
Science of 
Computer 

ELSEVIER Science of Computer Programming 31 (1998) 335-358 
Programming 

Solving the Linda multiple rd problem using 
the copy-collect primitive 

A.I.T. Rowstrona,*, A.M. Woodb 

a COmpUtPt’ LUhorator.V. IJnieersity of Crrmhridqv, NPL~, Museums Site. Ppmhrokr Street, 

Cambridge. CBZ 3QG, UK 

bDepartment of’ Computer Science, University of‘ York, Heslington. York, YOI SDD. UK 

Abstract 

Linda is a mature co-ordination language that has been in use for several years. However, 

as a result of recent work on the model we have found a simple class of operation that is 

widely used in many diflerent algorithms which the Linda model is unable to express in a vi- 

able fashion. An example algorithm which uses this operation is the composition of two binary 

relations. By examining how to implement this in parallel using Linda we demonstrate that the 

approaches possible using the current Linda primitives are unsatisfactory. This paper demon- 

strates how this “multiple rd problem” can be overcome by the addition of a primitive to the 

Linda model, copy-collect. This builds on previous work on another primitive called collect 
(Butcher et al., 1994). The parallel composition of two binary relations using the copy-collect 

primitive can be achieved with maximal parallelism. 0 1998 Elsevier Science B.V. All rights 

reserved. 
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1. Introduction 

Linda [5] is a co-ordination language, providing mechanisms to allow concurrent 

processes to communicate. The process communication is asynchronous and is per- 

formed through tuple spaces, which are associative shared memories. Processes which 

communicate can be both spatially and temporally decoupled. Indeed, two process can 

communicate even if one has terminated before the other has started. The Linda model 

is described in more detail in Section 2. 

While working on the implementation of parallel image processing algorithms in 

Linda [20] it emerged that there is a particular operation that the Linda model can not 

perform adequately. The operation is described as a multiple rd. In order to demonstrate 

the multiple rd problem an example is used, the parallel composition of two binary 
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relations. The example is introduced in Section 4. Two approaches are suggested that 

use the current Linda primitives in Sections 5 and 6, and through experimental results 

presented in Section 7 the problems of both approaches are shown. A new primitive 

is then introduced in Section 8, and how this primitive overcomes the multiple rd 

problem is then shown, 

2. The Linda model 

A detailed description of Linda can be found in [5]. The 

out(tuple) This places the tuple into a tuple space. 

in(template) This removes a tuple from a tuple space. The 

primary primitives are: 

mple removed is associa- 

tively matched using the template ’ and the tuple is returned to the calling process. 

If no tuple that matches exists then the calling process is blocked until one becomes 

available. 

rd(template) This primitive is identical to in except the matched tuple is not removed 

from the tuple space, and a copy is returned to the calling process. 

eval(active-tuple) The active-tuple contains one or more functions, which are then 

evaluated in parallel with each other and the calling process. When all the functions 

have terminated a tuple is placed into the tuple space with the results of the functions 

as its elements. 

The Linda model is intended to be an abstraction, and as such is independent of 

any specific machine architecture. This has meant that alternatives and extensions to 

the basic Linda model have been proposed and investigated. The extensions that are 

used currently in the York Kernel I and II [22,8] are: 

multiple tuple spaces The concept of multiple tuple spaces was introduced by Gelemter 

as part of Linda 3 [lo], and involved the addition of a type ts and a primitive tsc. The 

idea of adding multiple tuple spaces has led to many different proposals of how multiple 

tuple spaces could be incorporated within Linda [12, 131, and many implementations 

include multiple tuple spaces in one form or another [8, 19, 11, 17, 14, 151. 

Multiple tuple spaces were introduced as an effective way of hiding information. 

Information within a tuple space can only be accessed by those processes that know 

about the tuple space. As the use of Linda has changed to incorporate different styles 

of distributed computing the need to hide tuples has become increasingly important to 

ensure that other processes neither maliciously nor accidently tamper with the tuples 

that other processes are using. When multiple tuple spaces are added to Linda there are 

two issues: whether tuple spaces are first class objects, and the relationship between 

the tuple spaces. If the tuple spaces are first class objects then a tuple space can be 

’ Sometimes referred to as an anti-tuple. 
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an element of a tuple, and treated like any other first class value. Generally most 

implementations do not support first class tuple spaces because making tuple spaces 

first class introduces many complex questions involving the semantics of the primitives, 

for example what does it mean to insert a mple into a tuple space that another process 

has consumed? The tuple spaces can either be unrelated or they can be related creating 

some form of hierarchy [12, 131. Most implementations adopt a flat structure. As far 

as the work described in this paper is concerned the relationship between tuple spaces 

is not important, just the fact that multiple tuple spaces are incorporated into Linda. 

The collect primitive [3]. Given two tuple space handles (tsl and ts2) and a tuple 

template, then collect (tsl, ts2, template) moves tuples that match template 

in tsl to ts2, returning a count of the number of tuples transferred. This primitive 

by its very nature requires multiple mple spaces. 

2.1. Linda semantics 

Linda was originally proposed as what might be characterised as an ‘engineering 

solution’ to the problem of coordinating parallel processes independently of their com- 

putational aspects. This resulted in a loosely, and informally, specified semantics for the 

Linda operations, and then Linda developed incrementally in an evolutionary manner 

from this informal basis. 

However, as research interest, and implementational work, increased it became clear 

that the lack of a formal specification of Linda’s operations was needed, not least 

because different implementors interpreted the informal definitions in different ways, 

giving rise to a number of inconsistent de facto ‘semantics’. Consequently, many at- 

tempts (for example [2,7,6,13, 161) have been made to specify the meaning of the 

extant Linda operations post facto. This is a much more difficult task than defining 

the semantics of a system from scratch, without the demands of being ‘backwardly 

compatible’ with existing informal definitions. This difficulty is highlighted by the fact 

that, despite the many attempts, there is no generally accepted formal specification for 

Linda. 

The main reason for the lack of generally accepted Linda semantics is that the ‘design 

space’ - the set of reasonable alternative interpretations of the Linda operations - is 

very wide (a recent survey [4] of some of the open questions identified a dozen more or 

less orthogonal choices which could be made). This indicates that there is unlikely to 

be a uniquely “correct” specification of Linda. In addition, most of the formal systems 

used in specifying the semantics of computational systems have some difficulty in 

capturing some of the intuitively fundamental properties of Linda - principally due 

to its combination of non-determinism and asynchrony - in a way which useful to a 

Linda implementor, or natural to a Linda user. 

This lack of a generally accepted formal semantics has meant that as new proposals 

for additions or modifications to Linda are made, an informal description of their mean- 

ings is the norm, as will be the case in Section 8 when we introduce the copy-collect 
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primitive as a solution to the multiple-rd problem. If and when a suitable semantic 

formalism is developed, the informal descriptions will be more rigorously specified - 

in fact discovering how well proposed formalisms capture the intuitive meanings of 

such operations will be a measure of their quality. 

3. The multiple rd problem 

In this section, an expressive limitation of the Linda model is identified, which is 

referred to as the multiple rd problem. A multiple rd is defined as an operation where 

two or more processes are required to concurrently, and non-destructively read one or 

more tuples from a tuple space which match the same template, where there are at 

least two or more tuples that match the template, and at least two of the processes can 

be satisfied by the same tuples. The problem is that a multiple rd cannot be performed 

efficiently using the current Linda model if two or more tuples are concurrently and 

non-destructively read from a tuple space using the same template. 

As an example consider a tuple space containing a number of tuples with each con- 

taining two fields, representing peoples’ names such as (“Antony’:sl,i,y, “Rowstron”,Yt,.i,y). 

This tuple space is shared among many processes that may require access to the tuples. 

How would all the tuples representing people whose surname is Rowstron be retrieved 

by a process? 

Initially, the answer would appear to be the repeated use of the rd primitive. The 

template ( IQping, “Rowstron”,t,i,y I) will match a tuple whose surname is Rowstron. 

This will only work if there is a single tuple which matches the template. If all the 

names of an entire family are in the tuple space, or there are several unrelated people 

with the same surname stored in the tuple space, the repeated use of a rd will not 

work. The semantics of rd mean that if more than one tuple matches a template the 

tuple returned is chosen non-deterministically. 

There are only two methods that enable many processes to concurrently and non- 

destructively access a tuple space using the standard Linda model. One method is to 

use a designated tuple as a binary semaphore and the other is to organise the tuples 

as a stream. Before these two methods are examined and evaluated another example 

containing the multiple rd problem is described. 

4. Parallel composition of two binary relations 

A binary relation is defined as a relation defined between two sets. The binary 

relation defines a subset, B, of the Cartesian product of the two sets. Therefore, given 

two sets, T and X, the Cartesian product, T x X, is defined as 

{(t,x) : (t E T) and (x E X)}. 
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Tuple space ROS 

Fig. 1. Composition of two binary relations represented using three tuple spaces. 

If the ordered pair (~1,s~) belongs to the set B, then the binary relation B is said to 

hold between the two values. This binary relation could for example be “less than”, 

so SI <s2. Given two binary relations, R and S, their composition, R o S, is defined as 

{(a,d) : ((a,b) E R) and ((c,d) E S) ( b = c}. (2) 

In this example it is assumed that the ordered pairs in each set are held in separate 

tuple spaces, with each tuple representing a single ordered pair. After performing the 

composition, a new tuple space will be created containing the resulting tuples. This is 

shown in Fig. 1. 

Due to the properties of the composition of binary relations it should be simple to 

implement in parallel, with every pair in tuple space R being compared with every pair 

in tuple space S concurrently. The results for each pair in tuple space R are independent 

of the results for any other pair in tuple space R. So a number of processes are used. 

Each process takes a pair from tuple space R, and checks the chosen pair with every 

pair in tuple space S. If the second element of the pair from tuple space R is the same 

as the first element in a pair from tuple space S, a new pair is produced. This new pair 

contains the first element of the pair from tuple space R and the second element from 

the pair from tuple space S. The finest grained parallel approach using this method will 

use a process for every pair in tuple space R. The detecting of the elements in tuple 

space S which match, is an associative look up which indicates that Linda should be 

ideal because of the associative matching properties it has. 

The multiple rd problem is seen within the parallel composition of two binary 

relations because there are several processes that need to concurrently access the tuple 

space S non-destructively. The stream and semaphore methods 

rd problem are now considered, using the parallel composition 

as an example. 

5. Tuple semaphores 

of solving the multiple 

of two binary relations 

The first method considered for overcoming the multiple rd problem is using a tuple 

as a binary semaphore, or lock tuple. The lock tuple is a single and unique tuple that 

allows user processes to control access to a tuple space. 
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comp_worker := func(R,S,C); 

local my_val, my_ts, my-comb, todo; 

my_ts := NewBag; 

my_val := lin(R,I [?int,?intli); -- Get the element from R 
dummy := lin(S,I ["lock"] I); -- Get the lock (lineA) 
todo := lcollect(S,my_ts,I Cmy_val(2),?intl 1); 
while (todo > 0) do -- Grab matching tuples in S 
todo := todo - 1; 

my-comb := lin(my_ts,l [my_val(2),?int] I); -- Process each 

lout(C,[my_val(l),my_comb(2)1); -- Create result tuples 
lout(S,my_comb); -- Replace tuple in S 

end while; 

lout (S, [“lock”1 ) ; -- Let. the lock tuple go 
return CTERMINATWI ; 

end func; 

Fig. 2. A worker process using a tuple as a binary semaphore or lock tuple. 

The general concept is that a process obtains the lock tuple, then destructively re- 

moves the matching tuples, using either inp or collect.2 Once all the tuples have 

been removed they are replaced, and then the lock tuple reinserted. The removal of 

tuples is acceptable because only a single process can obtain the lock tuple and there- 

fore access the tuple space at any one time3 provided the tuple space is returned to 

the same state as it was when the lock tuple was removed no other process will be 

aware that the tuples have been removed and replaced. 

In the case of the parallel composition of binary relations, the ISETL-Linda [8] code 

for a worker process is shown in Fig. 2. Each worker process removes a tuple from 

tuple space R and then tries to remove the lock tuple in tuple space S. There is only 

one lock tuple in the tuple space S so all but one of the processes will block on the 

in primitive (line A in Fig. 2). When a worker process retrieves the lock tuple, it has 

unrestricted access to the tuple space S. 

The worker process creates a template using the second field of the tuple removed 

from tuple space R as the first element of the template. In this example, the tem- 

plate is then used by a collect to move all the tuples that match the template 

in tuple space S to a local tuple space. The same operation can be performed 

using inp. 

The worker process then removes each of the tuples from the local tuple space using 

the in primitive. The worker process then places the tuple back into tuple space S. 

Because of the fine grained nature of the worker processes used in the composition 

of binary relations, as the worker process returns the tuples to tuple space S, it also 

* If the Linda implementation supports neither of these or it supports them but does not provide out 

ordering (see Section 8) then the semaphore method cannot be used, and streams must be used. 

3 Provided all the processes accessing the tuple space adhere to the use of the lock tuple. 
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calculates any results and places them in the results tuple space C. If the computation 

“associated” with each mple is more complex then either the worker process can place 

another copy of each tuple in a different tuple space for processing, once all the tuples 

from tuple space S have been replaced, or further processes can be spawned to actually 

perform the calculations. 

Once all the tuples in the local tuple space have been processed and replaced in S, 

the lock tuple is also replaced in S. This means that tuple space S contains all the 

tuples that were present when the worker process obtained the lock tuple. The mple 

which acts as the semaphore can o&y be replaced when the tuple space is in its original 

state. If the tuple is returned prior to this then the other processes are not guaranteed 

to find all the tuples that they require. 

There are two reasons why tuple semaphores are not an acceptable solution to the 

multiple rd problem. 

- Firstly, the solution requires the processes that use a tuple space to agree to use 

the lock tuple, and there is no guarantee that other processes will conform to this. 

Consider the example given in the introduction of this paper, involving a tuple space 

containing a set of names. There is no reason why several processes performing 

different and unrelated tasks may all require access to the name tuples within the 

tuple space concurrently. Suppose one process does not conform to the use of a 

lock tuple, either maliciously or by accident, then all the processes can no longer 

reliably have access to all the possible mples. 

- Secondly, such an approach creates a sequential bottleneck for the access of the tuple 

space as only one process can access the tuple space at any one time. Therefore, 

in the parallel composition of binary relations example, the only speed up achieved 

is the parallel reading of the tuples from tuple space R. The majority of the time that 

the program executes only a single worker is active, creating a sequential solution 

because only one process can access the tuple space S at any one time. Consequently, 

the use of this method is not normally acceptable because the sequential access 

produces bottlenecks. 

6. Streams 

The second approach is to use a stream. The basis of this approach is to remove 

the multiple rd problem of having many tuples which match the template to be used. 

This is achieved either by using information which is already in the tuple, or by 

adding a unique field to each tuple. This means that a unique template can be gener- 

ated which will match a single tuple in the tuple space. Any processes which wants 

to use the tuples within the tuple space must be aware of the fields used within the 

tuple, and, how the fields are generated. Processes accessing the tuple space use the 

rd primitive to retrieve every tuple, and use a local check to see if the tuple is 

required. 
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comp_worker := func(R,S,C,NumTupS); 

-- NumTupS - No. of tuples in S 

local my_val, my-comb; 

my_val := lin(R,IC?int,?intlt); -- Get a tuple from R 

while (NIxuTu~S > 0) do -- Check all tuples in S 
my-comb := lrd(S,I CNumTupS,?int,?int] I>; 

NumTupS := NumTupS - 1; 

if (my_comb(2) = my_val(2)) then -- Does the tuple match? 

lout(C,[my_val(l),my_comb(3)1); 

end if; 

end while; 
return ["TERMINATED"]; 

end func; 

Fig. 3. A worker process using streams. 

Consider the example of the parallel composition of binary relations and assuming 

that the tuple space S contains the five tuples (as shown in Fig. 1): 

There is no unique field that allows each tuple to be independently chosen. Therefore 

a unique field is added to each of the tuples: 

(lint, 3int, Tint), (2intj 6nt, 12int), (3int, 3int,9int), 

(dint, 5int, gint), (5int,9int, loint). 

After adding the extra first field, each tuple contains a unique field, and the relation- 

ship across the tuples between the unique fields is known (an integer counter that is 

incremented by one for each tuple). This allows a process to access the tuple space 

using the template (I indexinteyc,,, q ntrgrr, Qntqrr I), w h ere index is a value between one 

and five in this example. Every worker process takes a tuple from tuple space R, and 

then reads every tuple from tuple space S, using the index field to match each tuple 

in turn. The worker process checks if the returned tuple is actually required and either 

discards it or uses it accordingly. If the implementation supports the rdp primitive then 

this removes the need to check the tuple locally, but all tuples still have to be checked. 

A template of the form ( lindexinpgy,r, R(2)inlegerrOinleyerI) would be used, where R(2) is 

the second element from the tuple retrieved from the tuple space R. The rdp primitive 

would then be used returning either the matching tuple or a value to indicate it was 

not found. Every tuple still has to be checked. The ISETL-Linda code for a worker 

process using the stream method is shown in Fig. 3. 

In this example it is necessary to add an extra field but sometimes a unique field 

is already present within the tuple. For example, when an image is stored in a tuple 

space, with each pixel being stored as a tuple of the form: 

(x-coordinatei,,,(l,r, y-coordinateinteyer, pixel valueinfeger). 
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A process may want to access all pixels that are of a particular value. Here the obvi- 

ous template would be ( 10rnrrgrr, Clinteger, pixel_valuein,,ye, I). However, if many processes 

wish to perform the operation in parallel it will introduce the multiple rd problem. As- 

suming that the coordinate system used within the image will be known to the accessing 

processes, and there is only one pixel value for each coordinate, the coordinate fields 

within the tuple can be used as the unique fields. The processes can then use a stream 

approach, reading every coordinate to check if the pixel value is the one required, and 

discarding if it is not. 

With the stream method all the worker processes can perform the accessing of a tuple 

space in parallel, however there are two problems that make this approach unacceptable: 

- Firstly, it negates the advantages of the tuple matching abilities of Linda. Every 

tuple in the stream structure must be read. If there are many tuples in a tuple space 

and only a few are required, the time and communication costs of reading every 

tuple are considerable. This is compounded if the implementation does not support 

rdp, because additional processing within the user process of the returned tuple is 

needed to check if the tuple is one that is required. 

- Secondly, every tuple in the tuple space requires a unique field to be added, and any 

process using the tuples must be aware of the unique field and how it is generated. 

This dilutes the natural use of a tuple space as the data structure by adding another 

structure (a stream) to the tuples within the tuple space. In order to achieve this, 

either the producer must be aware of the need to add this unique field in which 

case the cost of adding it is minimal, or the tuples must be pre-processed to add 

the unique field before being used. 

Even if the producer can add the extra field, and so no pre-processing of the tuples 

is required, the communication and time costs of checking every tuple explicitly using 

either rd or rdp is unacceptable unless the majority of tuples within a tuple space 

match the template. 

7. Experimental results 

In order to show the problems of both the binary semaphore and stream methods the 

execution times of parallel composition of binary relations using both these methods 

are considered. The experimental results presented in this section are obtained using 

ISETL-Linda executing on a Transputer based Meiko CS-1 parallel computer using 

the York Kernel I [9]. For the experiments the cardinality of the tuple space R is 

set to five; the cardinality of tuple space S is 50. For every pair (represented as a 

single tuple) in tuple space R there are four pairs (again, represented as single tuples) 

in tuple space S that match, therefore the cardinality of the composition tuple space 

C is 20. The worker processes are altered to enable them to be instructed on how 

many tuples are processed from tuple space R. Thus, a single worker computes the 

results for all five pairs in tuple space R, whereas five worker processes each compute 

the results for a single pair from tuple space R, as in the example code segments 
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comp_worker := proc(R,S,C,NumTupR); 
- NumTupR is the number of tuples in R 

local my_val, my_ts, my-comb, todo, loop; 

my_ts := lEtI; 
for loop in [l NumTupRl do -- For all tuples in 

my_val := lin(R, I I?int ,?int] I) ; -- Get the a tuple 
todo := lcollect(S,my_ts, t [my_val(L?) ,?intl 1); 
while (todo > 0) do -- Process the matched 

todo := todo - 1; 
my-comb := lin(my_ts, I Cmy_val(2) ,?intl I>; 
lout(C,Cmy_val(l),my_comb(2)1); 
lout(S,my_comb); 

end while; 
end for; 

end proc; 

Fig. 4. The code for the sequential composition of binary relations. 

R 

tuples 

Figs. 2 and 3. This is used to show that the semaphore method forces sequential 

access to tuple space S, whilst the stream approach allows parallel access to tuple 

space S. 

The execution time does not include the time taken to spawn the worker processes, 

and does not include the time taken to create the tuple spaces S and R. In the stream 

approach it is assumed that the producer added the unique field to the tuples as they 

are created, thus avoiding the need to pre-process the tuples to add the unique field. 

All execution times are given in ticks, where 15 625 ticks is the equivalent of one 

second. 

The performance for both the methods of solving the multiple rd problem are com- 

pared against a sequential version. The code for the sequential version is shown in 

Fig. 4. The sequential version takes each tuple from tuple space R, then uses the 

collect primitive to destructively move to another tuple space every tuple from tuple 

space S in which the first element of the tuple is the same as the second element of 

current tuple chosen from tuple space R. The moved tuples are then destructively read 

using the in from the other tuple space, processed and then placed back in to tuple 

space S. The result tuples are placed in tuple space C. The sequential version uses the 

tuple spaces to store data structures as do the parallel versions. 

7.1. The binary semaphore method 

Fig. 5 shows the execution times taken for the version using the lock tuple method 

when the number of worker processes are varied from between one and five. Also 

shown is the time taken for a sequential version of the program. The timings are given 

in ticks. 
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6000 - 

so00 - 

4000 - Semaphore version + 
Sequential version ------ 

3000 - 

2000 - 

1000 - 

0 . I I I 
1 2 3 4 5 

Number of worker processes 

Fig. 5. Execution time for the parallel composition of binary relations when using the binary semaphore 

method. 

The sequential version is slightly faster than the parallel version using the lock 

method and one worker process. This is because the sequential implementation is sim- 

ilar to the lock method except that a lock tuple is not used, as only one process can 

ever access the tuple space. This means the difference in the execution times represents 

the cost of fetching and replacing the lock tuple. 

When two worker processes are used the execution time is slightly less than the 

execution time of the sequential version. This is achieved because of the parallel access 

to the tuple space R. The fetching of a tuple from tuple space R is the only work that 

can be parallelised; the access to tuple space S is forced to be sequential. 

There is no performance gain by increasing the number of worker processes above 

two. For a parallel algorithm of this nature it would be expected that the addition of 

further worker processes would lead to a shorter execution time. In this case, when 

there are two worker processes one will consume three tuples from tuple space R and 

the other will consume two tuples from tuple space R. Five worker processes will each 

consume only one tuple from tuple space R, implying that as the number of worker 

processes are increased the work each worker has to do drops. This is shown in Fig. 6 

where the solid line represents the time a worker process is accessing tuple space S, 

and the dotted line represents the time when the worker is accessing tuple space R. The 

solid thick black lines represent the time when a worker process is blocked awaiting 

the lock tuple. The length of the time taken by the longest worker is the execution time 

of the program. Figs. 6(a) and (b) show that the time taken by the longest worker 
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(a) Exultion pattern using two worker processes. 

PI I----_ 

P2 l----B 

P3 I---- 

P4 I---- 

PS I---- 

(h) Executitrn pattern using five: worker processes. 

Fig. 6. Execution patterns for two and five worker processes using the semaphore method 

process when both two and five worker processes are used is the same. If three or 

four worker processes are used then the longest worker process will again take the 

same time. 

As the number of worker processes increase there is no performance increase because 

there is nothing more that can be achieved in parallel. When there are five worker 

processes, each will consume only one tuple from tuple space R. However, the program 

takes the same length of time as that with two worker processes because there is no 

gain in having more than two worker processes access tuple space R in parallel. This 

is shown in Fig. 6, where the solid lines represent the time when a worker process is 

accessing tuple space S, the dotted lines represent the time that the worker process is 

accessing tuple space R, and the solid black bars represent the time when the worker 

process is blocked awaiting the lock tuple. The length of time taken by the longest 

worker represents the time the program takes. Hence, by looking at Figs. 6(a) and (b) it 

can be seen that the time taken by the longest worker process in each case is the same. 

7.2. The stream method 

Fig. 7 shows the execution times taken for the version using the stream method 

when the number of worker processes are varied from between one and five. Again 

the time taken for the sequential version is also shown and the predicted execution 

times are also shown. The predicted execution time is calculated on the basis of the 

time taken for one worker process. 

The results show that the execution time is dependent upon the number of worker 

processes used. The solution is parallel so the time taken depends on the worker process 

or processes which consume the most tuples from tuple space R. When either three or 

four worker processes are used then in both cases the most tuples from tuple space 

R a single worker process consumes is two. Subsequently the execution times when 

using three or four worker processes are same. 
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Stream version + 
Predicted stream version -+--- 

Sequential version -.-.--- 

1 2 3 4 S 
Number of worker processes 

Fig. 7. Execution time for the parallel composition of binary relations when using the stream approach. 

Although there is a speedup as the number of worker process is increased, the 

execution times are always greater than the sequential version. This is because all the 

tuples have to be read in regardless of whether they are actually required. The cost 

of reading all the tuples, regardless of whether they are to be used is an expensive 

operation. 

7.3. Experimental conclusions 

The experimental results show the dilemma that a programmer faces with the multiple 

rd problem within the Linda model. The binary semaphore method provides no speed 

increase as the number of worker processes used increases but is slightly faster than the 

sequential version when two or more worker processes are used. The stream method 

shows a speed up as the number of worker processes are increased but it takes a 

longer time to execute than the sequential version, even when five worker processes 

are being used. 

What makes this multiple rd problem more frustrating is that it is intuitively the 

case that several non-destructive reads of a tuple should be possible in parallel. Within 

the Linda model there is no notion of synchronisation between primitives, and hence 

two Linda primitives can be executed concurrently, and indeed the York Linda kernels 

[9,22] support concurrent primitive operations. 
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8. The copy-collect primitive 

In order to overcome the multiple rd problem the addition of a new primitive to the 

Linda model has been proposed, a relative of the collect primitive [3]. The informal 

semantics of the copy-collect primitive are: 

n = copy-collect (tsl, ts2, template) This primitive copies tuples that match template 

from one specified tuple space (tsl) to another specified tuple space (ts2). A count 

of the number of tuples copied (n) is returned. Tuple space tsl is known as the source 

tuple space and tuple space ts2 is known as the destination tuple space. 

To determine how many tuples are copied a series of rules are used. These rules 

are: 

(i) If a copy-collect primitive and no other Linda primitives are performed using 

the source tuple space concurrently, then ull the tuples that match the template 

will be copied to the destination tuple space. 

(ii) If a copy-collect primitive and an rd primitive are performed using the same 

source tuple space concurrently, and one or more tuples exist that can satisfy 

both templates, then all the matching tuples will be copied to the destination 

tuple space and the rd primitive will return some matching tuple. 

(iii) If two copy-collect primitives are performed using the same source tuple space 

concurrently, and one or more tuples exist that can satisfy both templates, then 

all the matching tuples will be copied to the destination tuple space for each of 

the copy-collect primitives. 

(iv) If a copy-collect primitive and an out primitive are performed concurrently, 

and the out primitive is placing a tuple into the source tuple space that matches 

the template used in the copy-collect primitive, then the result is a non- 

deterministic choice between copying the inserted tuple or not. All other matching 

tuples will be copied. 

(v) If a copy-collect primitive and an in primitive are performed using the source 

tuple space concurrently, and one or more tuples exist that can satisfy both tem- 

plates, then the copy-collect primitive either copies all the tuples, or all the 

tuples minus the matched tuple that the in primitive returns (the choice is non- 

deterministic). 

(vi) If a copy-collect primitive and a collect primitive are performed concurrently 

using the same source tuple space, then the number of tuples copied is non- 

deterministic within the bounds of zero to the maximum number of tuples present 

that match the template. The number of tuples that the collect primitive will 

move will be the number of tuples present that match the template. 

If any primitive occurs concurrently with a copy-collect primitive that does not 

use either a template which matches one or more tuples that the copy-collect prim- 

itive template matches, or the source tuple space, then there is no interference be- 

tween them. The exception is when the primitive is either a collect primitive or a 

copy-collect primitive performed on the destination tuple space with a template that 
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matches one or more of the tuples being copied. Then each tuple placed into the desti- 

nation tuple space is non-deterministically copied or moved by the collect primitive 

or copy-collect primitive being performed on the destination tuple space. When a 

value is returned by a copy-collect primitive the copied tuples are present within 

the destination tuple space. 

The copy-collect primitive will never live-lock - it will always complete and 

return a value. Rule 4 states that if an out primitive occurs concurrently with a 

copy-collect primitive then the inserted tuple may or may not be included in the 

copied tuples. Is it possible for one process to perform many primitives concurrently 

with another processes performing a copy-collect primitive? Within Linda there is 

no notion of time associated with a primitive. Therefore, it can be assumed at the model 

level that all primitives take the same time. Hence, the maximum number of out primi- 

tives that can occur concurrently with a copy-collect primitive is the number of user 

processes minus one. This means that the copy-collect primitive will always com- 

plete provided there are a finite number of processes. Pragmatically a copy-collect 

primitive may take longer than a single out primitive and therefore, several out prim- 

itives may occur concurrently with the copy-collect primitive. Due to the semantics 

given above for the copy-collect primitive it is up to the implementor to ensure that 

the copy-collect primitive completes and does not live lock. 

The copy-collect primitive assumes that there is out ordering [9], which means 

that if a single process performs two sequential outs to the same tuple space, the sec- 

ond tuple can not appear in the tuple space before the first tuple. The example processes 

shown in Fig. 8 demonstrate why out ordering is required. Let us assume that the tu- 

ple space tsl is only accessible from the two processes shown. Process One places 

two tuples into the tuple space t sl. Process Two performs an in on one of the tuples 

and then performs an inp on the other. When using out ordering then there is only 

one outcome of these two processes, Process Two removes the tuple (“DONE”Sf,my) 

and then the variable x is assigned the value one, and the tuple (lOinte(lrr) is copied 

to ts2. However, if out ordering is not used then the copy-collect might copy 

no tuples. 

If out ordering is not used, then there is no way for a programmer to ensure that 

all the mples are present within a tuple space before the copy-collect is performed. 

Enforcing out ordering is quite achievable, even in distributed implementations. For 

more information see Rowstron et al. [21]. 

I Process One I Process Two I 

out(tsl, CIOI); in(ts.1, I [“DONE”] I) ; 

out (tsl , [“DONE”I) 1 ; x := copy-collect(ts1, ts2, I [?intl I); 

Fig. 8. out ordering example. 
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9. Using copy-collect to solve the multiple rd problem 

The copy-collect primitive has the functionality to overcome the multiple rd prob- 

lem. The primitive allows several processes to concurrently copy the tuples they require. 

Consider again the example where a tuple space is used to store a number of tuples 

containing peoples names. All the people with the same surname are required. Using 

the copy-collect primitive it is possible to extract into a separate tuple space all the 

tuples with the same surname. Hence, to extract all people with the surname Rowstron, 

a copy-collect primitive is performed using the template ( lUsfring, “Rowstron”,trj,, I). 

Fig. 9 shows the use of the copy-collect primitive to overcome the multiple rd 

problem. The shared tuple space is called image-ts and the processes are called PA, PB 

and PC. Each process creates a tuple space (image-t-P,) to which only they have 

access. They then perform a copy-collect primitive using the source tuple space as 

image-ts and the destination tuple space as image_ts_P,. Once the tuples have been 

copied to the destination tuple space each process can retrieve each tuple in turn 

using the in primitive. Each process knows the number of tuples in the tuple space 

because the copy-collect primitive returns a counter of the number moved, and by 

destructively removing them ensures that the same tuple is never read twice. Because 

the tuple space cannot be accessed by any other process the destructive removal of 

tuples does not affect any other process. The example in Fig. 9 has two of the processes 

requiring all the pixels which are set (the third field set to one) and the other process 

requiring all the pixels which are not set (the third field set to zero). 

The parallel composition of two binary relations used as an example in the previous 

sections, is now used to show in more detail how copy-collect primitive overcomes 

the multiple rd problem. The worker process using the copy-collect method is 

shown in Fig. 10. The general structure of the approach is the same as in the solutions 

Fig. 9. Using the copy-collect primitive to solve the multiple rd problem. 
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comp_worker := fllnc(R,S,C); 
local my_val, my_ts, todo, my-comb; 

my-ts := NewBag; 

my_val := lin(R, I [?int,?int] I); -- Get the tuple from R 
todo := lcopycollect(S,my_ts,l [my_val(2),?intlt); 
while (todo > 0) do -- Process all matched tuples 

todo := todo - 1; 
my-comb := lin(my_ts, 1 [my_val(2) ,?intl 1) ; 
lout(C,[my_val(l),my_comb(2)1); 

end while; 
return CTERMINATED~~I ; 

end func: 

Fig. IO. The worker process using the copy-collect primitive 

given in the previous sections, with each worker process removing a tuple from tuple 

space R. The worker process then creates a template using the retrieved tuple for use 

with the copy-collect primitive. The second field of the retrieved tuple from tuple 

space R is used as the first field of the template. The second field of the template is left 

as a formal of type integer. A copy-collect primitive is then performed which copies 

the tuples from tuple space S to a tuple space which the worker process creates. The 

counter returned by the copy-collect primitive is then used to control an iterative 

loop which destructively reads the tuples from the tuple space and creates the result 

tuples in tuple space C. 

10. Experimental results 

The experimental results presented in this section, as in the previous sections, are 

obtained using ISETL-Linda running on a Transputer based Meiko CS-1 parallel com- 

puter using the York Kernel I. The copy-collect primitive was added to the run-time 

system by Douglas [9], and the implementation is naive. As in the previous section 

the worker process was altered to enable the number of tuples from tuple space R to 

be consumed to be specified. 

For the experimental results the same configuration for R and S is used as used in 

the experimental results presented in the previous sections. Fig. 11 shows the execution 

times for the worker processes for computing the composition of two binary relations 

using copy-collect, the best execution time of the other two methods (using a lock 

tuple with four worker processes), and the expected execution time for the copy- 

collect method is shown. 

Fig. 11 shows some interesting results. Firstly, the execution time using a single pro- 

cess is less than the best time achievable using any number of worker processes for any 

of the other methods. This is because the number of tuple space operations that have to 

be performed is significantly less. The time taken when three and four worker processes 
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Fig, 11. Execution time for the parallel composition of binary relations when using the new copy-collect 

primitive. 

are used is similar, for the same reason that in the stream method the time taken for 

three and four worker processes is similar. The expected results are calculated using the 

time taken for the single worker process and dividing it by the maximum number of 

tuples in tuple space R, which a single worker consumes. As with the stream method, 

because there is parallel access it is expected that with five worker processes, each 

processes a single tuple from tuple space R, and therefore, the time each worker takes 

should be one fifth of the time the single worker process takes. The actual execution 

times are greater than predicted because the underlying run-time system is “saturating”; 

in other words the run-time system is receiving more requests than it can process, so 

becomes a bottleneck. However the performance even with the run-time system sat- 

urating is twice as fast as the best time produced by the semaphore or the stream 

methods. 

Section 8 and this section demonstrate how the copy-collect primitive solves the 

multiple rd problem. A worker creates a “local” copy of the tuples that it requires us- 

ing a copy-collect primitive and then destructively reads them from that local triple 

space. For example, given a tuple space containing an image with each pixel a sep- 

arate tuple ( [x_coord, y-coord, value] ) the command copy-collect (image-ts, 

local-ts, I [?int ,?int , I] I > copies all the tuples with a pixel value of one into 

the local tuple space. Given the tuple space containing tuples representing first names 

and surnames. Each process would then use the copy-collect primitive with the 
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Fig. 12. Execution time for the parallel composition versus the number of pairs in tuple space S which each 

pair in tuple space R matches. 

template (1tlslriny, “Rowstron”smr~ng , I) which will copy all the tuples with a surname of 

“Rowstron” to a separate tuple space, where they can be destructively processed. 

So far with all the experimental results the execution time for a specific cardinality 

of binary relations S and R have been considered. Now the effect of making more 

tuples in tuple space S match each tuple in tuple space R is considered. For this the 

cardinal@ of tuple space R is again fixed at five. Fig. 12 shows the execution times for 

five worker processes when the number of tuples in the tuple space S that match each 

tuple in tuple space R is increased from one to 50 (the cardinality of tuple space S 

is 50). 

As the number of tuples in tuple space S that each tuple in tuple space R matches 

increases there will be an increase in the computation time within each worker process 

associated with the calculation and placement of the result tuples in tuple space C. 

Hence, although it might be expected that the stream method should take a constant 

time because all tuples in tuple space S are always read by every worker process, 

the actual time increases slightly. This increase is attributable to the extra computation 

that the worker processes perform. The time taken for the semaphore method increases 

uniformly with the addition of the extra tuples in tuple space S that match each tuple 

in tuple space R. The reason why the execution time increases at a greater rate than 

the other methods, is that the other methods are parallel. So when the number of tuples 

that match each element in tuple space R increases by one, each of the five worker 
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processes process one more tuple. If the method is parallel then this is performed 

concurrently. Because the semaphore method is sequential the five tuples are processed 

sequentially. This leads to an increase in the execution time which is five times larger 

than the increase for the parallel methods for every extra tuple from tuple space S 

which matches each element in tuple space R. The execution time for the copy- 

collect method increases as the number of matching tuples in tuple space S increases. 

As more tuples match, not only is there the extra computation costs associated with 

each extra tuple processed by the worker processes but there is extra communication as 

the number of tuple space operations is proportional to the number of tuples in tuple 

space S that match each tuple in tuple space R. 

However, the performance of the stream method seems to perform better when ap- 

proximately 70% of the pairs within the tuple space S match each pair in tuple space R. 

The exact performance of the different methods depends on the underlying Linda run- 

time system implementation. In this case the kernel is saturating at this point, because 

all the worker processes wish to perform the copy-collect primitive simultaneously. 

In the York Kernel II [22,21] the performance of the copy-collect method is always 

better than a stream approach because of a more efficient implementation approach for 

the copy-collect primitive (see Section 12). 

This has shown how the new primitive would be used, and it can be seen how it 

would work for all cases where a multiple rd is required, and therefore solves the 

multiple rd problem. In general, a worker creates a “local” copy of the tuples that it 

requires using a copy-collect and then destructively reads them from that local tuple 

space. For example, given a tuple space containing an image with each pixel a sepa- 

rate tuple ( [x-coord, y-coord, value] ) the command: copy-collect (image-ts, 

local-ts, I [?int , ?int , 11) would copy all the tuples with a value of one into 

the local tuple space. 

11. Alternative proposals 

As with any abstract model there have been many proposals to alter the model. 

Two of particular interest are; One the proposal for another primitive; rd( )a11 [l]. 4 

The informal semantics of rd( )a11 are: 

rd (template) all (function) This primitive will apply the function to all tuples in a tuple 

space that match the template. 

This primitive can potentially be used to solve the multiple rd problem because 

it applies the function to all tuples that match the template within the tuple space. 

Therefore, in the parallel composition of binary relations one could consider creating 

a worker which removes a tuple from tuple space R and then performs an rd( )all. 

A worker process using this primitive is shown in Fig. 13. 

4 The same primitive appears to have been suggested under a number of other names including rd* 
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comp_worker := func(R,S,C); 

local my_val; 

my_val := lin(R,l [?int,?intll>; -- Get the tuple from R 

rd(lCmy_val(2),?xll)all(lout(C,~my_val(l),xl>; 
return C~~TEMIUTWI; 

end func; 

Fig. 13. The worker process using the rd( )a11 ( ) primitive 

Anderson [l] notes that there are specific problems with such a primitive. The sug- 

gestion is that the operation is not atomic, so essentially a cycle is created where a tuple 

is fetched, the function applied to it, and then the next tuple fetched. He states that this 

is due to the implementational difficulties of creating an atomic primitive. However, 

such a primitive raises much deeper questions whether it is perceived as atomic or 

non-atomic. What happens if the function removes tuples from the tuple space that 

the rd( > all would match? What if the function adds tuples to the tuple space? Is 

there any reason why the function should not be executed in parallel? It would also 

imply that the primitive has the “interesting” ability to live-lock, especially if it is not 

atomic. It is also unclear what information the primitive actually returns. However, it 

should also be noted that rd( > all does not require multiple tuples spaces, and could 

be incorporated into systems with or without them. 

The copy-collect primitive is much simpler. It does not attempt to fold commu- 

nication and computation into the same primitive. It also returns information which is 

valuable to the programmer. The information allows the number of worker processes 

evaled to be controlled for example. If there are many tuples that match, more worker 

processes will be required than if fewer tuples match. 

In Objective Linda [ 151 the primitives are bounded. This is achieved by adding 

a maximum and minimum number of tuples that the primitive can return. By specifying 

a maximum number of injinitr-matches all matching tuples are returned. This therefore 

can be used to overcome the multiple rd problem. However, the primary difference is 

that the copy-collect primitive (and collect primitive) do not return tuples. The 

tuples are copied or moved from one tuple space to another and therefore, their storage 

is still controlled by the system that manages the tuples. The bounded primitives in 

Objective Linda return bags of tuples, which have to be stored locally within the 

user process. In Objective Linda this leads to special local data structures with special 

operations, including a primitive to count the number of items in the local data structure. 

12. Implementation of copy-collect 

Having demonstrated the need for the copy-collect primitive, we now briefly 

consider how the primitive can be implemented in an efficient manner. The primitive 

has been implemented in all our distributed kernels [22,9]. 
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There are two concerns about implementing the copy-collect primitive. One is 

that the primitive apparently implies duplication of the matched tuples. Because of 

the nature of the primitive there is the chance that large numbers of tuples will be 

physically duplicated. Pragmatically this depends on the implementation of the nm- 

time system, and how tuples are stored within it. It is quite possible that all tuples 

which are identical are stored in the same place within the run-time system which 

enables the tuple to be tagged as belonging to several tuple spaces, without being 

physically duplicated. This approach is to be adopted in York Kernel III, another 

distributed run-time system. 

The second concern is that the copy-collect primitive may lead to the unnec- 

essary movement of tuples around a run-time system. York Kernel I [9] implements 

a copy-collect which never moves tuples internally during the execution of a copy- 

collect primitive. This is a distributed run-time system which places tuples within 

the distributed system based on their content rather than the tuple space to which they 

belong. Hence regardless of which tuple space a tuple belongs, it will always appear in 

the same place within the distributed kernel. Therefore, when a copy-collect prim- 

itive is performed tuples never move from one place within the distributed run-time 

system to another place. 

However, the bulk movement of tuples has been shown in some circumstances to be 

desirable. The York Kernel II [22,2 l] is a two layer hierarchical kernel, which does 

move tuples under certain circumstances. The intelligent movement of tuples around 

a distributed kernel can lead to large speed increases over “traditional” implementations. 

The York Kernel II uses implicit information to enable it to classify every tuple space 

as either a local tuple space or a remote tuple space on the fly and without extra 

communication or programmer guidance. A local tuple space is one which can only 

be accessed by one process and a remote tuple space is one that many processes can 

access. By making this distinction it enables the York Kernel II to transparently move 

packets of tuples around the system to gain optimum performance by placing the tuples 

as close to the processes which can consume them as possible. It should be noted that 

making the distinction between local tuple spaces and remote tuple spaces does not 

alter the semantics of the Linda model or of the copy-collect primitive, a user 

sees no distinction between a local and a remote tuple space. When a copy-collect 

primitive is performed, under certain circumstances, it leads to the bulk movement of 

tuples between local and remote tuple spaces and vice versa. 

13. Conclusions 

In this paper the multiple rd problem has been characterised, and two possible 

solutions using the facilities of the standard Linda model - the stream method and the 

binary semaphore method - have been shown through experimentation to be inefficient. 

The stream method requires every tuple in a tuple space to be read whilst the binary 

semaphore method yields a sequential solution. It is concluded that the standard Linda 
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model is unable to provide a satisfactory concurrent solution to performing the multiple 

rd operation. 

Consequently, a new primitive has been proposed, called copy-collect, which has 

been shown to overcome the deficiencies in the standard model solutions. Experimental 

results have been presented which demonstrate the improved performance of the copy- 

collect based method compared to streams and binary semaphores. 

The results suggest that when the number of matching tuples is high, the stream 

method may be faster than using the copy-collect method. This is because the 

kernel being used to gain the experimental results is saturating. However, this is an 

implementation matter, and given an improved implementation, such as York Kernel 

II, the copy-collect method will always perform better than the either the stream or 

semaphore approach [ 181. 

Finally, although a deliberately simple example program is used in this paper in 

order to clarify the presentation, the multiple rd problem occurs in a wide range of 

more complex algorithms and situations - it is possible for the problem to occur in any 

algorithm where information is stored that is required by several processes. A more 

substantial example can be found in [ 181 which describes the parallel implementation 

of image processing algorithms in which the processing of an image is to be shared 

by multiple processes. 
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