180 128 0.98029 180 99 0.91748 -318.68% 

179 126 0.97951 174 111 0.91361 -321.53% 

178 125 0.97840 174 111 0.91361 -299.97% 

177 126 0.97760 174 111 0.91361 -285.61% 

176 124 0.97669 174 111 0.91361 -270.63% 

175 125 0.97571 174 111 0.91361 -255.64% 

174 123 0.97493 174 111 0.91361 -244.55% 

173 122 0.97383 169 104 0.88231 -349.65% 

172 123 0.97303 169 104 0.88231 -336.31% 

171 122 0.97193 169 104 0.88231 -319.24% 

170 120 0.97076 169 104 0.88231 -302.48% 

169 121 0.96929 169 104 0.88231 -283.23% 

168 119 0.96813 166 106 0.88206 -270.00% 

167 118 0.96634 166 106 0.88206 -250.32% 

166 116 0.96504 166 106 0.88206 -237.36% 

165 117 0.96371 165 88 0.86943 -259.83% 

164 115 0.96242 163 92 0.86292 -264.78% 

163 114 0.96064 163 92 0.86292 -248.28% 

162 115 0.95919 162 98 0.86094 -240.74% 

161 113 0.95804 161 86 0.85524 -244.95% 

160 112 0.95571 160 94 0.82981 -284.30% 

159 110 0.95457 159 102 0.82651 -281.84% 

 Mean MPI -273.40% 
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5.2 Penalty based GA 

The penalty based GA is included here for comparison as an existing heuris-

tic method that produced moderately good solutions to the benchmark RAP. 

It demonstrated that HiP-HOPS could reasonably be used to provide the 

evaluation for the fitness function of the GA. 

The following results were gathered from the experimental procedure de-

scribed earlier. A feasible solution was found for each of the allowable weight 

constraints and the fixed cost constraint was also met for all tests.  

Table 15 shows the reliability and cost of each of the obtained solutions for 

each of the weight constraints.  

The solutions that equalled the optimum solution are highlighted in grey and 

the HiP-HOPS penalty GA used in this experiment found the optimum solu-

tion in 15 cases where Coit and Smith‟s original penalty GA from (1996b) 

only found the optimal solution in 8 cases. The HiP-HOPS penalty GA also 

found superior solutions to the original in 18 cases and equalling it in a 

further 10. The best solution found by the HiP-HOPS penalty GA was worse 

than the original penalty GA in 5 cases.  

It would be nice to imagine that the use of HiP-HOPS as the fitness evaluator 

caused the observed improvements in the solutions; however, the reliability 

value for a given encoding is identical when calculated by HiP-HOPS or using 

the RBD method employed by the other researchers and thus offers no 

explanation.  

It is possible that, given the stochastic nature of GAs, the improvements 

were the result of chance but this seems unlikely as the HiP-HOPS penalty 

GA found equal or superior solutions to the original penalty GA in nearly all 

cases. 
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Table 15 - Best individuals after 10 runs of HiP-HOPS penalty based GA 

with 1200 generations, population size 40, for each of the 33 weight limits 

compared to optimum results calculated by ISC method (2007). Solutions 

matching optimum highlighted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HiP-HOPS penalty based GA 

Weight Cost 
Maximum 

Reliability 

Mean 

Reliability 

Minimum 

Reliability 

Standard 

Deviation 
MPI 

191 130 0.98592 0.98552 0.98422 0.000625 -6.76% 

190 130 0.98543 0.98499 0.98454 0.000414 -7.30% 

189 129 0.98558 0.98426 0.98203 0.001154 -2.46% 

188 129 0.98518 0.98451 0.98366 0.000427 -1.35% 

187 130 0.98469 0.98361 0.98166 0.000870 0.00% 

186 129 0.98332 0.98252 0.98079 0.001038 -5.39% 

185 130 0.98351 0.98231 0.98105 0.000914 0.00% 

184 130 0.98242 0.98169 0.97896 0.001086 -3.39% 

183 130 0.98188 0.98098 0.97980 0.000814 -2.14% 

182 130 0.98124 0.98003 0.97813 0.001117 -1.52% 

181 129 0.98045 0.97968 0.97810 0.000972 -3.04% 

180 130 0.98001 0.97891 0.97743 0.000868 -1.42% 

179 129 0.97927 0.97805 0.97674 0.000980 -1.13% 

178 128 0.97817 0.97739 0.97635 0.000805 -1.07% 

177 126 0.97760 0.97654 0.97540 0.000782 0.00% 

176 125 0.97649 0.97586 0.97454 0.000817 -0.84% 

175 126 0.97536 0.97480 0.97389 0.000679 -1.44% 

174 124 0.97479 0.97347 0.97291 0.001042 -0.55% 

173 125 0.97381 0.97276 0.97076 0.001047 -0.08% 

172 123 0.97303 0.97170 0.97076 0.000884 0.00% 

171 122 0.97193 0.97137 0.96988 0.000893 0.00% 

170 120 0.97076 0.97027 0.96953 0.000636 0.00% 

169 121 0.96929 0.96852 0.96836 0.000338 0.00% 

168 119 0.96813 0.96733 0.96661 0.000692 0.00% 

167 118 0.96634 0.96584 0.96573 0.000752 0.00% 

166 116 0.96504 0.96389 0.96360 0.000509 0.00% 

165 117 0.96371 0.96299 0.96231 0.000567 0.00% 

164 115 0.96242 0.96128 0.96053 0.000478 0.00% 

163 114 0.96064 0.96010 0.96005 0.000189 0.00% 

162 115 0.95919 0.95816 0.95761 0.000450 0.00% 

161 113 0.95804 0.95683 0.95654 0.000437 0.00% 

160 114 0.95567 0.95549 0.95422 0.000456 -0.10% 

159 110 0.95433 0.95355 0.95324 0.000303 -0.53% 

 Mean MPI -1.23% 
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The standard deviation over each of the 10 test runs for each of the 33 

weight constraints shows a slight increase in standard deviation in the HiP-

HOPS penalty GA when compared to the original penalty GA with the stan-

dard deviation being lower in just 8 cases. The mean standard deviation 

over all 33 test cases was 0.000692 and 0.000445 respectively for the HiP-

HOPS penalty GA and the original penalty GA; not a very large difference. 

Another possible source of difference between the two implementations is 

the pseudo-random number generator (PRNG) used to provide the random 

elements of the algorithm. The HiP-HOPS penalty GA uses the GALib (WALL, 

M, 1999) implementation of the ran2 algorithm (PRESS, W H et al., 1992). 

This gives robust random numbers, certainly more so than the stock random 

number generators in the C libraries.  

The PRNG used by Coit and Smith (1996b) is unspecified, making direct 

comparison impossible. A study into the effect of choice of PRNGs on the 

performance of a GA showed that the use of a particular PRNG in combina-

tion with particular use cases of GAs can affect performance significantly 

(MEYSENBURG, M M and Foster, J A, 1999).  

This is particularly true in the initializing of the population, with the effect on 

other operations being negligible. In a later work this is confirmed but it is 

concluded that the good fit of a particular PRNG with a particular GA is a 

lucky and unpredictable outcome and that the general advice would be to 

use the best PRNG available in order to avoid the skewing of results in this 

way (CANTÚ-PAZ, Erick, 2002).  

In both cases it seems that the quality of the random numbers being gener-

ated does not have a significant effect on the performance; high quality 

random numbers do not produce significantly better performing GAs than 

lower quality random numbers.  
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A difference in the choice of PRNG between HiP-HOPS penalty GA and the 

original penalty GA could be the cause of the differences in results, but again 

without knowing the PRNG used for the latter it is impossible to be sure.  

Certainly the other minor differences between the two GA implementations 

(the use of 0 instead of m+1 to denote empty component slots and the non-

ranking of components by reliability before assigning encoding IDs) seem to 

be superficial with regard to this and would have no bearing.  

Another thing that can be seen in the results is that generally better solu-

tions are found for the test cases where the weight constraint is tighter. This 

is explained by Coit and Smith (1996b) as being a result of the increased 

severity of the penalty function improving the performance of the GA.  

What is worth noting is that the differences between the calculated optimum 

solutions and the near-optimal (optimality not guaranteed) solutions of the 

GA are small both in the cases of the reliability achieved and the configura-

tion of components required to achieve it.  

This is good as it supports the premise that while the GA cannot guarantee 

optimality it can achieve good (enough) solutions to complex problems 

whilst retaining generality.  

The main purpose of this experiment though was to establish whether the 

simplistic RBD failure model for calculating reliability could be feasibly re-

placed by an analysis tool such as HiP-HOPS that could potentially allow 

more complex systems to be optimised.  

As explained previously the reliability value calculated by HiP-HOPS was 

exactly the same as the reliability value calculated using the RBD failure 

model; this issue of whether the results obtained are accurate is therefore 

satisfied. The remaining question is with regard to the performance of the 

calculations. This is particularly relevant as the GAs optimise potential 
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solutions over many iterations, so if the calculation takes too long the cumu-

lative time cost can become too expensive to be realistically used.  

Although Coit and Smith (1996b) did not include timings for their GA runs, a 

version of the implementation created for this thesis was made that used the 

RBD failure model calculation mechanism as with their original work.  

On average, using the RBD failure model, it took approximately 20 seconds 

for each run of the GA; when using HiP-HOPS to provide the evaluation 

calculation that time went up to 1 hour.  

Clearly there is a significant overhead that accompanies the use of a more 

complex failure modelling tool. However, there are some things to bear in 

mind when considering these times. Firstly, while 1 hour is without doubt 

considerably longer than 20 seconds it is not an unreasonable period of time 

to wait for an optimisation to complete. Even if it was longer, in any given 

day there are at least approximately 16 hours of „idle‟ time, out of office 

hours, where such an optimisation could be run without impacting on work 

time.  

Furthermore there are significant portions of the GA that would lend them-

selves to parallelisation. In each generation, 18 new potential solutions are 

created through recombination. These occur independently of one another 

and so could potentially be performed in parallel.  

Equally the 22 mutations that occur every generation could be achieved in 

parallel. Given 1200 generations with operations occurring in series, that 

makes for 18 x 1200 = 21600 recombinations and 22 x 1200 = 26400 

mutations. That is a combined total of 21600 + 26400 = 48000 genetic 

operations, each of which requires a (high overhead) HiP-HOPS analysis.  

If performed in parallel, however, the same number of operations are re-

quired in total, but many can be performed simultaneously; specifically, all 
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the recombinations and all the mutations in each generation. That would 

result in the equivalent of 1 recombination time period and 1 mutation time 

period per generation: 1 x 1200 = 1200 for recombination and 1 x 1200 = 

1200 mutations over the course of the GA. This totals 1200 + 1200 = 2400 

genetic operator time periods compared to the previous 48000.  

This is 20 times less time making 1 hour into just 3 minutes. This is a crude 

approximation that doesn‟t take into account any of the overheads that 

accompany parallelization, but it does illustrate the potential for improving 

the performance of the algorithm.  

It seems clear that the use of a complex failure model and accompanying 

analysis tools in an optimisation application is feasible and whilst the test 

example does not have any complex features that would warrant such a use, 

it does prove the concept and encourage further investigation. 

5.3 Pareto based GAs 

Generally we are more interested in the true multi-objective GAs, PESA-II 

and NSGA-II. Each of these search algorithms has a number of different 

parameters that can be altered to modify the performance of the search and 

the following experiments will show the effect of changes to these parame-

ters and their importance. The parameters are: main population limit, child 

population limit, constraints use, archive use, encoding type, pure elitism, 

and - for PESA-II only - the hypergrid size. Also to be investigated is 

whether taking the best solution from 10 short runs (like with the Coit and 

Smith penalty based GA) or 1 long run produces better solutions. A compari-

son of the standard NSGA-II dominance algorithm and the persistent 

population store will also be conducted and discussed. Finally, we shall 

determine if the size of the main population is an important factor, and if so, 
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how we can determine an effective limit without inefficient experimental trial 

and error. 

To allow accurate comparisons to be made, the number of solutions evalu-

ated is always kept the same and is set to 15,840,000 evaluations (the 

number of evaluations used by Coit and Smith in their penalty-based GA). 

Therefore if the number of new individuals created each generation is 150 

then the number of generations the algorithm is to run for is 15840000 / 

150 = 105600 generations for one long run or 105600 / 10 = 10560 genera-

tions for 10 repeated runs. If 1500 individuals are created in each 

generation, there are 15840000 / 1500 = 10560 generations for one long 

run or 10560 / 10 = 1056 generations for 10 repeated runs. 

5.3.1 Main Population Limit 

Population size is important as it applies pressure to the search. If the 

population size is too small then good solutions can become extinct from the 

population (or never be evolved) and if the population is too large then there 

is no pressure on the population to adapt better solutions. To illustrate this 

consider a biological example: in a population of herbivores where there is 

no predation a shortage of food limits the population and forces the popula-

tion to adapt; perhaps to different food sources or more efficient use of 

existing sources. If however the food constraint is removed, effectively 

unlimiting the population then there is no pressure to adapt or improve. A 

creature would not have to be efficient if there was no competition for 

resources. Poorly adapted individuals could happily coexist with better 

individuals as in effect there would be no such thing as poorly adapted, just 

differently adapted. 

This will be shown empirically by running the algorithms with different 

population limits to compare the performance. The populations will be 

limited to 150 individuals, 1500 individuals, and unlimited, with the experi-
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ments repeated to include all other property combinations (encoding, child 

population, archive, elitism, focussing). 

Table 16 comparison of MPI for different main population limits for all 

combinations of other properties. 

Table 16 shows that when the population is unlimited the average MPI is 

better than the other population limits (smaller negative MPI). However the 

results are badly biased by the experimental runs where the algorithm was 

unfocussed to the constraints. The performance of the algorithm when 

unfocussed was, in effect, so bad with such large negative MPIs that it 

unbalanced the results. A more accurate result was achieved by excluding 

the unfocussed results thus giving the results in Table 17. 

Table 17 comparison of MPI for different main population limits for all 

combinations of other properties but with the unfocussed experiments 

excluded. 

This shows that setting the population too small has a disastrous effect on 

the performance of the algorithm and that limiting the population to a 

reasonable size (in this case 1500) results in better performance than when 

the population is not limited at all. 

5.3.2 Child population limit 

The size of the new child population created in each generation is different in 

the described methods of the two Pareto based GAs. In PESA-II the child 

 
Population limit 

150 1500 unlimited 

Min -307.124% -32.983% -4.855% 

Mean -42.120% -5.608% -0.940% 

Max -10.377% 0.000% 0.000% 

 
Population limit 

150 1500 unlimited 

Min -307.124% -0.761% -0.791% 

Mean -48.181% -0.121% -0.143% 

Max -12.277% 0.000% 0.000% 
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population is small (about 10% of the main population) and in NSGA-II the 

child population limit is equal to the main population limit. 

The creation of new individuals in the child population is one of the computa-

tionally expensive portions of the algorithm as it requires the evaluation of 

fitness for that individual. In order to make a fair comparison of computa-

tional effort, it is necessary to alter the number of generations the algorithm 

is run for along with the size of the child population. This way, the number 

of individual evaluations remains the same for all experiments. The child 

population limits being tested are 150 and 1500. Obviously the child popula-

tion cannot be unlimited as this would cause an infinite loop. The 

experiments where the child population size is 150 will be run for 10 times 

as many generations to compensate for the 10 times reduction in evalua-

tions. 

Table 18 shows the results from these experiments though as before some 

of the experimental runs were excluded from the results data as they were 

so poorly performing that their MPI values unfairly skewed the results; the 

unfocused algorithms and experiments where the main population was 

limited to 150 were excluded. 

Table 18 Comparison of mean MPIs for different child population limits. The 

experiments where the algorithm is not focussed to the constraints or with 

a main population limit of 150 are excluded to remove their unfair bias 

from the data. 

The results show that having a smaller child population limit (with corre-

sponding larger number of generations) produces a higher performing 

algorithm. An explanation for this is that individuals are selected from the 

current population to become parents for the new solutions each generation. 

 
Child population limit 

150 1500 

Min -0.737% -0.791% 

Mean -0.101% -0.163% 

Max 0.000% 0.000% 
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In theory the GA is designed to converge on the optimum solutions with 

each generation being better than the last. So selecting a smaller number of 

parents from each generation (but overall selecting the same number of 

parents) means that more parents are selected from later (theoretically 

better) generations 

5.3.3 Solution Archiving 

As explained above, the population size can have a significant effect on the 

performance of the algorithm; if the population size is too small then good 

solutions can be lost from the population. A way of ensuring that optimal 

solutions are not lost is to maintain a separate archive of undominated 

solutions. This ensures that all undominated solutions encountered at any 

point during the search will be kept. The downside to this approach is that it 

adds an overhead to the algorithm as separate dominance checks must be 

made on the archive population as well as the standard population. 

Each experiment will output the archived solution set in addition to the 

standard final population to compare the usefulness of including an archive. 

Table 19 shows that when you include an archive population the algorithm 

produces much better results, or more accurately, the good solutions that 

are discovered by the algorithm are not lost as they are when the archive 

population is not present.  

Table 19 Comparison of mean MPIs when archive is used and when no 

archive is used.  

 Archive No Archive 

Min -39.400% -307.124% 

Mean -5.221% -16.866% 

Max 0.000% 0.000% 
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5.3.4 Using constraints 

Where the specification of constraints is possible, it seems reasonable that 

focusing the search into the region of feasible solutions will make for a more 

efficient search. Exactly how much of a difference does it make to the qual-

ity of solutions? By comparing the results of the experiments when the 

algorithm is constrained, using the RAP weight constraints of 159-191 and 

the cost constraint of maximum 130, and when it is unconstrained, we can 

establish the effectiveness of search focus. 

As previously, some of the settings for the algorithm result in a performance 

that is so bad that it unfairly weights the results. In this case setting the 

main population limit to 150 had this effect so the experiments that had this 

setting were excluded from the results of this experiment shown in Table 20. 

What is shown is that, understandably, the performance of the algorithm 

within a certain range is significantly better when the algorithm is actually 

focused to search within that range.  

Where knowledge of the search space is not available and so reasonable 

constraints to focus the algorithm are not known, it seems reasonable to 

allow the algorithm to run for a set period with no population limit and no 

constraints. The resultant solution set can then be visualised by the user, as 

in Figure 36, and a reasonable set of constraints applied. The algorithm 

could then be continued with the focus applied to the search to maximise 

the exploration of the area of search space of particular interest to the user. 
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Figure 36 Constraints could be added following a preliminary run of the GA 

(unlimited and unfocused) to provide a visualisation of the search space to 

the user. 

Table 20 Comparison of mean MPIs when algorithm is focused between 

constraints and when it is unfocused.  

 Focused Unfocused 

Min -0.791% -32.983% 

Mean -0.132% -6.417% 

Max 0.000% -0.030% 

Weight constraints 
added by user as-
sisted by view of 

unlimited unfocused 
results 
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5.3.5 Encoding types 

The penalty-based GA made use of the fixed length. Using a tree encoding 

allows much more complex structures to be described for the error model. 

However, this raises the question of whether the use of the different encod-

ing structures make any difference to the effectiveness of the algorithm. 

Both encoding types are compared to find out with the results in Table 21. 

As with previous experiments the unfocussed algorithms and the algorithms 

with the population limited to 150 were excluded from these results due to 

the unfair bias they caused. 

Table 21 Comparison of mean MPIs when algorithm using a tree encoding 

and using a fixed length string encoding.  

The fixed length encoding generally performs better on this benchmark 

problem though the difference is not large. There are a couple of plausible 

explanations for this.  

Firstly, the tree encoding is more susceptible to catastrophic mutation during 

the late generations of the GA. This happens when one of the upper level 

nodes of the tree gets mutated, forcing the entire sub tree to be randomly 

re-generated. This can make fine tuning of the lower level nodes by the 

algorithm more difficult. 

A possible solution to this, that has not been tested and is a subject for 

future work, is to have a variable mutation rate. Nodes lower in the tree 

encoding are subject to a higher mutation rate than nodes at the higher 

levels. This means that the fine tuning of configurations defined by the 

higher level nodes can be achieved with a reduced risk of a mutation causing 

the entire sub tree to be reset. A further variation to this could include 

 Fixed encoding Tree encoding 

Min -0.791% -0.761% 

Mean -0.100% -0.164% 

Max 0.000% 0.000% 



164 

     

generation age as a factor for varying the mutation rate, where mutation 

rate at higher levels of the tree encoding diminishes at higher generation 

levels. 

A second plausible explanation is that for this benchmark problem the tree 

conceptually consists of two levels, one to select the number of components 

in parallel, and the lower level to select the specific component used in each 

slot of the redundancy. The fixed length string encoding is sorted to ensure 

that for each allele the bits of the string are always in the same order, 

effectively reducing the search space by ensuring that there was a one-to-

one relationship between a solution and its encoding. For example, without 

sorting, an encoding 4213 produces the same solution as 3214, but if they 

are sorted by their bits the encoding becomes 1234 in both cases. This can 

be done with the fixed encoding because the redundancy configuration of 

the components always equates to the same series parallel arrangement. 

This is not possible to do with tree encoding because, as illustrated in Figure 

37, two nodes at the same tree level may not relate to an equivalent com-

ponent, even if they have the same implementation number. 

 

Figure 37 Shows that two nodes at a particular tree level that have the 

same implementation number do not necessarily relate to the same compo-

nent. 

≠ 

3 

1 3 1 
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Whilst it may be possible to hard-code such equivalent functionality as the 

fixed length sort into the tree encoding for the experiments, there isn‟t a 

straight forward solution to achieve this and it unnecessarily constrains the 

general case. 

5.3.6 Pure elitism 

PESA-II uses a pure elitist strategy where only the undominated solutions 

are kept. NSGA-II also includes dominated solutions in separate subpopula-

tions of increasingly dominated individuals. Does the effectiveness of the 

NSGA-II algorithm change if it uses a pure elitist strategy too? The multiple 

subpopulations of NSGA-II are compared to using NSGA-II with only one 

pure elitist population. As before, the poorly performing unfocused algorithm 

and population limit set to 150 were excluded from the results to avoid 

unfair results bias. 

As shown in Table 22 adopting a pure elitist strategy, where only undomi-

nated individuals are kept, results in an improvement over the multiple 

levels of dominance of the standard NSGA-II algorithm.  

Table 22 Comparison of mean MPIs when algorithm using a pure elitism as 

opposed to the multiple dominance level populations.  

5.3.7 Hypergrid size 

PESA-II uses a hypergrid to establish the crowding metric for the algorithms 

selection mechanism. This adds an extra parameter, the hypergrid size, to 

those needing to be specified by the user. The algorithm will be tested at 

different hypergrid sizes starting at 32, as used in the PESA-II paper, and 

 Pure elitist Multiple dominance levels 

Min -0.761% -0.791% 

Mean -0.106% -0.159% 

Max 0.000% 0.000% 
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doubling it to 64, 128, 256, until 131072 to see what effect the hypergrid 

dimensions have on the algorithm. 

As good settings for the other parameters had been determined experimen-

tally from the NSGA-II experiments, these were used here:  

 Child population size – 150. 

 Main population size – 1500. 

 Pure-elitist. (PESA-II is anyway) 

 Focused within constraints. 

 Fixed length encoding. 

 Include archive population of undominated feasible solutions. 

The result of this experiment can be found in Table 23 and Figure 38. 

Table 23 Comparison of the effects of hypergrid size. 

It is clear from the results that choosing the correct hypergrid size for the 

PESA-II algorithm is very important. In this set of experiments the begin-

ning of the plateau in the graph occurs at a hypergrid size of 4096. 

There remains a problem, however, that there doesn‟t appear to be a sys-

tematic (or intuitive) way of determining a good hypergrid size. In fact even 

Hypergrid 

size 

Mean MPI over 33 weight 

constraints 

Number of optimums 

found 

32 -12.937% 0.000% 

64 -16.212% 0.000% 

128 -14.052% 0.000% 

256 -16.016% 0.000% 

512 -9.623% 0.000% 

1024 -6.716% 0.000% 

2048 -2.948% 6.061% 

4096 -0.441% 21.212% 

8192 -0.298% 21.212% 

16384 -0.199% 36.364% 

32768 -0.155% 63.636% 

65536 -0.203% 30.303% 

131072 -0.139% 57.576% 
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when the hypergrid size was set to a „good‟ value it still performed signifi-

cantly worse than the NSGA-II algorithm, which does not require the user to 

be lucky in their choice of hypergrid size. 

Therefore further investigation of PESA-II was discontinued in favour of the 

NSGA-II variant algorithm. 

 

 

Figure 38 Chart showing effect of hypergrid size. 

5.3.8 Best of ten, or one long run? 

The penalty based GA described by Coit and Smith (1996b) conducts 10 

runs of the algorithm and then selects the best solution from the ten runs. 

This is done to minimize the effect of the random initial population. 
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The penalty based GA is strongly convergent with each run often converging 

to a single solution and the makeup of the initial population is a strong 

factor influencing the point of convergence. In the multi-objective algo-

rithms, initial make up does not have such a strong an effect and so it may 

be possible that improved results can be obtained by running the algorithm 

once for ten times as long, rather than ten times for a smaller number of 

generations.  

This was tested by using the previously found best settings: 

 Child population size – 150. 

 Main population size – 1500. 

 Pure-elitist. 

 Focused within constraints. 

 Fixed length encoding. 

 Include archive population of undominated feasible solutions. 

The number of generations was set to 105600 for each of the „single long 

runs‟ and 10560 for each of the „10 short runs‟. In order to establish the 

consistency of results the „single long run‟ was repeated 10 times and the 

‟10 short runs‟ were repeated 10 times making 100 runs in total. The results 

are shown in Table 24 with the percentage of runs that the optimum was 

found for each weight constraint. 

What the results show is that the algorithm performed significantly better 

when allowed to run for longer finding 100% of the optimums for 32 of the 

weight constraints, and 70% for the weight constraint 182. This is compared 

to the very variable results from doing short runs, most significant of which 

is the low 8% discovery of the 182 weight optimum. On average the long 

run found the optimum 99.091% outperforming the short runs‟ 93.545%.  
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Table 24 The percentage of experimental runs that found the optimum 

solution for 100 short runs compared with 10 long runs. 

Despite this variation the two actually have similar success rates at finding 

the optimums because when using the short runs strategy, the best solution 

found after ten runs is chosen, so that success rate more than or equal to 

10% would result in a successful optimum discovery over the ten runs. In 

Weight short runs long runs 

191 93.000% 100.000% 

190 99.000% 100.000% 

189 100.000% 100.000% 

188 99.000% 100.000% 

187 99.000% 100.000% 

186 97.000% 100.000% 

185 85.000% 100.000% 

184 99.000% 100.000% 

183 98.000% 100.000% 

182 8.000% 70.000% 

181 97.000% 100.000% 

180 99.000% 100.000% 

179 100.000% 100.000% 

178 99.000% 100.000% 

177 98.000% 100.000% 

176 100.000% 100.000% 

175 81.000% 100.000% 

174 100.000% 100.000% 

173 100.000% 100.000% 

172 100.000% 100.000% 

171 98.000% 100.000% 

170 100.000% 100.000% 

169 99.000% 100.000% 

168 100.000% 100.000% 

167 100.000% 100.000% 

166 100.000% 100.000% 

165 97.000% 100.000% 

164 100.000% 100.000% 

163 99.000% 100.000% 

162 71.000% 100.000% 

161 100.000% 100.000% 

160 73.000% 100.000% 

159 99.000% 100.000% 

Min 8.000% 70.000% 

Mean 93.545% 99.091% 

Max 100.000% 100.000% 
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contrast the long run is only performed once, so the optimum must have a 

100% discovery rate to be successful. What this translates to in the results 

(as seen in Table 24) is that both 10 short runs and 1 long run find the 

optimums for 32 out of the 33 weight constraints, with both not finding the 

182 global optimum. 

Though they perform similarly in discovering the optimums, there is another 

performance factor in which they are not equal. This is the percentage of the 

total number of generations that were required to find the optimums. In 

Table 25 it can be seen that the number of generations for the long run can 

on average be reduced by nearly 95% whereas the shorter runs would only 

allow an average saving of 58%. 

In reality, making direct use of this property is difficult as the GA is not 

guaranteed to find optimum solutions and the convergence of multi-

objective algorithms is difficult to ascertain. It is therefore not possible to 

establish the best number of generations prior to performing the algorithm. 

However, given a number of generations, it seems reasonable that you could 

have a greater expectation of better performance from the single longer run 

than from multiple shorter runs. 

 

 

 

 

 

 



171 

     

Table 25 The mean percentage of total number of generations that were 

required to find the optimum solutions, for 100 short runs compared with 

10 long runs. 

5.3.9 How to choose population limit 

We established through experimentation that the size limit of the population 

makes a big difference to the solutions found by the GA. It can be set too 

small, causing the algorithm to thrash about (never finding good solutions), 

Weight short runs long runs 

191 46.135% 6.229% 

190 40.964% 5.247% 

189 33.975% 3.155% 

188 33.858% 3.118% 

187 37.331% 4.038% 

186 46.608% 4.614% 

185 41.710% 8.027% 

184 46.742% 4.373% 

183 46.896% 5.465% 

182 61.824% 41.057% 

181 47.335% 5.299% 

180 45.832% 4.941% 

179 33.443% 3.337% 

178 38.115% 3.958% 

177 42.177% 4.332% 

176 39.758% 4.038% 

175 50.192% 6.759% 

174 34.675% 3.390% 

173 38.425% 3.674% 

172 40.833% 4.169% 

171 40.946% 3.808% 

170 36.564% 3.595% 

169 42.820% 4.182% 

168 37.249% 3.822% 

167 43.277% 3.825% 

166 38.437% 3.684% 

165 41.880% 3.914% 

164 38.355% 3.486% 

163 41.167% 4.123% 

162 50.099% 8.358% 

161 40.282% 3.773% 

160 52.010% 8.807% 

159 43.254% 3.949% 

Min 33.443% 3.118% 

Mean 42.217% 5.714% 

Max 61.824% 41.057% 
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or too large, never putting sufficient selective pressure on the population to 

converge. Only setting the limit „just right‟ produces the best solutions. But 

how does one determine a good population limit without performing expen-

sive experimental trial and error?  

A proposed solution to this problem is to set the population to unlimited for 

10% of the total generations run of the GA. Once it has reached 10% the 

population limit should be set to the size of the archive population of feasible 

undominated individuals. 

 

To test this, the best settings from the previous experiments were chosen as 

follows: 

 Child population size – 150. 

 Pure-elitist. 

 Focused within constraints. 

 Fixed length encoding. 

 Single long run of 105600 generations. 

 Include archive population of undominated feasible solutions. 

The experiment was repeated 10 times to ensure consistency in the results 

and compared with the same procedure but setting the main population limit 

to 1500. 

The result of this experiment is as follows: 

All had a high success rate at finding the optimums. The set population 

limits (1588 and 1500) found 32 of the 33 optimums 100% of the time, in 

all 10 of the experimental runs. For the remaining optimum (where the 

weight limit is set to 182) the fixed population size found the optimum 

solution 9 out of the ten times (90%) and 7 out of ten times (70%) respec-
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tively for population limit 1588 and 1500. The remaining runs for this weight 

limit found the same local optimum with MPI -0.27%.  

The automatic variable population size algorithm had a 100% success rate in 

finding the optimum therefore finding the optimums more frequently that 

the fixed population sizes and it achieved this with the additional benefit of 

automatically setting a suitable population limit.  

It clearly performs better than setting the population limit to 1500; this is 

likely because the population limit that the automatic variable limit settled 

on was different (higher) than the 1500 fixed limit ranging from 1583 to 

1595 and this was a more effective limit. 

The mean of the final population limit from the 10 runs of the automatic 

variable limit was 1588 and when the experiment was repeated with the 

population limit fixed at 1588 the difference between the fixed and variable 

rate of finding optimums was much smaller with only one out of the ten runs 

failing to find all the optimums. 

Arguably it performed better in one to one comparison of the two ex-

periments because it found the same optimums but on average it found 

them earlier in the generation runs, as shown in Table 27. Also the complete 

run of all the generations is quicker with the fixed population limit as the 

initial unlimited population generations of the automatic variable limit GA 

result in larger populations which require more dominance evaluations. 

However, this does not take into account the many experiments required to 

determine that 1588 (in this example) is a good population limit. The impor-

tant detail here is that using the automatic variable populations limit 

eliminates the need to for the population limit to be manually set after a 

wasteful trial and error experiment. 
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Table 26 Results of automatic variable population limit experiments com-

pared to fixed population limit of 1500 and 1588 showing the percentage of 

runs that discovered the optimum solutions for the weight constraints. 

 

 

Weight 
Fixed 1500 

limit 

Automatic  

variable limit 

Fixed 1588 

limit 

191 100.000% 100% 100% 

190 100.000% 100% 100% 

189 100.000% 100% 100% 

188 100.000% 100% 100% 

187 100.000% 100% 100% 

186 100.000% 100% 100% 

185 100.000% 100% 100% 

184 100.000% 100% 100% 

183 100.000% 100% 100% 

182 70.000% 100% 90% 

181 100.000% 100% 100% 

180 100.000% 100% 100% 

179 100.000% 100% 100% 

178 100.000% 100% 100% 

177 100.000% 100% 100% 

176 100.000% 100% 100% 

175 100.000% 100% 100% 

174 100.000% 100% 100% 

173 100.000% 100% 100% 

172 100.000% 100% 100% 

171 100.000% 100% 100% 

170 100.000% 100% 100% 

169 100.000% 100% 100% 

168 100.000% 100% 100% 

167 100.000% 100% 100% 

166 100.000% 100% 100% 

165 100.000% 100% 100% 

164 100.000% 100% 100% 

163 100.000% 100% 100% 

162 100.000% 100% 100% 

161 100.000% 100% 100% 

160 100.000% 100% 100% 

159 100.000% 100% 100% 

Min 70.000% 100% 90% 

Mean 99.091% 100% 99.697% 

Max 100.000% 100% 100% 
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Table 27 Results of automatic variable population limit experiments com-

pared to fixed population limit of 1500 and 1588 showing the percentage of 

the total number of generations required to find the optimums. 

Weight Fixed 1500 limit Automatic variable limit 
Fixed 1588  

limit 

191 6.229% 7.297% 5.312% 

190 5.247% 6.364% 3.639% 

189 3.155% 6.521% 3.569% 

188 3.118% 6.043% 3.231% 

187 4.038% 5.451% 3.906% 

186 4.614% 9.091% 4.633% 

185 8.027% 8.698% 5.719% 

184 4.373% 8.419% 4.370% 

183 5.465% 7.703% 4.685% 

182 41.057% 22.447% 25.761% 

181 5.299% 7.949% 4.427% 

180 4.941% 7.819% 4.385% 

179 3.337% 6.130% 3.535% 

178 3.958% 6.835% 4.386% 

177 4.332% 8.847% 4.560% 

176 4.038% 8.089% 4.275% 

175 6.759% 8.315% 4.840% 

174 3.390% 6.515% 3.624% 

173 3.674% 8.815% 4.200% 

172 4.169% 8.677% 4.192% 

171 3.808% 8.307% 4.456% 

170 3.595% 7.541% 4.052% 

169 4.182% 9.686% 4.646% 

168 3.822% 7.864% 3.947% 

167 3.825% 8.203% 4.622% 

166 3.684% 7.350% 4.395% 

165 3.914% 8.541% 4.771% 

164 3.486% 8.087% 3.686% 

163 4.123% 7.565% 4.505% 

162 8.358% 10.502% 6.461% 

161 3.773% 8.574% 4.213% 

160 8.807% 10.664% 6.658% 

159 3.949% 7.923% 4.356% 

Min 3.118% 5.451% 3.231% 

Mean 5.714% 8.389% 5.091% 

Max 41.057% 22.447% 25.761% 
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5.3.10 NSGA-II dominance level algorithm comparison 

For comparing the effectiveness of the standard NSGA-II dominance algo-

rithm with the persistent non dominated populations algorithm proposed in 

this thesis, the code was instrumented to count the number of times the 

evaluate dominance function was called. The initial population and random 

seed of the algorithm were set so that the GA would produce exactly the 

same solution set, just using different methods to determine dominance 

level.  

 0 1 2 3 4 
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Figure 39 The original NSGA-II algorithm requires n2 evaluations. 

The standard algorithm described in pseudo-code in Deb et al.‟s 2002 paper 

has the following external loop: 

 For each p Э P  

{ 
  For each q Э P  

{ 
 … 

  } 

 }  

This loop nesting compares every individual against every other individual 

for dominance. This means that a population of size n requires n2 dominance 

evaluations, as shown in Figure 39. 
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This can be improved upon because when you establish whether p domi-

nates q you also establish whether q dominates p. As shown in Figure 40 

this reduces the number of evaluations required by a factor of 2: 

 

The persistent population structure described in this thesis was compared to 

the modified n2/2 algorithm described above. 

 0 1 2 3 4 

0      

1      

2      

3      

4      

Figure 40 The grey shaded areas are unnecessary evaluations as they are 

duplicates of the unshaded areas. This gives n2/2 evaluations. 

In order to test the effect of the persistence only an additional experiment 

was run where the nondominated population layers were regenerated each 

generation to allow it to be compared to the same settings but with persis-

tence activated. Finally the settings of the algorithms were set to the best 

performing options from the previous experiments: 

 Child population size – 150. 

 Focused within constraints. 

 Fixed length encoding. 

 Single long run of 105600 generations. 

 Variable automatic main population limit. 
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Both the pure-elitist and multiple dominance layers options were tested and 

the results are shown in Table 28. 

The results show that the fully modified dominance level algorithm including 

a persistent datastructure performed significantly fewer evaluations than the 

standard algorithm (just 3.3%), when set to be pure-elitist. 

Table 28 Comparison of the number of dominance evaluations required by 

standard NSGA-II and modified versions. 

The standard algorithm is designed to specifically deal with the layers of 

dominance, i.e. when the population is not pure-elitist, but while the differ-

ence between the effort of the two algorithms narrows when not pure-elitist, 

the gap is still very large (4.1%) 

It is the persistence of the population in the modified algorithm that provides 

the biggest improvement, but even when the persistence is „turned off‟, and 

the data-structure is regenerated each generation, the number of evalua-

tions required is 88.1% of the standard algorithm when set to pure-elitist. 

5.3.11 Ageism 

When making the comparison of the original NSGA-II dominance evaluation 

algorithm and the persistent population structure described in this thesis, it 

was necessary to make sure that all of the decisions made by the algorithms 

for creating new individuals were kept the same. This allowed a direct com-

parison of the algorithms by ensuring that they worked on the same dataset.  

In order to achieve this, an extra comparison step was added to the individ-

ual dominance check for the population sorting. The individuals in the 

population are sorted first by dominance level, then by feasibility, then by 

 Number of dominance evaluations 

Pure-elitist Standard NSGA-II Modified (no persistence) Modified (persistence) 

True 191,121,000,000 168,329,000,000 6,280,710,000 

False 194,591,000,000 170,282,000,000 8,041,400,000 
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crowding density, then (as an additional step) ties are broken by ordering by 

creation ID. 

The creation ID is a unique identifier given to each individual when it is 

created. The identifier is assigned from an incrementing count of all indi-

viduals that have been created. This can abstractly be described as a birth 

time where individuals created at the start of the GA will have a low creation 

ID and individuals created at a later generation will have a higher creation 

ID. 

An experiment was devised to establish whether the preference, in this final 

step, of young (low creation ID) or old (high creation ID) has a significant 

effect. 

Table 29 shows that an ageist strategy favouring younger individuals per-

forms significantly better than giving preference to older individuals.  

This is understandable as favouring older individuals would tend to cause the 

algorithm to stagnate in regions of the search space that have already been 

searched (potentially extensively). Favouring younger individuals would 

seem to encourage search in relatively unexplored regions. 
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Table 29 Comparison of preference of young individuals versus preference 

of older individuals. 

 

 

 

Percentage of runs  

optimum found 

Percentage of generations 

for mean case 

Weight young old young old 

191 100% 50% 7.297% 72.004% 

190 100% 80% 6.364% 47.968% 

189 100% 100% 6.521% 52.660% 

188 100% 90% 6.043% 45.785% 

187 100% 100% 5.451% 49.728% 

186 100% 0% 9.091% no optimums 

185 100% 60% 8.698% 72.976% 

184 100% 40% 8.419% 86.191% 

183 100% 50% 7.703% 51.924% 

182 100% 0% 22.447% no optimums 

181 100% 20% 7.949% 92.187% 

180 100% 40% 7.819% 66.417% 

179 100% 90% 6.130% 44.602% 

178 100% 70% 6.835% 43.105% 

177 100% 40% 8.847% 33.034% 

176 100% 80% 8.089% 63.262% 

175 100% 0% 8.315% no optimums 

174 100% 90% 6.515% 55.699% 

173 100% 70% 8.815% 41.086% 

172 100% 80% 8.677% 65.546% 

171 100% 70% 8.307% 43.851% 

170 100% 90% 7.541% 35.115% 

169 100% 70% 9.686% 53.019% 

168 100% 90% 7.864% 39.889% 

167 100% 80% 8.203% 49.764% 

166 100% 80% 7.350% 35.933% 

165 100% 90% 8.541% 58.712% 

164 100% 90% 8.087% 47.471% 

163 100% 80% 7.565% 46.572% 

162 100% 40% 10.502% 83.523% 

161 100% 90% 8.574% 42.260% 

160 100% 40% 10.664% 61.426% 

159 100% 90% 7.923% 48.402% 

Min 100% 0% 5.451% no optimums 

Mean 100.000% 65.152% 8.389% 49.397% 

Max 100% 100% 22.447% 92.187% 
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5.4 Results summary 

This chapter began by establishing that using a purely random approach to 

search, results in very poor solutions. The mean MPI for a purely random 

search was -273.4%. When considering a search space of any realistic size, 

an optimisation algorithm is necessary. 

The penalty-based GA, implemented as a slight variant to Coit and Smith‟s 

(1996b) algorithm, achieved an MPI of -1.23%. The use of HiP-HOPS to 

provide the reliability analysis introduced a significant computational over-

head, however, the added time required to perform the optimisation did not 

render it infeasible. The quality of solutions found by the penalty-based GA 

were a vast improvement on random search, however, there is scope for 

improvement as less than half of the optimums were discovered. 

The results of the Pareto-based experiments showed that the inability to 

intuitively set a good hypergrid size for the PESA-II GA represented a signifi-

cant problem for its use. Further experimentation did not achieve good 

solutions (when compared to both the penalty based GA and NSGA-II) even 

after a good hypergrid size was found using costly trial and error. 

The NSGA-II based algorithm did produce excellent results. The best results 

were achieved under the following conditions: 

1) The main population size limit is set using a variable algorithm that 

allows an unlimited population early in the search. After a preset 

number of generations the population size is then limited to the num-

ber of feasible individuals in the population. 

2) Given a set number of solution evaluations, it is better to generate a 

small number of children solutions each generation, and have more 
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generations, than to generate a large number of children, and have 

fewer generations. 

3) Where sensible constraints for the objectives are known, it is better to 

focus the search using these constraints. It seems possible to run the 

search unconstrained for a preset number of generations and then set 

constraints based on the solutions found so far. 

4) It is always better to retain undominated, feasible solutions in an ar-

chive population so that they aren‟t lost from the population. This 

does, however, carry an overhead from needing to check solution 

dominance for this extra population. 

5) The fixed encoding did perform marginally better across the board 

than the tree encoding. However, the benefits of generally using a 

tree encoding are substantial as they allow much more complex sys-

tems to be optimised due to its flexibility. A number of possible 

improvements to the handling of the tree encoding were proposed for 

future work. 

6) NSGA-II is designed to allow dominated solutions to remain in the 

population to retain diversity. However, where it was forced to be 

pure-elitist (by discarding all dominated solutions) it performed better 

in these experiments. 

7) Given a set number of solution evaluations, the algorithm performed 

better when allowed to run for a single long run, rather than taking 

the best solution from ten runs. This is both in terms of the quality of 

the solutions produces, and the percentage of the total generations 

required to find them. 
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8) The use of a persistent non-dominated population structure in NSGA-

II offers substantial computational effort reduction compared to the 

original algorithm.  

The NSGA-II variant making use of these settings found all of the optimum 

solutions for the 33 benchmark weight constraints giving it an average MPI 

of 0.0%, significantly outperforming the penalty-based GA‟s -1.23% MPI 

(Coit and Smith, 1996b). In fact the NSGA-II variant developed in this thesis 

is the first meta-heuristic to achieve this „perfect‟ score with the benchmark 

problem, as it had only been achieved before using precisely constrained 

mathematical methods (Onishi et al, 2007). Additionally, the GA achieved 

this whilst remaining more flexible, giving the benefit of likely achieving 

similar results with general models of varying complexity, with little (if any) 

modification. The previous best meta-heuristic was Tabu-search achieving 

an MPI of -0.263% (Kulturel-Konak et al, 2003) but that did not find the 

optimum solution in more than 20% of the cases. 

The original NSGA-II algorithm was significantly improved for this thesis, 

and the literature review showed it to be a strong candidate before this. The 

new sorting algorithm results in just 3.3% of the comparisons of the original 

algorithm. A further improvement comes from implementing a novel age 

discrimination for solutions, where newer solutions are preferred to older 

solutions. This resulted in the success of the algorithm in a range where 

preferring new solutions found all the optimums and preferring old solutions 

found the optimums in only ~65% of cases. 
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6. Fuel Oil System Case Study 

In this chapter, the developed combination, of automatic reliability analysis 

and a multi-objective optimisation algorithm, was applied to a ship fuel oil 

design problem. Previously, an expert engineer had used HiP-HOPS to 

analyse multiple design configurations. The design modification, and evalua-

tion of the analysis results was carried out manually by the engineer in order 

to select a design variant that exceeded the reference solution. 

The original study did not make use RBDs for analysing the reliability of the 

system design. In the original study, the principle overhead for the process 

is the manual configuration of the system for analysis. There was nothing to 

be gained by using a simplified analysis, such as that provided by RBDs, 

over a more complex and complete analysis technique, such as HiP-HOPS, 

as any performance improvement was swallowed up by the overhead and 

became insignificant. Where the modelling allowed for by the more complex 

analysis techniques is more complete and realistic, and this can be achieved 

within a reasonable time then it is logical to make use of it.  

In a deliverable for the SAFEDOR (Design, Operation and Regulation for 

Safety) FP7 project (Erich Rüde, 2007), a fuel oil service system (see Figure 

41) for a cargo ship is considered. When the fuel oil system fails, there is a 

loss of engine propulsion that can lead to the ship becoming grounded as a 

result of drifting. 
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Figure 41 Base solution with no component redundancies. (source: Rude, 

2007) 

The cost and failure rates of the components of the system can be found in 

Table 30. Data for the main engine is not included because this is immutable 

in the system and therefore not considered. 

Table 30 - Table of cost and failure rate attributes for components of the 

fuel oil system. 

Components Cost Failure Rate 

Indicator filter 1500 5.0E-7 

Viscosimeter 2500 2.5E-6 

Pre-heater 2000 6.7E-6 

Circulation pump 6000 3.2E-5 

Mixing tank 2000 1.6E-5 

Flow meter 2000 1.0E-5 

Automatic filter 2000 1.0E-5 

Booster pump 5000 3.2E-5 

Service tank 1500 1.6E-5 

 

In an attempt to find the optimum solution, the base configuration with no 

redundancies was analysed for cost and unavailability. Then a single redun-

dancy was added to the system and the system was re-analysed. This 

process was repeated, each time adding a redundancy to the next subsys-

tem. In all 12 system variations were analysed. 
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One of these configurations is known to be acceptable for this system, 

shown in Figure 42. This system contained redundancies in the two pump 

subsystems and in the heater. Figure 43 shows the Pareto front formed by 

these 12 solutions, where the base system and the reference system are 

indicated by the arrows. 

 

Figure 42 Reference solution has redundancies with the booster pump, 

circulation pump, and heater. (source: Rude, 2007) 

 

Figure 43 Pareto front of manually created and analysed solutions with 

base solution and reference solution indicated. 
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Figure 44 Cost benefit analysis from manual study; solution with highest 

net benefit indicated. (source: Rude, 2007) 

 

Figure 45 Best solution following manual analysis. (source: Rude, 2007) 

The manual analysis did not consider alternative components, only differing 

levels of redundancy for each component; zero, one, or two redundant 
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components for each of the nine components (not including the engine). 

Even given these constraints, and therefore a relatively small search space 

of 19683 combinations possible, it was not feasible for the designer to 

consider many systems; only 12 were considered. 

The combined process of HiP-HOPS and an optimisation algorithm from this 

thesis was applied to this fuel oil system. 

 

Figure 46 Pareto front found by optimisation algorithm; manual analysis 

solutions also shown. Note many of the manual solutions are dominated by 

the optimisation results. 

Following 50 generations of optimisation, 46 undominated trade-off solutions 

were found. The Pareto front is shown in Figure 46. The manual analysis 

solutions from the previous study are also plotted. It is worth noting that 

many cases, including the reference system, are actually dominated by 

solutions found by the optimisation algorithm. 
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The cost benefit analysis was applied to the undominated solutions from the 

optimisation, the results of which are shown in Figure 47 with the optimum 

solution indicated with an arrow. 

 

Figure 47 Cost benefit analysis from optimisation results; solution with 

highest net benefit indicated. 

The optimum solution found by the optimisation algorithm is shown in Figure 

48. It has a slightly higher unavailability (0.0000097) to the best solution 

found by the manual analysis, but the component cost is 2000 less at 

43000. This is achieved by using only a single heater, whereas the manual 

analysis optimum solution had a single redundancy on the heater compo-

nent. 
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Figure 48 Optimised solution uses only one heater; the best solution from 

the manual analysis used two heaters. 

Using manual analysis, it was already impractical to consider many varia-

tions of the system to discover an optimum configuration. This problem is 

greatly increased when alternative components are considered for each of 

the subsystems. 

Table 31 - Table of cost and failure rate attributes for components of the 

fuel oil system with 3 alternatives. 

 Alternative 1 Alternative 2 Alternative 3 

Components Cost 
Failure 
Rate 

Cost 
Failure 
Rate 

Cost 
Failure 
Rate 

Indicator filter 1500 5.0E-7 2500 2.0E-7 3222 1.0E-7 

Viscosimeter 2500 2.5E-6 3178 1.0E-6 3814 5.0E-7 

Pre-heater 2000 6.7E-6 2505 5.0E-6 3956 1.0E-6 

Circulation pump 6000 3.2E-5 13380 2.0E-5 18000 7.0E-6 

Mixing tank 2000 1.6E-5 2963 8.0E-6 4444 2.0E-6 

Flow meter 2000 1.0E-5 3000 1.0E-6 4444 5.0E-7 

Automatic filter 2000 1.0E-5 2647 5.0E-6 3529 1.0E-6 

Booster pump 5000 3.2E-5 10682 2.0E-5 12500 5.0E-6 

Service tank 1500 1.6E-5 1957 5.0E-6 2739 1.0E-6 

Allowing 3 functionally equivalent alternative components for each of the 9 

subsystems increases the search space size to 20,661,046,784. This makes 
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it even more unlikely that a manual process would discover the optimum 

configuration. 

Figure 49 shows the Pareto front of 366 undominated tradeoffs found by the 

optimisation algorithm after 4000 generations.  

 

Figure 49 Pareto front of solutions from optimisation algorithm where 

alternative components are available for each component. 

As before, a cost benefit analysis was carried out on the solutions found on 

the Pareto front. The results of that analysis are shown in Figure 50; the 

chart has been zoomed in to show detail around the optimum area. 
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Figure 50 Cost benefit analysis of solutions from optimisation algorithm 

where alternative components are available for each component. Optimum 

solution is indicated.  

Being able to consider alternative components for each of the subsystems 

allows a new optimum configuration. This is shown in Figure 51, where the 

automatic filter and the flow meter have a single component, alternative 

version 3 and 2 respectively, in place of a redundant configuration. 

 
Figure 51 Use of alternative automatic filter and flow meter components 

enables new optimal design. 
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The system‟s unavailability of 0.0000117 is worse than the previous two 

best solutions but the component cost is a further 1471 less. 

6.1 Case study summary 

The case study clearly shows that combining the use of an optimisation 

algorithm and an automatic safety analysis technique improves on the 

results that can be achieved using safety analysis alone.  

The automated safety analysis tool enabled the user to evaluate several 

potential solution system variants. This is more that would have been 

achievable in the same time using manual analysis techniques. However, the 

number of solutions evaluated is still very small compared to the size of the 

search space. This makes it very unlikely that any of the evaluated solutions 

would be optimum. 

This is true when the problem is constrained to keep the search area small, 

as when only one component type is allowed; it becomes even more the 

case when the search size is increased. 

The genetic algorithm found a solution to the constrained case that was 

4.4% less costly than found by the manual analysis, leading to a 3% im-

provement in net benefit. Increasing the size of the search space by allowing 

alternative component choices gave the GA a greater advantage finding a 

solution with a 17% improvement in net benefit. 
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7. Conclusions 

In the first chapter of this thesis the following hypothesis was stated: 

It is conceptually possible and technically feasible to achieve architectural 

optimisation using a combination of emerging model-based safety analysis 

techniques and meta-heuristics, assisting in the exploration of large design 

spaces for optimal tradeoffs between cost and reliability. 

A number of objectives were defined that needed to be met to support the 

above hypothesis. These objectives are repeated below, each with a discus-

sion summarising how they were met. 

1. Choose from among the state of the art in safety and reliability 

analyses a technique that can provide fast, scalable, and 

automatic model-based evaluation of safety and reliability. 

Following a review of the literature of safety analysis, HiP-HOPS was se-

lected. The core of a HiP-HOPS analysis is the synthesis of system fault trees 

from the component-level failure behaviour expressions. The generated 

system fault trees can then be further analysed using traditional FTA tech-

niques. 

The first criterion for selection is that it should be automatic without human 

interaction required. This is true of HiP-HOPS as both the synthesis of the 

system fault trees and the subsequent FTA is programmatically achieved. 

The speed criterion comes from the need to iterate the analysis many times 

during the optimisation. The technique needs to be fast, or at least fast 

enough for an optimisation to complete in reasonable time. To a certain 

extent this is tied in with the need for scalability. The ability to apply the 

analysis to larger, more complex models enables these same models to be 
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optimised. If the speed of the analysis degraded rapidly as the size of the 

model increased then that would restrict its use. 

HiP-HOPS scales well with model size as the synthesis of the system fault 

trees does not suffer from combinatorial explosion, which is a particular 

problem for the fault injection technique (CHEN, D J et al., 2008). HiP-HOPS 

is able to analyse large models with hundreds of components in multiple 

level hierarchies in sub-second times. 

Improving the speed of the algorithms is covered in the next objective. 

2. Examine the possibility of further minimising the computa-

tional effort required to perform safety and reliability analysis 

through performance enhancements to the chosen technique. 

The analysis of the system fault trees generated by HiP-HOPS uses tradi-

tional FTA techniques. As fault trees have been used for many years now 

there has been much research aimed at improving the performance of the 

techniques and algorithms. 

Several methods from the literature were applied, including fault tree modu-

larisation and fault tree contracting, each generating significant 

improvements to the performance of the analysis phase. Cut set pruning 

also offered a speed increase, but at the expense of results accuracy. 

A new method was described that maintained the cut sets from the fault 

trees in an FMEA-like catalogue. This significantly reduced the number of 

redundancy checks required when determining minimum cut sets. 

A particular problem was identified with the benchmark model where the 

nested AND logic from the parallel redundancy would generate a very large 

fault tree. A new technique dubbed Analysynth combines the analysis and 

the synthesis phases of HiP-HOPS to flatten and minimise the fault tree as it 
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is being generated. This removes the nesting during the synthesis process 

and solves the issue. The technique may also be useful in the general case 

as minimising small fault trees is disproportionately easier and quicker than 

large fault trees. This was not explored. 

The combination of the different performance enhancements led to the 

speed increasing by a factor of over 3000, compared to unenhanced per-

formance. 

3. Choose from among the state of the art a strongly performing 

genetic algorithm that can conduct the optimisation.  

GAs were chosen as the general optimisation technique to use as they are 

very flexible and can be applied to problems where a mathematical model is 

not known. Many real world optimisation problems have multiple conflicting 

objectives and so the current state-of-the-art MOEAs were reviewed and 

NSGA-II and PESA-II were selected for further investigation. 

In addition to this an existing GA solution was implemented from the litera-

ture to provide a comparison. 

4. Examine the possibility of minimising the computational effort 

required for the chosen genetic algorithm to perform the opti-

misation. 

The NSGA-II algorithm allows both undominated and dominated solutions to 

exist in the population. Solutions are favoured for selection by their domi-

nance ranking. The algorithm in the original paper recalculated the 

dominance ranking every generation, even though the changes would be 

relatively small. 

In order to reduce this, a persistent population data structure was imple-

mented so that solutions were maintained in a population specific to their 
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dominance ranking. Since a solution would only be displaced from its posi-

tion by a new solution, dominance checking only need be carried out on 

small numbers of new solutions. 

In fact the method of using the population structure and cascading the 

dominated individuals reduced the number of dominance checks over the 

original NSGA-II algorithm, even without persistence of the structure from 

generation to generation. When the structure was made persistent it used 

just 4% of the dominance checks of the original algorithm. 

This was further improved to just 3% by making the algorithm pure-elitist 

and removing the dominated individuals altogether. This was even found to 

generally improve the solutions found in the benchmark experiments. 

5. Maximise the quality of the alternative solution designs found 

by the genetic algorithm. 

Several aspects of the GAs were investigated including: 

 the solution encoding used,  

 whether the algorithm was pure-elitist or not,  

 whether a solution archive was present, 

 whether a constraints focussing algorithm was applied,  

 the effect of population size,  

 is it wrong to be ageist?  

 whether selecting the best individual from several short runs is better than 

a single long run.  

In addition to these variables the PESA-II algorithm also has a hypergrid 

size parameter. Experimentation showed that the effectiveness of the algo-

rithm was dependent on selecting the correct size and the selection of the 

correct size was not an intuitive process. In addition to this, the solutions 
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found by the PESA-II algorithm compared poorly to those of the other 

algorithms even when an apparently good hypergrid size was selected. 

The NSGA-II algorithm variant performed well. It discovered all the opti-

mums in the benchmark example (as established by the exact ISC method). 

The settings for the parameters that achieved the best solutions for the 

benchmark were: 

 Fixed length encoding 

 Pure-elitist 

 Include a solution archive 

 Focus the search using constraints 

 Vary the population size automatically using the proposed algorithm 

 Preferring „younger‟ solutions during selection 

 Having a single long run rather than selecting the best from 10 

shorter runs. 

One item particularly worth noting is the encoding type. There was a mar-

ginal improvement over the experiments found when using the fixed length 

encoding. However, one problem with the fixed length encoding is that it is 

very rigid. While this makes little difference to the benchmark example, 

since it does not have a significant component hierarchy, it is felt that in 

general a tree-based encoding would be more flexible and would allow 

arbitrary hierarchies to be manipulated. 

It is also interesting that, on average, the optimum solutions were found 

after a relatively low percentage of the total generations. This suggests that 
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the GA can be run for a reduced time, which is good for tight design sched-

ules. 

6. Apply the proposed optimisation approach to case studies in 

order to validate feasibility and evaluate the scalability and 

usefulness of the approach. 

The proposed approach was tested on a well used benchmark example from 

the literature. It successfully found the optimum solutions to the problem, 

which indicates promise in the approach. 

Clearly it is feasible, at least on a basic level, to marry together state-of-the-

art automatic safety analysis techniques with state-of-the-art evolutionary 

algorithms. 

When applied to the cost benefit analysis of a fuel oil system, the combined 

algorithm found solutions that surpassed those found by a previous ap-

proach that included only the manual analysis of a few alternatives. 

RBDs have been used in the past to provide a simplified reliability model of 

systems being optimised. The beneficial trade-off for this simplification is 

that the analysis of this simplified model can be performed relatively quickly. 

This performance aspect would make it ideal for use in optimisation applica-

tions, but there remains the problem of the model simplification. 

Firstly, because the RBD is a simplified model of the system, it is necessary 

to translate between the full system model and the RBD (and back again). 

The translation process requires extra design effort, and it is an opportunity 

for errors to be introduced. Secondly, even if the first issue was resolved 

there would remain the inherent problem (the sacrifice that gives it its 

performance benefit), that it is a simplified model.  
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It is desirable for the model being used to be as accurate a representation of 

reality as possible. Certainly, for one-off analyses this rules out RBDs as 

more complex and complete modelling tools are available and the time 

constraint is largely removed. 

The many iterations of analysis required by optimisation do add a time-

efficiency constraint as the algorithm cannot be allowed to run indefinitely; 

the results would arrive far outside the permitted design period. The work in 

this thesis indicates that it may be possible to use more accurate design 

models than RBDs without the optimisation time becoming prohibitively 

long. 

The scalability of the approach remains an open question. The size of the 

search space in the benchmark problem is large, but it is a relatively small 

system. Further testing on larger systems is required. This and other future 

work is discussed in the following section. 
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8. Future Work 

To paraphrase the comic Dara Ó Briain: If science knew everything it would 

stop. With that in mind, there remain several avenues of particular interest 

for future research in this area. 

The experiments carried out for this thesis focussed on a literature bench-

mark system in order to make comparisons to previous approaches. 

However, the principal advantage of integrating HiP-HOPS with optimisation 

algorithms is that it is applicable to complex engineering models, and not 

limited to simple series-parallel systems. 

There are several features that future testing could expand upon: 

1) Optimising systems with multiple (interacting) failure modes. The 

benchmark system was limited to just success or failure. 

2) Optimising systems using a variety of reliability improving strategies 

such as majority voters and standby recovery systems. The bench-

mark system used a simple parallel redundancy. 

3) The HiP-HOPS framework presents a variety of evaluation metrics that 

could supplement reliability as optimisation objectives.  

4) Optimising systems that have temporal ordering characteristics, mak-

ing use of HiP-HOPS Pandora technology. 

5) Application of the approach to larger systems to investigate the scal-

ability of the approach when faced with real-world examples. 

Although the NSGA-II variant was successfully used in experiments, it would 

be interesting to apply other state-of-the-art optimisation heuristics such as 
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SPEA2 and others. Some algorithms are better suited to particular problem 

types and there may be improvements to be found. 

The scalability of the approaches was touched upon above. To this end, 

there are a couple of ideas that seek to improve the performance of the 

algorithms but have been left for future improvements. These are Binary 

Decision Diagrams and parallelisation. 

Converting a fault tree into a binary decision diagram representation has 

been shown in the literature to provide a significant performance benefit by 

inherently creating minimal (or near minimal) cut sets, thus reducing the 

number of redundancy checks required ((BARTLETT, L M and Andrews, J D, 

2001), (SINAMMON, R M and Andrews, J D, 1997), (RAUZY, A, 1993)). 

However, the conversion process requires that the basic events of the fault 

tree are given an ordering, usually based on either their relative location in 

the fault tree or some kind of importance weighting. Whilst there have been 

several proposals for generating the basic event ordering, it still remains a 

problem to be solved as none of the proposals generates a minimal BDD for 

all fault trees; importantly, when it doesn‟t, it can make things worse. 

With the increasing ubiquity and advancements in multi-core computing it 

seems that performance in fault tree analysis could be improved by tailoring 

the algorithms to be multiple-thread compliant. One way to achieve this 

would be that every time a branch is encountered in the fault tree during 

analysis, the processing of each child branch could be passed to a separate 

thread. These multiple threads could be distributed to the different proces-

sors to maximise efficiency. Although there is some overhead that is 

introduced in order to manage the multiple threads and prevent the threads 

from interfering with each other, at a naive level a fault tree with four major 

branches could be run on a quad core processor in a quarter of the time 

required by a single threaded application. 
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A performance increase should be possible by applying parallel processing 

techniques to the GA. A number of new solutions are independently created 

in each generation. These could each be processed in a separate thread 

running on a separate CPU core. As with the parallelisation of the safety 

analysis algorithms, the benefit from achieving this is dependent on the 

fraction of the algorithm that can be parallelised. This was described by 

Amdahl (1967). 
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