241 research outputs found

    Physics-guided neural networks for feedforward control with input-to-state-stability guarantees

    Get PDF
    The increasing demand on precision and throughput within high-precision mechatronics industries requires a new generation of feedforward controllers with higher accuracy than existing, physics-based feedforward controllers. As neural networks are universal approximators, they can in principle yield feedforward controllers with a higher accuracy, but suffer from bad extrapolation outside the training data set, which makes them unsafe for implementation in industry. Motivated by this, we develop a novel physics-guided neural network (PGNN) architecture that structurally merges a physics-based layer and a black-box neural layer in a single model. The parameters of the two layers are simultaneously identified, while a novel regularization cost function is used to prevent competition among layers and to preserve consistency of the physics-based parameters. Moreover, in order to ensure stability of PGNN feedforward controllers, we develop sufficient conditions for analyzing or imposing (during training) input-to-state stability of PGNNs, based on novel, less conservative Lipschitz bounds for neural networks. The developed PGNN feedforward control framework is validated on a real-life, high-precision industrial linear motor used in lithography machines, where it reaches a factor 2 improvement with respect to physics-based mass–friction feedforward and it significantly outperforms alternative neural network based feedforward controllers

    An Optimized Deep Learning Based Optimization Algorithm for the Detection of Colon Cancer Using Deep Recurrent Neural Networks

    Get PDF
    Colon cancer is the second leading dreadful disease-causing death. The challenge in the colon cancer detection is the accurate identification of the lesion at the early stage such that mortality and morbidity can be reduced. In this work, a colon cancer classification method is identified out using Dragonfly-based water wave optimization (DWWO) based deep recurrent neural network. Initially, the input cancer images subjected to carry a pre-processing, in which outer artifacts are removed. The pre-processed image is forwarded for segmentation then the images are converted into segments using Generative adversarial networks (GAN). The obtained segments are forwarded for attribute selection module, where the statistical features like mean, variance, kurtosis, entropy, and textual features, like LOOP features are effectively extracted. Finally, the colon cancer classification is solved by using the deep RNN, which is trained by the proposed Dragonfly-based water wave optimization algorithm. The proposed DWWO algorithm is developed by integrating the Dragonfly algorithm and water wave optimization

    Dynamics analysis and applications of neural networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Structured manifolds for motion production and segmentation : a structured Kernel Regression approach

    Get PDF
    Steffen JF. Structured manifolds for motion production and segmentation : a structured Kernel Regression approach. Bielefeld (Germany): Bielefeld University; 2010

    Novel Methods for Natural Language Modeling and Pretraining

    Get PDF
    This thesis is about modeling language sequences to achieve lower perplexity, better generation, and benefit downstream language tasks; specifically, this thesis addresses the importance of natural language features including the segmentation feature, lexical feature, and alignment feature. We present three new techniques that improve language sequence modeling with different language features. 1. Segment-Aware Language Modeling is a novel model architecture leveraging the text segementation feature for text sequence modeling. It encodes richer positional information for language modeling, by replacing the original token position encoding with a combined position encoding of paragraph, sentence, and token. By applying our approach to Transformer-XL, we train a new language model, Segatron-XL, that achieves a 6.6-7.8% relative reduction in perplexity. Additionally, BERT pretrained with our method -- SegaBERT -- outperforms BERT on general language understanding, sentence representation learning, and machine reading comprehension tasks. Furthermore, our SegaBERT-large model outperforms RoBERTa-large on zero-shot STS tasks. These experimental results demonstrate that our proposed Segatron works on both language models with relative position embeddings and pretrained language models with absolute position embeddings. 2. Hypernym-Instructed Language Modeling is a novel training method leveraging the lexical feature for rare word modeling. It maps words that have a common WordNet hypernym to the same class and trains large neural LMs by gradually annealing from predicting the class to token prediction during training. Class-based prediction leads to an implicit context aggregation for similar words and thus can improve generalization for rare words. Empirically, this curriculum learning strategy consistently reduces perplexity over various large, highly-performant state-of-the-art Transformer-based models on two datasets, WikiText-103 and ArXiv. Our analysis shows that the performance improvement is achieved without sacrificing performance on rare words. 3. Alignment-Aware Acoustic and Text Modeling is a novel pretraining method leveraging both the segmentation and alignment features for text-speech sequence modeling. It reconstructs masked acoustic signals with text input and acoustic-text alignment during training. In this way, the pretrained model can generate high quality of reconstructed spectrogram, which can be applied to the speech editing and new speaker TTS directly. Experiments show A3T outperforms SOTA models on speech editing and improves multi-speaker speech synthesis without the external speaker verification model

    Language Models for Text Understanding and Generation

    Get PDF

    Towards PACE-CAD Systems

    Get PDF
    Despite phenomenal advancements in the availability of medical image datasets and the development of modern classification algorithms, Computer-Aided Diagnosis (CAD) has had limited practical exposure in the real-world clinical workflow. This is primarily because of the inherently demanding and sensitive nature of medical diagnosis that can have far-reaching and serious repercussions in case of misdiagnosis. In this work, a paradigm called PACE (Pragmatic, Accurate, Confident, & Explainable) is presented as a set of some of must-have features for any CAD. Diagnosis of glaucoma using Retinal Fundus Images (RFIs) is taken as the primary use case for development of various methods that may enrich an ordinary CAD system with PACE. However, depending on specific requirements for different methods, other application areas in ophthalmology and dermatology have also been explored. Pragmatic CAD systems refer to a solution that can perform reliably in day-to-day clinical setup. In this research two, of possibly many, aspects of a pragmatic CAD are addressed. Firstly, observing that the existing medical image datasets are small and not representative of images taken in the real-world, a large RFI dataset for glaucoma detection is curated and published. Secondly, realising that a salient attribute of a reliable and pragmatic CAD is its ability to perform in a range of clinically relevant scenarios, classification of 622 unique cutaneous diseases in one of the largest publicly available datasets of skin lesions is successfully performed. Accuracy is one of the most essential metrics of any CAD system's performance. Domain knowledge relevant to three types of diseases, namely glaucoma, Diabetic Retinopathy (DR), and skin lesions, is industriously utilised in an attempt to improve the accuracy. For glaucoma, a two-stage framework for automatic Optic Disc (OD) localisation and glaucoma detection is developed, which marked new state-of-the-art for glaucoma detection and OD localisation. To identify DR, a model is proposed that combines coarse-grained classifiers with fine-grained classifiers and grades the disease in four stages with respect to severity. Lastly, different methods of modelling and incorporating metadata are also examined and their effect on a model's classification performance is studied. Confidence in diagnosing a disease is equally important as the diagnosis itself. One of the biggest reasons hampering the successful deployment of CAD in the real-world is that medical diagnosis cannot be readily decided based on an algorithm's output. Therefore, a hybrid CNN architecture is proposed with the convolutional feature extractor trained using point estimates and a dense classifier trained using Bayesian estimates. Evaluation on 13 publicly available datasets shows the superiority of this method in terms of classification accuracy and also provides an estimate of uncertainty for every prediction. Explainability of AI-driven algorithms has become a legal requirement after Europe’s General Data Protection Regulations came into effect. This research presents a framework for easy-to-understand textual explanations of skin lesion diagnosis. The framework is called ExAID (Explainable AI for Dermatology) and relies upon two fundamental modules. The first module uses any deep skin lesion classifier and performs detailed analysis on its latent space to map human-understandable disease-related concepts to the latent representation learnt by the deep model. The second module proposes Concept Localisation Maps, which extend Concept Activation Vectors by locating significant regions corresponding to a learned concept in the latent space of a trained image classifier. This thesis probes many viable solutions to equip a CAD system with PACE. However, it is noted that some of these methods require specific attributes in datasets and, therefore, not all methods may be applied on a single dataset. Regardless, this work anticipates that consolidating PACE into a CAD system can not only increase the confidence of medical practitioners in such tools but also serve as a stepping stone for the further development of AI-driven technologies in healthcare
    corecore