5 research outputs found

    Solving the Linda multiple rd problem using the copy-collect primitive

    Get PDF
    AbstractLinda is a mature co-ordination language that has been in use for several years. However, as a result of recent work on the model we have found a simple class of operation that is widely used in many different algorithms which the Linda model is unable to express in a viable fashion. An example algorithm which uses this operation is the composition of two binary relations. By examining how to implement this in parallel using Linda we demonstrate that the approaches possible using the current Linda primitives are unsatisfactory. This paper demonstrates how this “multiple rd problem” can be overcome by the addition of a primitive to the Linda model, copy-collect. This builds on previous work on another primitive called collect (Butcher et al., 1994). The parallel composition of two binary relations using the copy-collect primitive can be achieved with maximal parallelism

    When to Move to Transfer Nets On the limits of Petri nets as models for process calculi

    Get PDF
    International audiencePierpaolo Degano has been an influential pioneer in the investigation of Petri nets as models for concurrent process calculi (see e.g. the well-known seminal work by Degano–De Nicola–Montanari also known as DDM88). In this paper, we address the limits of classical Petri nets by discussing when it is necessary to move to the so-called Transfer nets, in which transitions can also move to a target place all the tokens currently present in a source place. More precisely, we consider a simple calculus of processes that interact by generating/consuming messages into/from a shared repository. For this calculus classical Petri nets can faithfully model the process behavior. Then we present a simple extension with a primitive allowing processes to atomically rename all the data of a given kind. We show that with the addition of such primitive it is necessary to move to Transfer nets to obtain a faithful modeling

    Linda[m] and Tiamat: Providing generative communications in a changing world

    Get PDF
    When generative communications, as exemplified by Linda [Gel85], were originally proposed, they were intended as a mechanism for coordination of parallel processes. Since that time, they have been adapted to a variety of distributed environments with great success, as can be seen in commercial systems such as T Spaces [WMLF98]. The time, space and identity decoupling afforded to coordinating entities by generative communications also seems to be ideally suited to mobile environments where devices can come and go frequently and often without warning. Such a rapidly changing environment, however, presents a new set of challenges and attempts to introduce the generative communications paradigm into these environments have, so far, met with limited success. Indeed evaluation of research platforms, such as LIME (Linda In a Mobile Environment) [PMR99.MPR01] and L[2]imbo [DFWB98] have led some to conclude that the generative communication paradigm is not well suited to mobile environments. It is my belief, however, that it is the research platforms in question, rather than the paradigm, which do not fit well with mobile environments. These platforms either attempt to impose tight constraints on an inherently loosely constrained environment, or require significant alterations to the semantics of generative communications. I believe that these systems do not work well as they are not designed around the environment, rather they are forced onto the environment. I will begin by examining why these systems do not suit their environment. This done, I will then show that the conclusions drawn from these systems, namely that generative communications are unsuitable for mobile environments, are incorrect. Further, through construction and examination of a proof of concept system built around an environment-centric design, I will show that generative communications can be provided in a mobile environment with few (minor) semantic alterations. An evaluation of some of the mechanisms used will also be presented along with characterisation of the operation of the system. A comparison with existing mobile solutions will be used to highlight how the environment-driven design results in a system which better suits the nature of the target environment
    corecore