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Abstract

This thesis is about modeling language sequences to achieve lower perplexity, better
generation, and benefit downstream language tasks; specifically, this thesis addresses the
importance of natural language features including the segmentation feature, lexical feature,
and alignment feature. We present three new techniques that improve language sequence
modeling with different language features.

Segment-Aware Language Modeling is a novel model architecture leveraging the
text segementation feature for text sequence modeling. It encodes richer positional in-
formation for language modeling, by replacing the original token position encoding with
a combined position encoding of paragraph, sentence, and token. By applying our ap-
proach to Transformer-XL, we train a new language model, Segatron-XL, that achieves a
6.6-7.8% relative reduction in perplexity. Additionally, BERT pretrained with our method
– SegaBERT – outperforms BERT on general language understanding, sentence represen-
tation learning, and machine reading comprehension tasks. Furthermore, our SegaBERT-
large model outperforms RoBERTa-large on zero-shot STS tasks. These experimental re-
sults demonstrate that our proposed Segatron works on both language models with relative
position embeddings and pretrained language models with absolute position embeddings.

Hypernym-Instructed Language Modeling is a novel training method leveraging
the lexical feature for rare word modeling. It maps words that have a common Word-
Net hypernym to the same class and trains large neural LMs by gradually annealing from
predicting the class to token prediction during training. Class-based prediction leads to
an implicit context aggregation for similar words and thus can improve generalization for
rare words. Empirically, this curriculum learning strategy consistently reduces perplexity
over various large, highly-performant state-of-the-art Transformer-based models on two
datasets, WikiText-103 and arXiv. Our analysis shows that the performance improve-
ment is achieved without sacrificing performance on rare words.

Alignment-Aware Acoustic and Text Modeling is a novel pretraining method
leveraging both the segmentation and alignment features for text-speech sequence model-
ing. It reconstructs masked acoustic signals with text input and acoustic-text alignment
during training. In this way, the pretrained model can generate high quality of recon-
structed spectrogram, which can be applied to the speech editing and new speaker TTS
directly. Experiments show A3T outperforms SOTA models on speech editing and improves
multi-speaker speech synthesis without the external speaker verification model.

v



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Ming Li,
for his guidance, encouragement, and unwavering support throughout my PhD journey. His
insightful feedback and constructive criticism have helped shape my research and academic
growth. His patience, availability, and unwavering support have provided me with the
confidence and motivation I needed to navigate the challenges of graduate school. I am
also deeply grateful to my supervisor for helping me to develop the necessary research skills
and cultivate the academic mindset that are essential for success in academia. In addition
to the outstanding mentorship, I am grateful to my supervisor for his unwavering support
and encouragement during difficult times. His belief in me and my abilities has been a
constant source of inspiration and motivation.

I would like to express my sincere gratitude to my thesis committee, Jimmy Lin, Charles
Clarke, Helen Chen, and Jimmy Huang, for their invaluable input and feedback on my re-
search. Their diverse expertise and insightful commentary have helped me to refine my
ideas and produce a more rigorous and comprehensive thesis. Their perspectives and sug-
gestions have broadened my understanding of my research field and helped me to identify
new avenues for exploration. Their constructive criticism and thorough evaluations have
been instrumental in helping me to produce a high-quality thesis.

I am deeply grateful for the invaluable support and guidance provided by my industry
advisors, including Navdeep Jaitly at Apple, Alessandro Sordoni and Tong Wang at Mi-
crosoft, Liang Huang, Renjie Zheng, and Mingbo Ma at Baidu Research, and Luchen Tan
at RSVP.AI. Their mentorship during my research internships was truly exceptional, mak-
ing them fruitful and enjoyable experiences. I feel fortunate to have had the opportunity
to learn from and work alongside such talented and knowledgeable individuals, and their
contributions have undoubtedly enriched the quality of my research.

I would like to thank my colleagues and friends in my program who have made my
time as a PhD student both productive and enjoyable, including Yuqing Xie, Ruixue
Zhang, Ajay Singh, Mojtaba Vàlipour, Christopher West, Gautam Pathak, Minghan Li,
Haoye Lu, Yimu Wang, Shufan Zhang, and Jianlin Li. Their support, encouragement, and
camaraderie have helped me to overcome the challenges of graduate school and to pursue
my academic goals with renewed energy and enthusiasm. In addition to my graduate
school, I am also grateful to my friends and loved ones who have provided me with a
supportive and nurturing environment outside of the lab. Their companionship, kindness,
and encouragement have provided me with the balance and perspective I needed to stay
motivated and focused throughout my academic career.

vi



I would like to express my deepest appreciation and love to my partner. The unwavering
support, encouragement, and understanding have been an essential source of strength and
motivation throughout my PhD journey, and I am grateful for the depth of our connection.
Throughout the ups and downs of our lives, my partner has been a constant source of
support and comfort, and we have shared in each other’s joys and sorrows. Our love has
been a source of strength and inspiration, and I am grateful for the mutual support and
understanding that we share.

Lastly, I would like to express my heartfelt gratitude to my family for their unconditional
love, unwavering support, and constant encouragement. Unlike many traditional Chinese
families, my family has always encouraged me to pursue my dreams and to follow my
heart. As the first generation in my family to attend university, I am grateful for their
understanding and encouragement. I am proud to have been raised by such loving and
supportive parents.

vii



Dedication

This is dedicated to the one I love.

viii



Table of Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Causal Language Model . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Masked Language Model . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Natural Language Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Pretraining for Text . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Pretraining for Speech . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Issues of Improving LM with More Data and More Parameters . . . . . . . 9

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Segment-Aware Language Modeling 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Segatron-XL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Pretrained Segatron . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Autoregressive Language Modeling . . . . . . . . . . . . . . . . . . 21

2.4.2 Pretrained Masked Language Model . . . . . . . . . . . . . . . . . . 24

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Hypernym-Instructed Language Modeling 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Hypernymy as Word Classes . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Hypernym Class Prediction . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Generalization on Rare Tokens . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Alignment-Aware Acoustic and Text Modeling 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Speech Synthesis and Editing . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Speech Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 A3T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Cross-modal Alignment Embedding . . . . . . . . . . . . . . . . . . 55

4.3.3 Conformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Post-Net and Loss Function . . . . . . . . . . . . . . . . . . . . . . 57

x



4.3.5 A3T for Speech Editing . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.6 A3T for Multi-speaker TTS . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Configuration Details . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.3 Ablation Study with Spectrogram Reconstruction . . . . . . . . . . 63

4.4.4 Speech Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.5 Prompt-based Multi-speaker TTS . . . . . . . . . . . . . . . . . . . 68

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion and Future Work 70

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References 74

xi



List of Figures

1.1 Illustration of the CLM and MLM. . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Input representation of Segatron-XL and SegaBERT. . . . . . . . . . . . . 19

2.2 Valid perplexities during the training processes of language modeling. . . . 22

2.3 Test perplexities of Segatron-XL and Transformer-XL trained with different
input lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Valid losses during the pretraining. . . . . . . . . . . . . . . . . . . . . . . 24

2.5 An example article for visualization . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Self-attention heat maps of the first, the sixth, and the last layer of SegaBERT
and BERT when encoding the first 512 tokens of a Wikipedia article. . . . 30

3.1 An example of word prediction training text and hypernym class prediction
training text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Hypernym-path example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Probabilities of HCP step over training process with different pacing functions. 38

3.4 Valid perplexity curves during the training of small and large models. . . . 40

3.5 Frequency-stratified validation log(perplexity) of baseline model (Transformer-
small) and HCP model (Transformer-small-HCP) with WikiText-103. . . 42

3.6 Pairwise comparison results. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Previous work for speech representation learning. . . . . . . . . . . . . . . 52

4.2 Model architecture of A3T. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Details of the Embedding block, Conformer block and Post-Net block. . . . 56

xii



4.4 Speech editing pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Illustrations for one-shot TTS. . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 An example of ablation study in LJSpeech. Original text is “and of the
Advanced Research Projects Agency of the Department of Defense”. The
portion with red box is “Advanced Research” which is masked in (b,c,d,e,f)
subfigures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Attention map between speech and text of A3T with and without alignment
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Illustrations for speech editing baselines. . . . . . . . . . . . . . . . . . . . 65

4.9 Comparisons between A3T and EditSpeech. →: free decoding, 99K: forced
decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



List of Tables

2.1 Comparison with Transformer-XL and competitive baseline results on WikiText-
103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Ablation over the position encodings using Transformer-XL base architecture. 22

2.3 Fair comparison on GLUE dev. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Results on GLUE test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Zero-shot spearman’s rank correlation ρ×100 between the negative distance
of sentence embeddings and the gold labels. . . . . . . . . . . . . . . . . . 26

2.6 Evaluation results on SQUAD v1.1 and v2. . . . . . . . . . . . . . . . . . . 27

2.7 Accuracy on dev and test sets of RACE. . . . . . . . . . . . . . . . . . . . 28

3.1 Results on WikiText-103 dataset with different models. . . . . . . . . . . 39

3.2 Results on arXiv dataset with different models. . . . . . . . . . . . . . . 41

3.3 Clustering words into classes with different layer’s hypernym parents. . . . 45

3.4 Ignoring words whose frequency more than a threshold f during hypernym
class clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Training N steps hypernym class prediction among 100k training steps with
different pacing functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Results obtained by alternative strategies. . . . . . . . . . . . . . . . . . . 48

4.1 Comparisons of A3T with other existing speech pretraining models. Here s
stands for speech input, while x stands for text, and ⟨s,x⟩ denotes parallel
speech-text data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Ablation study for A3T pretrained with LJSpeech. . . . . . . . . . . . . . . 63

xiv



4.3 MCD scores of A3T pretrained in different masking rates with VCTK. . . 64

4.4 MCD evaluation on identity speech reconstruction using VCTK and LJSpeech. 67

4.5 The MOS evaluation (↑) on speech editing task on VCTK with 95% confi-
dence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 The MOS evaluation (↑) for speaker similarity on multi-speaker TTS on
VCTK with 95% confidence intervals. The FastSpeech2 model is equipped
with X-vectors [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 The MOS evaluation (↑) for speech quality on multi-speaker TTS on VCTK
with 95% confidence intervals. The FastSpeech2 model is equipped with
X-vectors [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xv



Chapter 1

Introduction

Language modeling (LM) is an unsupervised sequence modeling task that assigns proba-
bilities to sequences of words [53], widely used in speech recognition, statistical machine
translation, and optical character recognition. Over the past decades, LM has transitioned
from n-gram model to neural models [12, 84, 80] and more recently to the Transformer
architecture [129].

Today’s Transformer-based language models pretrained with a massive amount of text
data have shown great success in representation learning and transfer learning, and achieved
the state-of-the-art results in various natural language processing tasks [93, 30, 106, 18, 23].
The pretraining refers to train a model with unsupervised task first – language modeling
task in most cases – then apply the model to downstream tasks with or without downstream
data finetuning.

Most recently, Large Language Models (LLMs) have shown great improvements for vari-
ous NLP tasks in zero-shot and few-shot evaluation without any finetuning, i.e. GPT-3 [18],
PaLM [23], Chinchilla [42], Gopher [102], CodeX [21], ChatGPT, etc. By pretraining the
auto-regressive language model with a huge amount of data, LLMs can do both the classifi-
cation tasks and generation tasks without any finetuning by transforming the downstream
task examples into natural language sequence with prompting/templates.

Besides, the idea of text pretraining has also been applied in the speech processing do-
main for acoustic model pretraining, benefiting speech-related downstream tasks, such as
speech recognition, speech classification, and speech translation [6, 20, 68, 150, 43]. In this
case, the input is a sequence of speech features, such as spectrogram. The next/masked
word prediction task is then replaced by the next/masked speech feature prediction. Con-
sidering there is no vocabulary for speech features, the prediction task is formulated as
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a regression problem which is more challenging for model to generate high-quality speech
features than a model to select a word from the vocabulary. But the similarity between the
text sequence and the spectrogram sequence makes the transferring of the text pretraining
method to speech pretraining possible.

1.1 Language Modeling

There are two common paradigms for pretrained LMs: causal language modeling (CLM)
and masked language modeling (MLM), corresponding to GPT style [101, 18] and BERT
style [30, 72], respectively. CLM is the traditional language modeling task that predicts the
next word given the previous words in a sequence, while MLM is to predict masked words
given the surrounding context. Both CLM and MLM are widely used in the pretraining of
Transformer-based LMs.

1.1.1 Causal Language Model

The CLM models the the probability of the word sequence x1...xn with the chain rule of
probability:

p(x1...xn) =
n∏

t=1

p(xt|x1:t−1) (1.1)

where xt is the tth word and x1:t−1 represents the context words before the word xt. This
equation shows CLM treats language modeling as a next word prediction task whose inputs
are x1:t−1.

The datasets for CLM training and evaluation are usually large and lengthy, for exam-
ple, Wikipedia [79], webpages [106], scholarly papers [64], and books [105]. The evaluation
metric of CLM is the perplexity (PPL). The test PPL of a CLM is the inverse probability
of the test set, normalized by the number of words [53]:

PPL(x1...xn) = p(x1...xn)
− 1

n

= (
n∏

t=1

1

p(xt|x1:t−1)
)−

1
n

(1.2)

Early CLM is based on n-gram model, which approximates the probability of a word
given all the previous words by using only the conditional probability of the previous n−1
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(a) CLM (b) MLM

Figure 1.1: Illustration of the CLM and MLM.

words. The assumption that the probability of a word depends only on the previous n− 1
word is called a Markov assumption. It is not able to capture the long-term dependencies
in the language. To address this issue, the recurrent neural network (RNN) is introduced
to model the probability of a word given the previous words [148]. The RNN is a sequential
neural network that can model the probability of a word given the previous words by using
the hidden state of the previous words. However, RNN models suffer from the vanishing
gradient problem [41], and the long-term dependencies are still not well captured.

More recently, Transformer [129] dominates the CLM domain, with more paralleliza-
tion and less training times than RNN models [80]. The Transformer is a self-attention-
based encoder-decoder architecture that can model the probability of a word by using the
self-attention of the previous words. However, the vanilla Transformers are not able to
model the probability of a word when the previous words are longer than the maximum
sequence length. To capture the long-range context in language modeling, [28] proposes
Transformer-XL by extending the vanilla Transformers with a memory segment, which
can encode more context tokens to predict the next token and achieve significant im-
provements. [105] extends Transformer-XL with a compressed memory segment to further
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encode long-time context memory. It should be noted that self-attention is computation-
ally expensive, which limits the maximum sequence length that can be encoded. To encode
even longer sequences, [11] proposes Longformer, which uses sliding window attention to
encode the context tokens. Other works explore different sparse Transformers to encode
much longer sequences for LM [114, 147]. ERNIE-Doc [31] proposes a document-level
language pretraining model based on Recurrence Transformers, which has a much longer
effective context length. There are also some works using memory or cache to retrieve the
supporting evidence for the next token prediction task, which can reduce the perplexity
significantly [54, 151].

Datasets of CLM are varies in size. Penn Treebank (PTB) [78, 82] is a small dataset
with about 1M tokens. Compared to PTB, WikiText-2 [79] is over 2 times larger and
WikiText-103 [79] is over 110 times larger. WikiText-103 is a popular word-level LM
benchmark with long-term dependency and is widely used in the CLM domain. There are
also some character-level datasets, such as enwik8 [77] and text8 [77], which are unpro-
cessed and processed versions of Wikipedia text with about 100M characters. Although
Wikipedia is the most popular domain of language modeling, some datasets are extracted
from books [11], ArXiv [64], and common webpages [106].

1.1.2 Masked Language Model

Different from the CLM, MLM only predicts the probabilities of the masked tokens in the
input sequence. An MLM example is shown in Fig. 1.1.

A key difference between CLM and MLM is that the MLM only predict the masked
words, while the CLM predicts the next word given the previous words. Hence, the MLM
needs masking schema to decide which tokens to mask for predicting. The masking scheme
is usually random: the masked tokens are randomly selected from the input sequence, and
the masked token is replaced with a special token, e.g., [MASK] in BERT [30]. In BERT’s
pretraining, the input sequence length is 512 and the masking rate is 15%, which means
15%*512 tokens of the input sequence are randomly selected and masked. The training task
is to predict the masked tokens given the unmasked parts. Although many works following
BERT to mask 15% tokens, [136] finds masking 40% tokens is better. There are also works
that use more sophisticated masking schemes, such as the span masking [51, 106], which
masks spans of tokens and the span lengths are randomly selected from a range.

Transformer encoder is the most popular architecture for MLM. BERT is the first work
that uses Transformer encoder to pretrain MLM. BERT uses a bidirectional Transformer
encoder to encode the input sequence, and the masked tokens are predicted by the last layer
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of the encoder. There are also other variants of MLM, where an additional Transformer
decoder is used to predict the masked tokens. For example, T5 [106] uses a bidirectional
Transformer encoder and a unidirectional Transformer decoder to encode the input se-
quence and predict the masked tokens with a span masking schema. BART [66] also uses
encoder-decoder model but trains the model with a denoising objective.

MLM is not a standard NLP task that has standard datasets and evaluation metrics,
but an unsupervised pretraining task. The pretraining data is usually a large corpus of
text, such as Wikipedia, BookCorpus [152], and common webpages. Pretrained MLM is
usually finetuned before the evaluation. The finetuning is to train the pretrained model
with the training data of the downstream task. The evaluation downstream tasks can be
many NLP tasks, such as text classification [149, 76], question answering [109, 52, 61],
and information extraction [123]. There are some challenging benchmarks to evaluate the
performance of pretrained MLM, such as GLUE [131] and SuperGLUE [130] for natural
language understanding evaluation, DiscoEval [45] for discourse evaluation, STS [19] for
sentence representation evaluation, etc.

1.2 Natural Language Pretraining

Given the unsupervised nature of language modeling, pretraining a model with a large
amount of text with either CLM or MLM becomes a common practice in NLP. Also, the
idea of pretrained LM is not limited to text, but also has been applied to other modalities,
such as image [100, 47], speech [6, 10, 43], and video [74]. Among these modalities, speech
shares the most similarities with text, where many text-pretraining methods have been
applied to the speech domain successfully.

1.2.1 Pretraining for Text

Large neural LMs trained with a massive amount of text have shown great success on many
NLP tasks, benefiting from the dynamic contextual representations learned from language
modeling and other self-supervised pretraining tasks.

Contextual Representations

Before the LM pretraining era, the word vectors such as GloVe [92] and word2vec [81] are
widely used in NLP tasks. ELMo [94] first proposes to train a language model to get
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the contextual word representations that outperform the static word vectors. ELMo uses a
bidirectional LSTM [41] to encode the input sequence and concatenates the hidden states of
the two directions as the contextual word representations. The usage of ELMo is to replace
the static word vectors with the contextual word representations in the downstream task
models. GPT [99] is similar to ELMo, but uses Transformer instead of LSTM. GPT uses
the last layer of the Transformer encoder as the contextual word representation.

BERT-style

Instead of providing the contextual word representations for other NLP models, BERT [30]
proposes the idea of finetuning that trains itself with the downstream task data. Also,
different from ELMo and GPT trained with CLM task, BERT is trained with MLM task
and an auxiliary task named next sentence prediction (NSP). The performance of BERT
outperforms GPT and ELMo on many NLP tasks. MLM and finetuning become the most
popular techniques in NLP at that time.

Considering there is no ablation study of BERT pretraining, RoBERTa [72] was proposed.
RoBERTa is a robustly optimized BERT and finds: a large batch size and more training
data are beneficial to BERT pretraining. Besides, NSP is not necessary for BERT pretrain-
ing. RoBERTa also finds that masking tokens of long documents is better than BERT’s
masking of sentence pairs. RoBERTa did not grow the model parameters but outperformed
BERT significantly. SpanBERT [51] investigates different schemas of random masking
and finds that the span masking is better than the token masking. ALBERT [63] proposes
to share parameters across layers of BERT and replaced NSP with sentence order predic-
tion (SOP). According to their experiments, SOP is more challenging than NSP. MLM and
other downstream tasks can benefit more from replacing NSP with SOP. ELECTRA [25]
proposes to train an additional discriminator to distinguish whether a token is the output
of MLM or not. They show the proposed objectives are more efficient and perform compa-
rably to RoBERTa with less than 1/4 compute. XLNeT[142] transforms BERT’s MLM
task into an autoregressive formulation and outperforms BERT on 20 tasks.

In addition to the vanilla encoder-based MLM, there are also some MLM variants with
encoder-decoder architecture. BART [66] is a seq2seq model. The pretraining task is
to generate the original text sequence given shuffled/masked input. The noises of the
input include: randomly shuffling the order of the original sentences, and spans of text are
replaced with a single mask token. BART works well for comprehension tasks (matches
the performance of RoBERTa), but it is particularly effective when finetuned for text
generation tasks. T5 [106] is also a seq2seq model, but its objective is to generate the
masked spans of the input sequence with its decoder. Compare to BERT, the training

6



data of T5 is about 37 times over and the largest T5 model is about 11B parameters.
It achieves state-of-the-art results on many benchmarks covering summarization, question
answering, text classification, and more. In addition to monolingual pretrained LMs, there
are many multilingual LMs focusing on the multilingual and cross-lingual NLP tasks, such
as XLM [26], MBERT [30], MT5 [139], MBART [71], etc.

GPT style

Although GPT and ELMo are CLMs with the potential to generate text, their generation
quality is limited by the small amount of training data and model parameters. GPT-
2 [101] is a larger CLM trained with much more data: 1.5 billion parameters and 8 million
webpages data. Training such a big CLM with so much data is costly and the key specula-
tion to support their exploration of such a large LM is that a CLM with sufficient capacity
is equivalent to a multitask learner when the training data is large and diverse enough.
They assume many tasks can be learned from the webpage text data, for example, transla-
tion, mathematical problem solving, coding, and so on. And the CLM can learn all these
tasks by predicting the next word for each webpage. GPT-2 is the first work that shows
LM can perform the downstream task in a zero-shot setting – without any parameter or
architecture modification.

Following GPT-2, GPT-3 [18] proposes to train a larger CLM and a stronger multitask
learner. GPT-3 is a 175 billion parameter CLM trained with 300 billion tokens. Ex-
periments show that GPT-3 can perform the downstream task in zero-shot and few-shot
settings: given several demonstrations of a downstream task, GPT-3 can outperform the
finetuned model. The k-shot evaluation refers to predicting the label given k examples as
the context and there is no gradient and parameter updating, which is different from the
traditional k-shot learning in machine learning. There are also many other large language
models (LLMs) with an impressive performance on zero-shot and few-shot learning.

CodeX [21] is a GPT-3 variants finetuned on code for a total of 100 billion tokens. This
work shows it is possible to train LLMs to produce functionally correct code bodies from
natural language docstrings. Gopher [103] is a 280B model and evaluated with 150+
tasks, which outperforms GPT-3 175B model significantly. Chinchilla [42] is a 67B model
trained with more data and more training steps, which achieves similar results as GPT-3
175B model. This work shows that LLMs are under-trained and can be further improved
by training with more data and more training steps. PaLM [23] is a 540B model and
evaluated with 200+ tasks. PaLM uses mix-of-expert [121, 33] to improve the performance
of LLMs. By activating different expert parameters during the inference, PaLM gets bet-
ter results without increasing the inference cost. BigScience group [117, 132] train an
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open-sourced 176B model BLOOM [116] with multilingual dataset. The development of
BLOOM involves over 1000 researchers from 70+ countries and 250+ institutions. Com-
pared with GPT3, BLOOM emphasizes the importance of the multilingual pretraining
data. Most recently, ChatGPT, a GPT-3 variant finetuned on human feedback with re-
inforcement learning, can generate impressive detailed and human-like text. However, it is
unpublished without the details of the implementation.

1.2.2 Pretraining for Speech

Given the success of text LM pretraining, the speech community also investigates the
pretraining methods for speech representation learning. However, different from the words
of text, the audio waveform is continuous and without a fixed vocabulary for prediction.
Also, speech is a long sequence without segment boundaries. To represent speech into the
shorter sequences, spectral representation and time-domain localization are two common
ways.

Time Domain

Contrastive Predictive Coding (CPC) [89] is a time-domain pretraining method for speech
representation learning. By localizing the speech into short segments with a convolution
network, CPC first encodes the windows of the waveform into speech representations in
hidden space and then predicts the future in latent space by using the powerful autoregres-
sive model and contrastive loss [39]. The Wav2vec [119] model extends the CPC method
and replaces the RNN module with a CNN module for autoregressive encoding. Besides,
the contrastive loss of wav2vec is the sum of N independent binary classification loss while
CPC chooses a positive class from N classes. Wav2vec 2.0 [6] encodes windows of the
waveform into the speech representations in vector space, masks the speech input in vector
space to simulate the MLM task, and trains the model by predicting the masked units
via a contrastive task to simulate the text vocabulary. It is a combination of contrastive
learning and masking.

In addition to learning from contrastive objectives, BERT-style pretraining has been ap-
plied to speech. Discrete BERT approach [5] uses the wav2vec model to extract speech
representations and uses quantization to convert the continuous speech representations
into the discrete tokens. Then, the discrete tokens are fed into the BERT-style model to
learn the MLM objective. HuBERT [43] proposes to use a clustering method (k-means)
to assign an MFCC cluster center to each frame to provide the frame-level targets. Once
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pretrained, a second iteration of training is performed where the clustering is updated
from the MFCC features to the HuBERT features. With the two iterations, HuBERT
can match and outperform the performance of the previous state-of-the-art ASR system in
low-resource settings. In addition to transforming the continuous audio into the discrete
features for MLM training, [49] masks chunks of consecutive frames for waveform recon-
struction. Similar to BERT, XLNet has been applied to speech (Speech XLNet [126]),
to address the discrepancy between the pretraining and finetuning. There has also been
growing interest in modeling text and speech jointly. For example, SLAM [10] unifies
speech and text pretraining within a single model, by learning the MLM and wav2vec
objectives with speech-text recognition data.

Frequency Domain

In addition to the waveform, features in the frequency domain (spectrogram) are commonly
used to represent speech.

Mockingjay [69] and MAM [20] extend BERT’s MLM pretraining to the speech fre-
quency domain, masking consecutive spectrograms for speech pretraining, where the learn-
ing objective is to reconstruct the masked spectrograms. Similarly, Audio ALBERT [22]
and Speech T5 [3] extends ALBERT [63] and T5 [106] pretraining to speech frequency
domain. [150] propose a Fused Acoustic and Text Masked Language Model (FAT-MLM)
which jointly learns a unified representation for both the acoustic and text input from
various types of corpora including parallel data for speech recognition and machine trans-
lation, and even pure speech and text data. These pretraining methods have improved
many speech-related tasks, e.g., speech translation and speech recognition.

Although these models learn to reconstruct the spectrograms, the quality of their re-
constructed spectrogram is far from the requirement of speech synthesis tasks. These
pretrained models are all used in speech understanding tasks, where the quality of the
reconstructed spectrogram is not very important.

1.3 Issues of Improving LM with More Data and More
Parameters

Today’s LM improvements usually benefit from more training data and more model pa-
rameters, especially for the large language model pretraining. However, such improvements
are limited by the training cost and the availability of training data.
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1) More model parameters and training data will increase the training cost. The training
cost of pretraining should be addressed. For example, BLOOM [116], an open-sourced
GPT-3 [18] model, costs more than 1 million GPU hours and 433K kwH of electricity [73]
for pretraining. Since the development and research of large language models are still
in their infancy, the training cost of large language models will be even higher. So it is
essential to investigate methods to train a better language model without increasing the
training cost.

2) On the other hand, the training data is smaller than English text for speech and text
in other low-resource languages. There is a massive amount of English text to train the
large language models. But in addition to English, there are many other languages with less
training data. Only about 20 of 7000 languages have text corpora of hundreds of millions of
words. Also, different from the text, the speech data is far less, especially for high-quality
speech data. Given the similarity between text sequence and speech sequence, language
modeling has inspired not only the text pretraining but also the speech pretraining, i.e.,
text BERT [30] and speech BERT [43], text T5 [106] and speech T5 [3], etc. However,
the speech data is far less than the text data, which means some training methods could
not be applied to the speech data. For example, text GPT [99, 101, 18, 8] show great
power in text generation, but there is no similar speech model for speech generation. The
size of high-quality speech data limits the development of speech-language modeling and
pretraining.

Hence, it is essential to investigate “smart" methods to train a better language model
without increasing the training data.

1.4 Thesis Overview

To address the challenges above, this thesis investigates how to improve the language model
without increasing the training data, training cost, and the size of the model parameters.
In this thesis, we find that the language features of natural language sequences can help
LM achieve the above objectives via novel language modeling techniques, including
novel model architectures and novel training methods.

The unique features of the natural language include the segment features and the lin-
guistic features. The segment features refer to the segmentation of language. For the text
data, the punctuations and paragraph breakers separate a long document into different text
segments, which are the basic segmentation units of text. For the speech data, the phoneme
is another segmentation unit. For the text and speech data, segmentation plays an essen-
tial role in human understanding of natural language but needs to be further explored in
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the language modeling community. On the other hand, the linguistic feature refers to the
linguistic information of language, for example, lexical category, syntactic structure, and
semantic meaning. Previous works mainly focus on incorporating these linguistic features
into the pretraining to benefit some downstream tasks, for example, corefBERT [144] for
coreference resolution and senseBERT [65] for word sense disambiguation. These works
show that linguistic features can help pretraining and improve linguistic-related tasks.
However, whether these linguistic features can reduce the perplexity of a LM is under-
explored.

In this thesis, the novel methods we present target leveraging the features of language
– linguistic feature and segment feature – to help natural language model achieve lower
perplexity and better generation. In detail, we present the Segment-Aware Language
Modeling, which is a novel model architecture leveraging text segmentation feature for
text sequence modeling; the Hypernym-Instructed Language Modeling, which is a
novel training method leveraging lexical feature for rare words modeling; the Alignment-
Aware Acoustic and Text Modeling, which is a novel pretraining method leveraging
segmentation and alignment features for text-speech sequence modeling. All these features
can be extracted in unsupervised ways, which is a desirable attribute to avoid the expensive
feature extraction for a large training corpus.

Segment-Aware Language Modeling. In Chapter 2, we introduce a novel model ar-
chitecture leveraging the text segmentation features for text sequence modeling. Although
Transformer has dominated the language modeling world, the Transformer network was
initially proposed in the sequence-to-sequence (seq2seq) architecture for machine trans-
lation, whose input is usually a sentence. However, the input of language modeling is
usually a long document, with sentence and paragraph segments. Although Transformer
can handle the long sequence, the internal segment information is implicit in the Trans-
former because of its position encoding method. The Transformer’s position encoding
simply assigns a unique index to each token, which means the token index in a sentence,
sentence index in a paragraph, and paragraph index in a document are all implicit. In
this thesis, we argue that the segmentation feature is important to language modeling,
and propose a novel model architecture, Segment-Aware Transformer (Segatron), to ex-
plicitly model the segment information to model language better. We first introduce the
segment-aware mechanism to Transformer-XL, which is a popular Transformer-based CLM
with memory extension and relative position encoding. We find that our method can fur-
ther improve the Transformer-XL base model and large model, achieving 17.1 perplexities
on the WikiText-103 dataset. We further investigate the pretraining MLM task with
Segatron. Experimental results show that BERT pretrained with Segatron (SegaBERT)
can outperform BERT with vanilla Transformer on various NLP tasks, and outperforms
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RoBERTa on zero-shot sentence representation learning.

Hypernym-Instructed Language Modeling. In Chapter 3, we present a novel
training method leveraging the lexical feature for rare word modeling. Linguistic knowl-
edge is a unique feature of natural language, which can be used to help language mod-
eling. But the performance of today’s neural LMs is often improved at the cost of in-
creased computational resources, instead of leveraging linguistic knowledge. For example,
to capture long-term dependencies, various extensions of Transformer-based LMs have
been proposed [28, 105]. These modifications bring about significant improvements in
held-out perplexity, but training cost also increases significantly due to large GPU mem-
ory consumption and more computations at each training step. Many works show linguistic
knowledge can help pretrained LM to achieve better performance on linguistic tasks, but
little work shows that linguistic knowledge can help LM achieve lower perplexity. In par-
allel, alternative training strategies have also been proposed [40, 153, 29, 98], to achieve
lower perplexity with the same computational resources. Among these works, curriculum
learning (CL) is a promising one but under-explored in the context of the neural language
model. The key idea of CL is to train a model with easy data first and hard data later. [13]
first proposed CL, and examined its effectiveness with n-gram language model task. For
the n-gram language model, the easy input is a span of n−1 high-frequency words, and the
hard input is a span with n− 1 low-frequency words. But for the neural language model,
the input is much longer than n− 1 words, and it is hard to distinguish what input is easy
and what input is hard. We propose a new LM training strategy with WordNet’s super-
subordinate relation and curriculum learning. Mapping words to their hypernyms gives
rise to a natural gradation of difficulty in the prediction task. Empirically, the proposed
method consistently yields a 0.6-1.9% relative reduction in perplexity over baselines on
the Wikipedia data and 1.3-3.1% on the scholarly paper data. Importantly, both rare and
frequent tokens can be modeled better with our proposed method while other optimization
methods may sacrifice the performance of rare tokens.

Alignment-Aware Acoustic and Text Modeling. In Chapter 4, we present a novel
pretraining method leveraging bith the segment and alignment features for text-speech se-
quence modeling. Pretrained LM can generate text with a given prompt without any
finetuning, which is a powerful tool for text generation. But for the speech pretraining,
there is no pretrained model that can do speech synthesis without finetuning. The pre-
vious methods in the time domain, such as wav2vec 2.0 [6] and SLAM [10], are good at
recognizing and extracting discrete information from speech and successfully improving
automatic speech recognition, but they are unable to generate continuous acoustic signals
for speech synthesis. Another line of pretraining work in the frequency domain, such as
MAM [20], and FAT-MLM [150] show that reconstructing masked spectrogram with con-

12



tinuous units can improve the speech-to-text translation. However, the quality of their
proposed speech reconstruction is far from the requirement of speech synthesis tasks. To
address the problem that the pretrained speech model cannot generate high-quality speech,
we extend our Segatron model to the speech-text pretraining. We propose our framework,
Alignment-Aware Acoustic-Text pretraining (A3T). In this case, our segment embeddings
help the model to learn the alignment between the acoustic and phoneme input during the
multi-modal pretraining, and significantly improve the quality of the reconstructed acous-
tic features. Our A3T can generate speech without any finetuning. Experiments show A3T
outperforms SOTA models on speech editing and improves multi-speaker speech synthesis
without the external speaker verification model.

1.5 Contributions

Overall, this thesis emphasizes the importance of language features for language modeling,
which can improve language models without extra training data or training costs. The
features discussed in this thesis include the segment features, lexical features, and alignment
features. This thesis proposes different methods for leveraging these language features to
improve language modeling in different settings.

The contributions of this thesis are summarized as follows:

This thesis contributes a novel model architecture leveraging text segmentation
feature for text sequence modeling.

• The proposed model Segatron outperforms the vanilla Transformer for language mod-
eling with lower perplexity;

• SegaBERT pretrained with Segatron outperforms BERT on various NLP tasks;

• Experimental results show the segment feature can improve both the LM and pre-
trained LM.

This thesis contributes a novel training method leveraging the lexical feature
for rare words modeling.

• The proposed hypernym-instructed language modeling can reduce perplexities with-
out increasing the training cost;
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• This is the first work shows how the perplexity of large Transformer LMs can be
improved by leveraging WordNet’s hypernymy relation.

• Both rare and frequent words can be modeled better with the proposed method while
other optimization methods may sacrifice the performance of rare words.

This thesis contributes a novel cross-modal pretraining method leveraging both
the segment and alignment features for text-speech sequence modeling.

• This is the first pretraining method for speech synthesis that can generate high-
quality speech without any finetuning;

• A3T outperforms SOTA models on speech editing and improves multi-speaker speech
synthesis without the external speaker verification model.
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Chapter 2

Segment-Aware Language Modeling

2.1 Introduction

Language modeling (LM) is a traditional sequence modeling task which requires learn-
ing long-distance dependencies for next token prediction based on the previous context.
Recently, large neural LMs trained on a massive amount of text data have shown great po-
tential for representation learning and transfer learning, and also achieved state-of-the-art
results in various natural language processing tasks.

To the best of our knowledge, state-of-the-art language models [28, 4, 105] and pre-
trained language models [99, 30, 143, 63] all use a multi-layer Transformer [129]. The
Transformer network was initially used in the sequence-to-sequence (seq2seq) architecture
for machine translation, whose input is usually a sentence. Hence, it is intuitive to dis-
tinguish each token with its position index in the input sequence. However, the input
length can grow to 1024 or more tokens and come from different sentences and paragraphs
for language modeling. Although vanilla position encoding can help the Transformer be
aware of the token position by assigning a unique index to each token, the token index
in a sentence, sentence index in a paragraph, and paragraph index in a document are all
implicit. Such segmentation information is essential for language modeling, as tokens in
different segments of context hold different significance for next token prediction. If the
Transformer model can be aware of the segment position of each token of the context, we
argue that the Transformer model will model language more efficiently and successfully,
and will generate better context representations. It should be noticed that, although punc-
tuations and paragraph breakers can provide boundary information to some extent, the

15



boundary is not as straightforward as segment position, especially for the self-attention’s
dot-product operation in Transformer.

Hence, we argue that the segmentation feature of language is essential for language
modeling, and we propose a novel segment-aware Transformer (Segatron), which encodes
paragraph index in a document, sentence index in a paragraph, and token index in a sen-
tence all together for the input sequence. We first verify the proposed method with relative
position encoding on the language modeling task. By applying the segment-aware mecha-
nism to Transformer-XL [28], our base model trained with the WikiText-103 dataset [79]
outperforms Transformer-XL base by 1.5 points in terms of perplexity. Our large model
achieves a perplexity of 17.1, the same score as Compressive Transformer [105], which
is a more complicated model with longer input context and additional training objec-
tives. We also pre-train masked language models with Transformer (BERT-base−) and
Segatron (SegaBERT-base−) with English Wikipedia for 500K training steps. According
to experimental results, SegaBERT outperforms BERT on both general language under-
standing (GLUE) and machine reading comprehension tasks. We further pre-trained a
large model SegaBERT-large with the same data used in BERT. Experimental results
show that SegaBERT-large not only outperforms BERT-large on all the above tasks, but
also outperforms RoBERTa-large on zero-shot Semantic Textual Similarity tasks, where we
use less data and no more than 10% computational resources of RoBERTa. These results
demonstrate the value of segment encodings in Transformers.

2.2 Related Work

Language modeling is a traditional natural language processing task which requires cap-
turing long-distance dependencies for predicting the next token based on the context.

Most of the recent advances in language modeling are based on the Transformer [129] de-
coder architecture. [2] demonstrated that self-attention can perform very well on character-
level language modeling. [4] proposed adaptive word input representations for the Trans-
former to assign more capacity to frequent words and reduce the capacity for less frequent
words. [28] proposed Transformer-XL to equip the Transformer with relative position en-
coding and cached memory for longer context modeling. [105] extended the Transformer-
XL memory segment to fine-grained compressed memory, which further increases the length
of the context and obtains a perplexity of 17.1 on WikiText-103.

Although these works prove that longer context can be helpful for the language modeling
task, how to get better context representations with richer positional information has not
been investigated.
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On the other hand, large neural LMs trained with a massive amount of text have shown
great success on many NLP tasks, benefiting from the dynamic contextual representations
learned from language modeling and other self-supervised pretraining tasks. GPT-2 [101]
and BERT [30] are two representative models trained with the auto-regressive language
modeling task and the masked language modeling task, respectively. In addition, BERT is
also trained with an auxiliary task named next sentence prediction (NSP). ALBERT [63]
then proposed to share parameters across layers of BERT and replaced NSP with sentence
order prediction (SOP). According to their experiments, SOP is more challenging than
NSP, and MLM together with other downstream tasks can benefit more from replacing
NSP with SOP. Concurrently to ALBERT, [133] proposed two auxiliary objectives to
provide additional structural information for BERT.

All these powerful pretrained models encode input tokens with token position encoding,
which was first proposed by [129] to indicate the position index of the input tokens in the
context of machine translation and constituency parsing. After that, Transformer has been
extensively applied in machine translation and other sequence generation tasks [67, 70, 113].
However, the input length of language modeling tasks are much longer than these tasks,
and simply assigning 0–512 token position embeddings is not enough for LMs to learn
the linguistic relationships among these tokens. [8] show that incorporating segmentation
information with paragraph separating tokens can improve the LM generator (GPT-2)
in the context of story generation. However, compared with punctuation and paragraph
breaker, segment position indexes are more straightforward for dot-product self-attention
based Transformers. In this chapter, we try to encode segmentation information into the
Transformer with the segment-aware position encoding approach.

2.3 Model

In this section, we show how to apply our proposed segment-aware Transformer to lan-
guage modeling. More specifically, we first introduce our Segatron-XL (Segment-aware
Transformer-XL) with non-learnable relative position encoding for auto-regressive language
modeling. Then we introduce our pretrained Segatron (SegaBERT) with learnable absolute
position encoding for masked language modeling (MLM).

2.3.1 Segatron-XL

We first introduce our method in the context of auto-regressive language modeling, by re-
placing the vanilla Transformer index in Transformer-XL [28] with Segatron. Transformer-
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XL is a memory augmented Transformer with relative position encoding:
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input representations of query i and key j, respectively. Ri−j is the relative position
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where dim is the dimension size of Ri−j, and k is the dimension index.

Our proposed method introduces paragraph and sentence segmentation to the relative
position encoding. The new position embeddings RI,J are defined as:

RI,J,k =


Rt

ti−tj ,k k < 1
3
dim

Rs
si−sj ,k− 1

3
dim

2
3
dim > k ≥ 1

3
dim

Rp
pi−pj ,k− 2

3
dim k ≥ 2

3
dim

(2.3)

where I = {ti, si, pi}, J = {tj, sj, pj}. t, s, and p are token position index, sentence position
index, and paragraph position index, respectively. Rt, Rs, and Rp are the relative position
embeddings of token, sentence, and paragraph. These embeddings are defined in Eq. 2.2
and the dimensions of each are equal to 1/3 of RI,J. The input representation of our model
is shown in Figure 2.1(a).

To equip the recurrence memory mechanism of Transformer-XL with the segment-aware
relative position encoding, the paragraph position, the sentence position, and the token
position indexes of the previous segment should also be cached together with the hidden
states. Then, the relative position can be calculated by subtracting the cached position
indexes from the current position indexes.

2.3.2 Pretrained Segatron

In this section, we introduce how to pretrain a language model with our proposed model
Segatron in the context of BERT pretraining.
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Figure 2.1: Input representation of Segatron-XL and SegaBERT.

First, pretraining a masked language model in the setting of BERT is a practical choice,
as BERT is a popular baseline model and requires less computational resources compared
with more recent large models. For example, BERT-large only needs about 10% of the
resources of RoBERTa-large [72]. Hence, in this work, we first pretrain two base size
models: SegaBERT-base− and BERT-base− with only English Wikipedia data for 500K
training steps, to compare BERT pretrained with Transformer and Segatron fairly. We
then pretrain a large size model SegaBERT-large with Wikibooks dataset and 1M training
steps, same as BERT-large.

Input Representation. Input X of SegaBERT is a sequence of tokens, which can be
one or more sentences or paragraphs. The representation xt for token t is computed by
summing the corresponding token embedding Et, token index embedding Pt

t, sentence
index embedding Ps

t , and paragraph index embedding Pp
t , as shown in Figure 2.1(b). Two

special tokens [CLS] and [SEP] are added to the text sequence before the first token and
after the last token, and their paragraph/sentence indexes are the same as their adjacent
tokens. Following BERT, the text is tokenized into subwords with WordPiece and the
maximum sequence length is 512.

19



Model #Param. PPL

LSTM+Neural cache [36] - 40.8
Hebbian+Cache [104] - 29.9
Transformer-XL base, M=150 [28] 151M 24.0
Transformer-XL base, M=150 (ours) 151M 24.4
Segatron-XL base, M=150 151M 22.5
Adaptive Input [4] 247M 18.7
Transformer-XL large, M=384 [28] 257M 18.3
Compressive Transformer, M=1024 [105] 257M 17.1
Segatron-XL large, M=384 257M 17.1

Table 2.1: Comparison with Transformer-XL and competitive baseline results on WikiText-
103.

Training Objective. Following BERT, we use the masked LM as our training objective.
However, next sentence prediction (NSP) is not used in our model, as our input contains
more than two sentences.

Data preparation. For the pretraining corpus we use English Wikipedia and Book-
corpus [152]. For each document, we firstly split each into Np paragraphs, and all the
sub-tokens in the i-th paragraph are assigned the same Paragraph Index Embedding Pp

i .
The paragraph index starts from 0 for each document. Similarly, each paragraph is further
segmented into Ns sentences with NLTK [15], and all the sub-tokens in the i-th sentence
are assigned the same Sentence Index Embedding Ps

i . The sentence index starts from 0
for each paragraph. Within each sentence, all the sub-tokens are indexed from 0; the i-th
sub-token will have its Token Index Embedding Pt

i.

When building a training example, we randomly (length weighted) sample a document
from the corpus and randomly select a sentence in that document as the start sentence.
Then, the following sentences are added to that example until the example meets the
maximum length limitation (512) or runs out of the selected document. If any position
index in that example exceeds the maximum index, all such position indexes will be sub-
tracted by one until they meet the maximum requirements. The maximum position index
of paragraph, sentence, and token are 50, 100, and 256, respectively.

Training Setup. [72] have shown that BERT pretrained with document input (more
than two sentences) without NSP performs better than the original BERT on some tasks.
Hence, we not only pretrain a SegaBERT-large, but also pretrain two base models with
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the same setting for fair comparison. Similar to BERT, the base model is 12 layers, 768
hidden size, and 12 self-attention heads. The large model is 24 layers, 1024 hidden size, and
24 self-attention heads. For optimization, we use Adam with learning rate 1e-4, β1=0.9,
β2=0.999, with learning rate warm-up over the first 1% of the total steps and with linear
decay of the learning rate.

2.4 Experiments

In this section, we first conduct auto-regressive language modeling experiments with our
proposed Segatron and also conduct an ablation study with this task. Then, we show the
results of pretrained SegaBERT on general language understanding tasks, semantic textual
similarity tasks, and machine reading comprehension tasks.

2.4.1 Autoregressive Language Modeling

Dataset

WikiText-103 is a large word-level dataset with long-distance dependencies for language
modeling. This dataset preserves both punctuations and paragraph line breakers, which
are essential for our segmentation pre-processing. There are 103M tokens, 28K articles for
training. The average length is 3.6K tokens per article.

Model Configuration

Following Transformer-XL, we train a base size model and a large size model. The base
model is a 16 layer Transformer with a hidden size of 410 and 10 self-attention heads. This
model is trained for 200K steps with a batch size of 64. The large model is an 18 layer
Transformer with a hidden size of 1024 and 16 attention heads. This model is trained
with 350K steps with a batch size of 128. The sequence length and memory length during
training and testing all equal 150 for the base model and 384 for the large model. The main
differences between our implementation and Transformer-XL are: we use mixed-precision
mode; our input/memory lengths between training and testing are the same; the large
model training steps of Transformer-XL are 4M according to their implementation.
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Figure 2.2: Valid perplexities during the training processes of language modeling.

Model PPL

Transformer-XL base 24.35
+ paragraph position encoding 24.07
+ sentence position encoding 22.51

Segatron-XL base 22.47

Table 2.2: Ablation over the position encodings using Transformer-XL base architecture.

Main Results

Our results are shown in Table 2.1. As we can see from this table, the improvement with
the segment-aware mechanism is quite impressive: the perplexity decreases 1.5 points for
the Transformer-XL base and decreases 1.2 for Transformer-XL large. We also observe
that our large model achieves 18.3 PPL with only 172K training steps. We finally obtain
a perplexity of 17.1 with our large model – comparable to prior state-of-the-art results of
Compressive Transformer [105], which is based on Transformer-XL but trained with longer
input length and memory length (512) and a more complicated memory cache mechanism.

It is worth noting that we do not list methods with additional training data or dynamic
evaluation [59] which continues training the model on the test set. We also note that there
is a contemporaneous work RoutingTransformer [114], which modifies the self-attention to
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Figure 2.3: Test perplexities of Segatron-XL and Transformer-XL trained with different
input lengths.

local and sparse attention with a clustering method. However, their implementations are
not available. We believe our method is orthogonal to their work and can be introduced
to their model.

Analysis

We plot the valid perplexity of Segatron-XL base and Transformer-XL base during training
in Figure 2.2. From this figure, we can see that the segment-aware model outperforms the
base model all the time, and the gap between them becomes larger as training progresses.
Segatron-XL at 10K steps approximately matches the performance of Transformer-XL at
20K steps. We then test the effectiveness of Segatron over different input lengths (25, 50,
100, and 150 input tokens) by comparing Transformer-XL and Segatron-XL base models.
As we can see from Figure 2.3, the improvements are consistent and significant. There is
no evidence showing our method prefers shorter or longer input.

Ablation Study

We finally conduct an ablation study with Segatron-XL base, to investigate the contribu-
tions of the sentence position encoding and the paragraph position encoding, respectively.
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Figure 2.4: Valid losses during the pretraining.

Experimental results are shown in Table 2.2. From this table, we find that the PPL of
Transformer-XL decreases from 24.35 to 24.07/22.51 after adding paragraph/sentence posi-
tion encoding, and further decreases to 22.47 by encoding paragraph and sentence positions
simultaneously. The results show that both the paragraph position and sentence position
can help the Transformer to model language. Sentence position encoding contributes more
than paragraph position encoding in our experiments.

2.4.2 Pretrained Masked Language Model

We first plot the valid losses of BERT-base− and SegaBERT-base− during pretraining
in Figure 2.4. The overall trends between Figure 2.2 and Figure 2.4 are similar, which
demonstrates that our proposed segment-aware method works on both auto-regressive lan-
guage modeling and masked language modeling. We will detail our experiments with our
pretrained models in the following sections.

General Language Understanding Evaluation

The General Language Understanding Evaluation (GLUE) benchmark [131] is a collection
of resources for evaluating natural language understanding systems. Following [30], we
evaluate our model over these tasks: linguistic acceptability CoLA [135], sentiment SST-
2 [125], paraphrase MRPC [32], textual similarity STS-B [19], question paraphrase QQP,
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Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B AVG

BERT-base− 83.2 90.4 86.5 68.3 91.3 92.6 55.0 88.9 82.0
SegaBERT-base− 83.8 91.5 87.0 71.8 92.1 92.4 54.7 89.0 82.8
BERT-large (best of 3) 87.3 93.0 91.4 74.0 94.0 88.7 63.7 90.2 85.3
SegaBERT-large 87.6 93.6 89.1 78.3 94.7 92.3 65.3 90.3 86.4

Table 2.3: Fair comparison on GLUE dev.

textual entailment RTE [14] and MNLI [137], and question entailment QNLI [131]. We
finetune every single task only on its in-domain data without two-stage transfer learning.

On the GLUE benchmark, we conduct the finetuning experiments in the following
manner: For single-sentence classification tasks, such as sentiment classification (SST-2),
the sentence will be assigned Paragraph Index 0 and Sentence Index 0. For sentence pair
classification tasks, such as question-answer entailment (QNLI), the first sentence will be
assigned Paragraph Index 0 and Sentence Index 0 and the second sentence will be assigned
Paragraph Index 1 and Sentence Index 0.

We conduct grid search with the GLUE dev set for small data tasks: CoLA, MRPC,
RTE, SST-2, and STS-B. Our grid search space is as follows:

• Batch size: 16, 24, 32;

• Learning rate: 2e-5, 3e-5, 5e-5;

• Number of epochs: 3-10.

For QQP, MNLI, and QNLI, we use the default hyper-parameters: 3e-5 learning rate,
256 batch size, and 3 epochs. The other hyper-parameters are the same as in the Hugging-
Face Transformers library.1

We compare BERT and SegaBERT in a fair setting to decouple the effects of document-
level inputs and the removal of NSP. In Table 2.3, two base models are pretrained by us
and the only difference is the position encoding. The two base models are pretrained
in the same setting. For large models comparison, we choose the best of 3 BERT-large
models: the original BERT, whole word masking BERT, and BERT without NSP task.
Results of BERT-large (best of 3) are from [143]. We can see that our SegaBERT-base−

outperforms BERT-base− on most tasks. We also notice that SegaBERT-base− is lower
1https://github.com/huggingface/transformers
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Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B AVG

BERT-base− 82.9 90.1 70.8 65.4 91.2 88.9 43.5 83.9 77.1
SegaBERT-base− 83.5 90.8 71.4 68.1 91.5 89.3 50.7 84.6 78.7
BERT-large 86.7 92.7 72.1 70.1 94.9 89.3 60.5 86.5 81.6
SegaBERT-large 87.9 94.0 72.5 71.6 94.8 89.7 62.6 88.6 82.7

Table 2.4: Results on GLUE test set.

than BERT-base− by over 2.5 points on CoLA. However, this gap decreases to 0.1 on the
test set, which is shown in Table 2.4. Results of BERT-large are from [30]. This is because
the size of CoLA is quite small and not as robust as other datasets. Improvements can also
be observed easily when comparing SegaBERT-large with the best score of 3 BERT-large
models.

These results demonstrate SegaBERT’s effectiveness in general natural language under-
standing. The improvements on these sentence and sentence pair classification tasks show
that our segment-aware pretrained model is better than vanilla Transformer on sentence-
level tasks.

Sentence Representation Learning Evaluation

Model STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R AVG

S-BERT-large 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
S-BERT-large* 72.39 78.06 75.26 81.79 76.35 78.64 73.85 76.62
S-RoBERTa-large 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
S-SegaBERT-large 74.49 78.64 74.88 83.28 77.10 79.42 73.77 77.37

Table 2.5: Zero-shot spearman’s rank correlation ρ× 100 between the negative distance of
sentence embeddings and the gold labels.

Since our SegaBERT has shown great potential on sentence-level tasks, in this section,
we further investigate whether SegaBERT can generate better sentence representations.
Following Sentence-BERT [110], we finetune SegaBERT in a siamese structure on the com-
bination of SNLI [16] and MNLI datasets. The finetuned model is named S-SegaBERT. We
then evaluate the zero-shot performance of S-SegaBERT and other baselines on Semantic
Textual Similarity (STS) tasks using the Spearman’s rank correlation between the cosine
similarity of the sentence embeddings and the gold labels.
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System SQUAD1.1 SQUAD2.0

Model EM F1 EM F1

BERT-base 80.8 88.5 72.3 75.6
BERT-base− 81.9 89.4 75.4 78.2
SegaBERT-base− 83.2 90.2 76.3 79.2
BERT-large 84.1 90.9 78.7 81.9
BERT-large wwm 86.7 92.8 80.6 83.4
SegaBERT-large 86.0 92.6 81.8 85.2

Table 2.6: Evaluation results on SQUAD v1.1 and v2.

In Table 2.5, the results of S-BERT-large and S-RoBERTa-large are from [110]. STS-B
and SICK-R refers to STS benchmark and SICK relatedness dataset, respectively. Results
of BERT-large and RoBERTa-large are from [110]. The results of S-BERT-large* are re-
implemented by us, which is similar to Sentence-BERT’s results. We can see that our
SegaBERT achieves the highest average scores on STS tasks, even outperforms RoBERTa,
which uses much more training data, larger batch size, and dynamic masking. These results
conform with our improvements on GLUE benchmarks, which indicate that a language
model pretrained with Segatron can learn better sentence representations (single sentence
encoding) than the original Transformer.

Reading Comprehension Evaluation

We finally test our pretrained model on machine reading comprehension tasks. For these
tasks, the question is assigned Paragraph Index 0 and Sentence Index 0. For a context
with n paragraphs, Paragraph Index 1 to n+ 1 are assigned to them accordingly. Within
each paragraph, the sentences are indexed from 0.

We first finetune our SegaBERT model with SQUAD v1.1 [109] for 4 epochs with 128
batch size and 3e-5 learning rate. The finetuning setting of SQUAD v2.0 [108] is the same
as SQUAD v1.1. Results are shown in Table 2.6. Results of BERT-base and BERT-large
are from [30]. Results of BERT-large wwm on SQUAD v1.1 are from BERT’s github repos-
itory. There are no official results of BERT-large wwm on SQUAD v2 and here we report
our finetuning results. As we can see from Table 2.6, our pretrained SegaBERT-base− out-
performs our pretrained BERT-base− on both dataset: 1.3 EM and 0.8 F1 improvements on
SQUAD v1.1; 0.9 EM and 1.0 F1 improvements on SQUAD v2. It should be noticed that
our pretrained BERT-base− outperforms the original BERT-base model, although ours is
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Model Acc-Dev Acc-Test

BERT-large 72.7 72.0
SegaBERT-large 74.5 73.8

Table 2.7: Accuracy on dev and test sets of RACE.

pretrained with fewer data and steps. This confirms [72]’s finding that BERT pretrained
with document-level input can contribute to performance improvements on SQUAD. For
large models, as we cannot afford to train a new BERT-large model in the same setting as
BERT-base−, we compare our model with BERT-large wwm (with whole word masking),
which is a stronger baseline model. We can see that SegaBERT large is slightly lower than
BERT-large wwm on SQUAD v1.1 but outperforms it on SQUAD v2 over 1.2 EM scores
and 1.8 F1 scores.

We further test our models with RACE [62], which is a large-scale reading comprehen-
sion dataset with more than 28,000 passages. RACE has significantly longer contexts than
SQUAD. Our results are shown in Table 2.7. Results of BERT-large are from [90]. The
overall trend is similar to SQUAD.

Visualization

We further visualize the self-attention scores of BERT-base− and SegaBERT-base− in
different layers. Figure 2.5 is an example document of BERT’s input. Figure 2.6 shows the
average attention scores across different attention heads. By comparing Figure 2.6(b) with
Figure 2.6(a), we find that SegaBERT can capture context according to the segmentation,
for example, tokens tend to attend more to tokens in its paragraph than tokens in the other
paragraphs. A similar trend can be observed at the sentence level but is more prominent
in the shallow layers On the other hand, the BERT model seems to pay more attention to
its neighbors: the attention weights of the elements around the main diagonal are larger
than other positions in Figure 2.6(a), and a band-like contour around the main diagonal
can be observed in this figure.

From Figure 2.6(f) and Figure 2.6(e), we can see the attention structure in the final
layer is different from the shallow layers, and SegaBERT pays more attention to its context
than BERT. We also notice that a fractal-like structure can be observed in the first 10 layers
of SegaBERT, while the last two layers of SegaBERT have a striped structure.

These attention behaviors show that: in the shallow layers, our model is segment-aware
while BERT is neighborhood-aware; in the top layers, both of these two models focus on
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Japanese destroyer Hatsukaze

The K̈agerō̈-class destroyers were outwardly almost identical to the preceding light cruiser-sized , with
improvements made by Japanese naval architects to improve stability and to take advantage of Japan’s lead in
torpedo technology. They were designed to accompany the Japanese main striking force and in both day and
night attacks against the United States Navy as it advanced across the Pacific Ocean, according to Japanese
naval strategic projections. Despite being one of the most powerful classes of destroyers in the world at the time
of their completion, only one survived the Pacific War.

Ḧatsukazë, built at the Kawasaki Shipbuilding Corporation, was laid down on 3 December 1937, launched on
24 January 1939 and commissioned on 15 February 1940.

At the time of the attack on Pearl Harbor, Ḧatsukazë, was assigned to Destroyer Division 16 (Desdiv 16), and
a member of Destroyer Squadron 2 (Desron 2) of the IJN 2nd Fleet, and had deployed from Palau, as part of
the escort for the aircraft carrier in the invasion of the southern Philippines and minelayer .

In early 1942, Ḧatsukazep̈articipated in the invasion of the Netherlands East Indies, escorting the invasion forces
for Menado, Kendari and Ambon in January, and the invasion forces for Makassar, Timor and eastern Java in
February. On 27-28 February, Ḧatsukazeänd Desron 2 participated in the Battle of the Java Sea, taking part
in a torpedo attack on the Allied fleet. During the month of March, Desron 2 was engaged in anti-submarine
operations in the Java Sea. At the end of the month, the squadron escorted the Christmas Island invasion
force, then returned to Makassar. At the end of April, Ḧatsukazes̈ailed to Kure Naval Arsenal for maintenance,
docking on 3 May.

On 21 May 1942, Ḧatsukazeänd Desron 2 steamed from Kure to Saipan, where they rendezvoused with a troop
convoy and sailed toward Midway Island. Due to the defeat of the Carrier Striking Force and loss of four fleet
carriers in the Battle of Midway, the invasion was called off and the convoy withdrew without seeing combat.
Desdiv 16 was ordered back to Kure.

On 14 July, Ḧatsukazeänd Desdiv 16 were reassigned to Desron 10, Third Fleet. On 16 August, Desron 10
departed Kure, escorting a fleet towards Truk. On 24 August, Desron 10 escorted Admiral Nagumo’s Striking
Force in the Battle of the Eastern Solomons. During September and October, the squadron escorted the fleet
patrolling out of Truk north of the Solomon Islands. On 26 October, in the Battle of the Santa Cruz Islands,
the squadron escorted the Striking Force, then escorted the damaged carriers and into Truk on 28 October.
On 4 November, Desron 10 escorted from Truk to Kure, then engaged in training in the Inland Sea, and then
escorted Z̈uikaküfrom Truk to the Shortland Islands in January 1943.

On 10 January, while providing cover for a supply-drum transport run to Guadalcanal, Ḧatsukazeässisted
in sinking the American PT boats P̈T-43änd P̈T-112.S̈he suffered heavy damage when struck by a torpedo
(possibly launched by P̈T-112)ïn the port side; her best speed was 18 knots as she withdrew to Truk, for
emergency repairs. Then she sailed to Kure in April for more extensive repairs. In September, Ḧatsukazeänd
Desron 10 escorted the battleship from Kure to Truk. In late September and again in late October, Desron 10
escorted the main fleet from Truk to Eniwetok and back again, in response to American carrier airstrikes in the
Central Pacific region. Between these two missions, Ḧatsukazes̈ortied briefly from Truk in early October 1943
to assist the fleet oiler Ḧazakaya,ẅhich had been torpedoed by an American submarine.

On 2 November 1943, while attacking an Allied task force off Bougainville in the Battle of Empress Augusta
Bay, Ḧatsukazec̈ollided with the cruiser . The collision sheared off her bow, leaving her dead in the water.
Ḧatsukazeänd the light cruiser were sunk (at position ) by Allied destroyer gunfire. Of those on board, 164 were
killed, including its commanding officer, Lieutenant Commander Buichi Ashida.

Ḧatsukazeẅas removed from the navy list on 5 January 1944."

Figure 2.5: An example article for visualization
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(a) BERT-Layer 1 (b) SegaBERT-Layer 1

(c) BERT-Layer 6 (d) SegaBERT-Layer 6

(e) BERT-Layer 12 (f) SegaBERT-Layer 12

Figure 2.6: Self-attention heat maps of the first, the sixth, and the last layer of SegaBERT
and BERT when encoding the first 512 tokens of a Wikipedia article.
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some tokens across the article rather than local neighbors, but our model can capture more
contextual tokens.

2.5 Summary

In this chapter, we propose a novel segment-aware Transformer that can encode richer po-
sitional information for language modeling. The motivation behind the proposed approach
is to leverage the segmentation feature of natural language for language modeling. By ap-
plying our approach to Transformer-XL, we train a new language model, Segatron-XL, that
achieves 17.1 test perplexity on WikiText-103. Additionally, we pretrainin BERT with our
SegaBERT approach and show that our model outperforms BERT on general language un-
derstanding, sentence representation learning, and machine reading comprehension tasks.
Furthermore, our SegaBERT-large model outperforms RoBERTa-large on zero-shot STS
tasks. These experimental results demonstrate that our proposed method works on both
language models with relative position embeddings and pretrained language models with
absolute position embeddings. The experimental results demonstrate the effectiveness of
the segment feature and our proposed method.
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Chapter 3

Hypernym-Instructed Language
Modeling

3.1 Introduction

Over the course of the past decades, language modeling (LM) has transitioned from n-gram
to neural models [12, 84, 30, 18]. Performance improvement of today’s neural LMs is often
achieved at the cost of increased computational resources. For example, to capture long-
term dependencies, various extensions of Transformer-based LMs have been proposed [28,
105]. These modifications bring about significant improvements on held-out perplexity,
but training cost also increases significantly due to large GPU memory consumption and
more computations at each training step.

In parallel, alternative training strategies have also been proposed [40, 153, 29]. In
this work, we explore the effectiveness of class-based language models (CLMs, [17]) in the
context of neural LMs. CLMs group individual words into coarser-grained classes and has
proven effective in alleviating context sparsity in n-gram LMs [27]. It has been also used
to improve computational efficiency in neural LMs [85, 35]. More recently, [65] pretrain
masked LMs [30] by predicting WordNet supersense labels. However, the work focuses
on word-sense disambiguation tasks and doesn’t provide clear evidence of gains in terms
of perplexity. Although linguistic knowledge is a unique feature of language and should
help language modeling, it is still unclear how to leverage linguistic features to reduce the
perplexity.

In this chapter, we revisit CLM and assign words to classes by leveraging hypernym
relations from the WordNet [83]. Our proposal, dubbed Hypernym Class Prediction (HCP)
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A final torch used to enter Empire Stadium that
was made of stainless steel and powered by a
magnesium candle

Original Text:

Replaced with hypernym class:
A final instrumentality.n.03 used to enter Empire
structure.n.01 that was made of alloy.n.01
alloy.n.01 and powered by a metallic_element.n.01
instrumentality.n.03

Figure 3.1: An example of word prediction training text and hypernym class prediction
training text.

is simple and effective: for each batch, we substitute a subset of the tokens with their Word-
Net hypernyms (see Figure 3.1). Then, we train an auto-regressive LM on the resulting
sentences using a mixed vocabulary composed of hypernyms and tokens. Crucially, we an-
neal the substitution rate during training, i.e., we gently switch from hypernym prediction
to token prediction, following a curriculum learning approach. Note that this approach
does not require WordNet information at inference time nor increases training time.

Our approach is motivated by two hypotheses. Firstly, mapping words to their hyper-
nyms gives rise to a natural gradation of difficulty in the prediction task. Prior work has
shown that LM benefits from training on instances of increasing difficulty [13, 98]. We thus
postulate that, when coupled with the right curriculum, HCP can improve LM training
and perplexity. Secondly, we hypothesize that HCP can improve rare word generalization
through implicit context sharing. Neural models still struggle to learn reliable represen-
tations for rare words [118]. With CLM-based models, data sparsity for rare words can
be abated, e.g., when the representation of their contexts are potentially drawn closer to
those of their more frequent siblings by way of label (hypernym) sharing.

Empirically, the proposed method consistently yields about 0.6–1.9% relative reduc-
tion in perplexity over baselines on the WikiText-103 dataset [79], and 1.3–3.1% on
the arXiv dataset [64]. These improvements are observed with respect to memory-
augmented [28] and segment-aware [7] LMs. Importantly, the proposed method improves
performance for both rare and frequent words. We also observe that this is in contrast
with performance improvements in regular LMs, which seem to be achieved at the cost of
worsened performance on rare words.
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To the best of our knowledge, this is the first work that shows how perplexity of
Transformer LMs can be improved by leveraging hypernymy relationships. We provide
an extensive ablation study highlighting crucial elements of HCP. Amongst those, we
found particularly important to adopt a curriculum learning approach, rather than multi-
objective learning or adaptive-softmax, and excluding frequent words from the hypernym
prediction task. We highlight the simplicity and effectiveness of the proposed method as
our main contribution, and hope this study would facilitate further exploration in this line
of research.

3.2 Related Work

Transformer-based models are now popular language models. [28] propose Transformer-
XL by extending the vanilla Transformer with a memory segment, which can encode more
context tokens to predict the next token. [105] extend Transformer-XL with a compressed
memory segment to further encode long-time context memory. Other works explore differ-
ent sparse Transformers to encode much longer sequences for LM [11, 114]. Despite their
effectiveness, neural models still struggle to learn reliable representations for rare words.
Some approaches have been proposed to tackle this challenge by way of morphology [75],
lexical similarity [56], context similarity [118, 55] and tokenization [60].

In addition to the model modifications, other work investigated curriculum learning to
train LMs. [13] first find that curriculum learning could benefit LM training by training
with high-frequency tokens first and low-frequency tokens later. [138] find that curricula
works well when the training data is noisy or the training data is too large to iterate
multiple epochs. [98] find that training Transformer-based LMs with short sequences first
could improve convergence speed and perplexity.

Related work aimed at integrating WordNet information into pretrained language mod-
els. [65] propose SenseBERT by adding the word sense (WordNet supersense) prediction as
an additional task during BERT [30] pretraining. SenseBERT outperforms BERT on both
word supersense disambiguation [107] task and word in context [95] task. Recently, [96]
use WordNet hypernymy chains as input to a RoBERTa [72] model to predict the plausi-
bility of input events. In this work, our focus is to improve performance of auto-regressive
LMs. We show that a multi-task strategy harms performance in this setting, and give a
successful recipe to consistently boost LM performance with class-based predictions.
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3.3 Method

Entity.n.01 physical_entity.n.01 matter.n.03 substance.n.01 chemical_element.n.01

abstraction.n.06 relation.n.01 part.n.01

Entity.n.01 physical_entity.n.01 matter.n.03 substance.n.01 chemical_element.n.01

iron.n.01abstraction.n.06 relation.n.01 part.n.01

metallic_element.n.01

Entity.n.01 physical_entity.n.01 object.n.01 whole.n.02 artifact.n.01 instrumentality.n.03

furnishing.n.02furniture.n.01table.n.02desk.n.01

magnesium.n.01

metallic_element.n.01

Figure 3.2: Hypernym-path example.

def token2class(token2freq, d, f):
# token2freq is a dictionary whose key is the token and value is the tokens

occurrences
# d is the depth, f is the occurrence threshold
rtn = {}
for token, freq in token2freq.items():

if freq > f:
continue

for synset in wordnet.synsets(token):
for path in synset.hypernym_paths():

if len(path)>=d and "noun" in path[d−1]:
rtn[token] = path[d−1]
break

if token in rtn:
break

return rtn

Code 1: Pseudocode for token to class mapping.

Coupling class-based LM (CLM) and curriculum learning, HCP is to gradually anneal
class prediction to token prediction during LM training. In this section, we first describe
how we instantiate word classes by leveraging hypernym relation from the WordNet. We
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then present how to incorporate the proposed Hypernym Class Prediction task into LM
training via curriculum learning.

3.3.1 Hypernymy as Word Classes

WordNet [83] is a lexical database that groups words into sets of cognitive synonyms
known as synsets, which are in turn organized into a directed graph by various lexical
relations including the hypernymy (is-a) relation. In Figure 3.2, we show the hypernym-
paths of synsets “magnesium.n.01”, “iron.n.01”, and “desk.n.01”, corresponding to the word
magnesium, iron, and desk respectively. As shown in Figure 3.2, each vertex is a synset,
labeled by the text within the box, and each edge points from the hypernym (supertype) to
the hyponym (subtype). Note that a word form (spelling) may be associated with multiple
synsets – each corresponding to a different sense of the word, which are sorted by the
frequency of the sense estimated from a sense-annotated corpus. For example, iron has 6
synsets, among which “iron.n.01” is the most common one.

Hence, if two words share the same hypernym at a certain level in their hypernym-
paths (to the root in WordNet), we could say they are similar at that level. Here we use
"Depth" to quantify the hypernym-path level. In Figure 3.2, for example, at Depth 6,
iron and magnesium are mapped to the same group named “metallic_element.n.01”, while
desk is mapped to “instrumentality.n.03”. At Depth 2, all these three words share the same
(indirect) hypernym “physical_entity.n.01”.

In this work, we map each token in our training set into its hypernym class if this token
(1) has a noun synset in the WordNet, (2) with a hypernym-path longer than a given
depth d, and (3) has frequency below a given threshold f in the training corpus. We only
consider nouns because it is not only the most common class in the WordNet but also a
difficult class for LMs to learn [64]. For tokens with multiple synsets, we iterate over the
synsets in the order of sense frequency and break the loop once found. We select the most
frequent synset no less than the required depth. The mapping pseudocode is illustrated in
Code 1, which is a data pre-processing algorithm conducted only once before the training
and takes no more than 5 minutes in our implementation.

3.3.2 Hypernym Class Prediction

We first partition the vocabulary into Vx and V¬x based on whether or not a token has
a hypernym in the WordNet, and Vh denotes the set of all hypernyms. The original task
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in a Transformer-based LM is then to predict the token wj’s probability with the output
x from the last layer:

P (y = wj|x) =
exp(xTvwj )∑

wk∈Vx∪V¬x
exp(xTvwk

)
(3.1)

where wk is the kth word in the original vocabulary and vwk
is its embedding. Here we

assume the output layer weights are tied with the input embeddings. We call any training
step predicted with Eq. 3.1 a token prediction step.

To do the Hypernym Class Prediction step, we replace all tokens in Vx in a batch of
training data with their corresponding hypernym classes in Vh. After the replacement,
only hypernym classes in Vh and tokens in V¬x can be found in that batch. Then, the
LM probability prediction becomes:

P (y = wj|x) =
exp(xTvwj )∑

wk∈Vh∪V¬x
exp(xTvwk

)
(3.2)

where wj could be either a token or a hypernym class. We called this batch step is a
Hypernym Class Prediction (HCP) step.

Note that Eq. 3.2 is different from the multi-objective learning target, where the hy-
pernym class would be predicted separately:

P (y = wj|x) =
exp(xTvwj )∑

wk∈Vh
exp(xTvwk

)
(3.3)

where wj is a hypernym class. We will elaborate on this difference in the experiment results
part.

3.3.3 Training Method

We train a LM by switching from HCP to token prediction. For the example in Figure 3.2,
our target is to teach a model to distinguish whether the next token belongs to the metallic
element class or instrumentality class during the earlier stage in training, and to predict
the exact word from magnesium, iron, and desk later.

Inspired by [13], we choose curriculum learning to achieve this. Curriculum learning
usually defines a score function and a pacing function, where the score function maps from
a training example to a difficulty score, while the pacing function determines the amount of
the easiest/hardest examples that will be added into each epoch. We use a simple scoring
function which treats HCP as an easier task than token prediction. Therefore, there is no
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Figure 3.3: Probabilities of HCP step over training process with different pacing functions.

need to sort all training examples. The pacing function determines whether the current
training step is a HCP step, i.e. whether tokens will be substituted with their hypernyms.

Our pacing function can be defined as:

P (y = c|t) =
{

b t < a ∗N
0 t ≥ a ∗N (3.4)

or
P (y = c|t) =

{
b− b ∗ t

a∗N t < a ∗N
0 t ≥ a ∗N (3.5)

where P (y = c|t) is the probability that the current step t is a hypernym class prediction
step. N is the total training steps. a and b are hyper-parameters. So, Eq. 3.4 is a constant
pacing function in the first a ∗ N steps, while Eq. 3.5 is a linear decay function. We plot
these two functions in Figure 3.3. According to our experimental results Tab. 3.5, these
two functions are both effective in improving the language model.
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Model #Param. Valid PPL Test PPL

LSTM+Neural cache [36] - - 40.8
Transformer small 91M 34.5 36.5

+ HCP 34.1 35.9
Transformer base 151M 29.2 30.7

+ HCP 29.1 30.2
Transformer-XL base, M=150 [28] 151M - 24.0
Segatron-XL base [7], M=150 151M - 22.5

+ HCP 21.9 22.1
Transformer Large 257M 24.0 25.8 (80k steps)

+ HCP 23.7 25.3 (80k steps)
Adaptive Input [4] 247M - 18.7 (286k steps)
Transformer-XL large, M=384 [28] 257M - 18.3 (400k steps)
Compressive Transformer, M=1024 [105] 257M 16.0 17.1 (400k steps)
Segatron-XL large, M=384 [7] 257M - 17.1 (350k steps)

+ HCP 16.1 17.0 (350k steps)

Table 3.1: Results on WikiText-103 dataset with different models.

3.4 Experiments

We conduct experiments on two datasets. WikiText-103 [79] is a large word-level dataset
with long-distance dependencies for language modeling. There are 103M tokens and 28K
articles (3.6K tokens per article on average). The original vocabulary size is 271121, among
which we find 3383 hypernym classes for 71567 tokens with d = 6 and f = 6000 (Sec-
tion 3.3.1). arXiv [64] is collected from publicly available arXiv abstracts1 with an aver-
age of 172 words per abstract and partitioned into training (1986–Sept 2017), evaluation
(Aug–Dec 2017), and test (2018–2019). Following [64], we use the BPE [120] tokenization
for this dataset. The final vocabulary size is 48935, which is about 1/6 of WikiText-103’s
vocabulary, due to the different tokenization methods. In this case, we did not change the
hypernym-depth d, but shrunk the frequency threshold from 6000 to 1000, as the tokeniza-
tion method doesn’t associate with the super-subordinate relationship but is associated
with the word frequency. Finally, we find 1148 hypernym classes for 5969 tokens among
the vocabulary with d = 6 and f = 1000.
1https://arxiv.org/help/oa/index
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Figure 3.4: Valid perplexity curves during the training of small and large models.

Several variants of the Transformer model have been used for our experiments:

• small model: 12 layers, 10 heads, hidden size 300, batch size 256, training steps 100k;
• base model: 16 layers, 10 heads, hidden size 410, batch size 64, training steps 200k;
• large model: 18 layers, 16 heads, hidden size 1024 batch size 128.

The input lengths are 150 for the base model and 384 for the large model. The memory
length is equal to the input length for both training and testing. The hyper-parameters
used for the arXiv dataset are as same as the WikiText-103, except the arXiv base
model’s input length is 384. The number of training steps varies greatly for the large model
in previous work, so we experiment on both the lower (80k) higher (350k) ends.

3.4.1 Main results

Our main results are shown in Table 3.1. We can see that all architectures could benefit
from HCP: Transformer-small improved 0.6 ppl, Transformer-base improved 0.5, Segatron-
XL base improved 0.4, Transformer-large improved 0.5, and Segatron-XL large improved
0.1. We also plot the validation perplexities of small and large models trained with and
without HCP in Figure 3.4. In the beginning, the perplexity of the HCP models is higher
due to the mixed training steps from the two tasks, but we can see that HCP perplexity goes
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Model #Param. Valid PPL Test PPL

Segatron-XL base 59M 22.39 24.21
+ HCP 21.79 23.46

Transformer-XL large [64] 287M - 23.07
Segatron-XL large 283M 21.28 22.99 (80k steps)

+ HCP 283M 20.93 22.60 (80k steps)

Table 3.2: Results on arXiv dataset with different models.

down faster than the baseline method. And after fully switching to token prediction, HCP
outperforms the baseline method quickly and the gap between these two methods remains
stable. These results suggest that HCP is indeed effective in improving LM training.

For experiments on the arXiv dataset, we first compare the Segatron-XL base model
trained with and without HCP. The results are shown in Table 3.2. The improvements
over the validation set and test set are 0.6 and 0.75 respectively. For the large model,
we use the same model architecture and hyper-parameters as the WikiText-103 large
model but change the vocabulary to BPE sub-tokens. The final perplexity outperforms its
counterparts about 0.4 and outperforms a larger model trained with 1024 input sequence
length over 0.47, while our model length is 384.

3.4.2 Generalization on Rare Tokens

In addition to the overall perplexity comparison, we conduct comparisons with frequency-
stratified validation subsets, to show the perplexity of tokens that has been replaced with
the hypernym classes during training. Results are shown in Figure 3.5. We can see that,
after the first 12k hypernym class prediction steps, there is a large gap between our HCP
model and the baseline model as the HCP model only learn to predict the hypernym
class instead of the token itself. After that, in the next 12k steps, HCP’s PPL decreases
faster, achieves similar PPL at 24k steps, and finally outperforms the baseline method in
all frequency groups. The results show that our proposed training method can benefit
the learning of the replaced tokens in various frequencies. Strikingly, we observe that, for
the baseline, more training steps lead to a degradation of performance for rare tokens, a
behavior that deserves investigation in future work. We further conduct pairwise model
comparisons with tokens that have been replaced during HCP training on the WikiText-
103 test set. Given two models, we compare the prediction probabilities for each occurrence
of a target token, and register a “win” for the model with a higher probability. We then
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Figure 3.5: Frequency-stratified validation log(perplexity) of baseline model (Transformer-
small) and HCP model (Transformer-small-HCP) with WikiText-103.
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Figure 3.6: Pairwise comparison results.
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calculate the percentage of winnings (as well as ties) for each model by tallying over all
occurrences of the token. The results are then stratified by token frequency and plotted in
Figure 3.6. The better model is placed on the right in both sub-figures. In this figure, the
baseline model and HCP model are trained without and with hypernym class prediction
respectively. The sub-optimal model is trained without HCP and trained with different
hyper-parameters, whose perplexity is increased by 0.9 compared with the baseline model.

From Figure 3.6(a), we see that HCP outperforms the baseline model on all frequency
strata. Interestingly, the performance gap widens as frequency decreases, indicating that
HCP is beneficial in modeling rare tokens. In Figure 3.6(b), we compare the baseline model
against an under-optimized model of identical architecture but slightly different hyper-
parameters.2 Here, the (optimal) baseline outperforms the sub-optimal model on all but
the least frequent stratum, suggesting the possibility that perplexity reduction (resulting
from hyperparameter tuning in this case) might be achieved by improving frequent word
prediction at the expense of rare words. This is inline with observations made recently in
vision tasks [115].

3.4.3 Ablation study

We conduct ablation studies with WikiText-103 dataset and Transformer small model
to investigate how to map words to hypernym classes, how to select curriculum learning
pacing functions and to show why we use curriculum training.

Hypernym-path Depth

The hypernym classes are chosen from the hypernym-paths in WordNet. Considering that
a hypernym-path consists of multiple hypernyms, it is not straightforward to tell which
layer is the best. But the best depth d should be some layer in the middle. Because a small
depth might map multiple distant words into the same class, while a large depth will result
in too many classes which are hard for a model to learn. The extreme examples could be
d = 1 and d = ∞, corresponding to mapping all candidate words into the class “Entity.n.01”
and mapping each word into itself respectively. In Table 3.3, we show evaluation results
among different depth selections. The average depth is 8.03. #Classes denotes the total
number of hypernym classes. We find that depth 6th is the best choice, with the lowest
2The sub-optimal model has batch size 128 instead of the optimal 64, and the perplexity gap between
these two models is observed to be slightly larger than that between HCP and the baseline (0.9 vs 0.5).
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Depth Valid PPL #Classes

Baseline 34.5 0
d = 4 34.54 145
d = 5 34.29 1169
d = 6 34.05 3383
d = 7 34.37 6604
d = 8 34.25 9063

Table 3.3: Clustering words into classes with different layer’s hypernym parents.

valid perplexity. The results also confirm our assumption that the best one would be some
middle layer.

Filter Frequency

In addition to the hypernym-path depth, we also investigate how to select frequency thresh-
old f . As we mentioned above, our target is to map similar words into the same class,
where predicting a hypernym class might be easier than predicting multiple different words.
After the mapping process, low-frequency words can be clustered into hypernym classes
with higher frequency. Table 3.4 shows the results of different f . #Rep. denotes the
number of tokens in the vocabulary that will mapped. We can see that f = 6000 achieves
the best results while f = ∞ (without filter) is the worst. We hypothesize this might be
due to two reasons. First, for some high-frequency common words, the model can learn
them well already, while mapping them into hypernym classes may be superfluous or even
harmful. Second, including frequent words skews the marginal distribution over hypernym
classes, causing hypernym prediction to be more class-imbalanced, which in turn might
lead to collapsed representation in the resulting LM [34]. This hypothesis deserves further
investigation. It should be noted that although the difference of #Rep.Tokens looks minor,
the difference in the token’s appearance is significant. For example, f = ∞ maps only 776
additional tokens compared with f = 8000, but each token’s appearance is more than 8000,
which explains the different perplexities in Table 3.4.

Pacing Function

Table 3.5 shows the results of models trained with various curriculum pacing functions. We
also report the validation perplexities of the tokens that have ever been replaced with hyper-
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FilterFreq. Valid PPL #Rep.

Baseline 34.5 0
f = 3000 34.14 70859
f = 5000 34.50 71735
f = 6000 34.05 71971
f = 7000 34.32 72153
f = 8000 34.35 72291
f = ∞ 40.10 73067

Table 3.4: Ignoring words whose frequency more than a threshold f during hypernym class
clustering.

nym class (Rep.PPL) during training and tokens without hypernym class (NonRep.PPL).

For the constant pacing function, we fix b = 1 and change the value of a, In this case,
the models are always training with HCP in the first a ∗ 100k steps and then switch to
the token prediction training, which is a pretraining pacing function. We can see that all
models outperform the baseline model over the validation perplexity. Rep.PPL improves
from 348 to 339. The perplexity of NonRep.PPL between baseline model and HCP models
are similar, except the model trained with a = 4, which indicates the pretraining should
not take up too many steps.

For the linear pacing function, we choose some specific a and b to achieve the same HCP
steps as the constant functions above. For simplicity, we also set a = b. We show results
with different pacing functions in Table 3.5, where NonRep.PPL denotes non-replaced
tokens’ perplexity, and Rep.PPL denotes replaced tokens’ perplexity. In Table 3.5, we can
see that the overall perplexity of the linear functions is similar to the corresponding constant
functions, where the NonRep. PPL is slightly decreased while the Rep.PPL is slightly
increased. We conduct a grid search over different pacing functions with Transformer
small model and WikiText-103, and finally, use the constant function with a = 0.12 and
b = 0.8 for all base models and large models.

Curriculum hyper-parameters could be transferred to the arXiv dataset successfully.
However, we tune the frequency threshold f on each dataset, because different tokenization
methods change the frequency distribution. All HCP models in Table 3.2 are using d = 6,
f = 1000, and the constant pacing function with a = 0.12 and b = 0.8.
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Constant Func. HCP steps Valid PPL NonRep.PPL Rep.PPL

a=0 b=0 0 34.5 22.07 348.87
a=0.1 b=1 10k 34.18 22.08 339.30
a=0.2 b=1 20k 34.15 22.07 339.34
a=0.3 b=1 30k 34.26 22.07 338.14
a=0.4 b=1 40k 34.39 22.26 338.31

Linear Func.

a=0.45 b=0.45 10k 34.14 22.04 340.55
a=0.64 b=0.64 20k 34.05 21.96 341.33
a=0.78 b=0.78 30k 34.26 22.05 346.77
a=0.90 b=0.90 40k 34.56 22.12 354.40

Table 3.5: Training N steps hypernym class prediction among 100k training steps with
different pacing functions.

Other Training Objectives

We also experimented with two other methods to incorporate hypernym information into
LM training. Although neither method has yielded any empirical gain, we nonetheless
report these methods and offer possible explanations for their failure.

Multi-objective Training Multi-objective (or multi-task) training consists in a weighted
sum of token and hypernym prediction losses. We set the weight of the hypernym predic-
tion loss to 0.2. The prediction of a token is calculated with Eq. 3.1. The prediction of
a hypernym class is calculated with Eq. 3.3, where x can be the output vector from any
layer in the Transformer LM. Table 3.6 lists the results using the last layer and the 8th
layer. Using the last layer significantly undermines the original token prediction results.
Using the 8th layer is better but the final perplexity is still no better than the baseline
model. Simply forcing the language model to predict the hypernym class for each token is
harmful to LM performance. We also tried to replace Eq. 3.3 with Eq. 3.2, by mixing Vh

and V¬w together when predicting the hypernym classes (mix vocab). This significantly
improves multi-objective training. Learning to predict the hypernym class from a mixed
vocabulary Vh ∪V¬w is better than only hypernym classes Vh.
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Valid PPL Test PPL NonRep.PPL Rep.PPL

Baseline 34.50 36.46 22.07 348.87
Adaptive Softmax 36.32 38.16 22.48 435.93
Multi-obj

last layer 46.06 48.49 27.81 627.23
8th layer 43.42 45.37 26.13 597.66
8th layer + mix vocab 35.97 38.02 22.98 365.27

Hypernym Class Prediction 34.05 35.87 21.96 341.33

Table 3.6: Results obtained by alternative strategies.

Adaptive Softmax Another method is the adaptive-softmax [35], where the model first
predict the hypernym probability among Vh∪V¬w and then predict the token probability
among the tokens with the same hypernym class. In Table 3.6, we can see that the
adaptive-softmax is no better than the multi-objective trained model. By looking into the
poor perplexity of Rep.PPL, we find this method cannot improve the prediction of tokens
in Vw. We believe this is due to the noise of hypernym class mapping, where we choose
the first synset path as the token’s hypernym synset without considering the context. Such
noise will affect the adaptive-softmax prediction but is not an issue for curriculum training
as the final training stage is fully trained with the original text.

3.5 Summary

In this chapter, we propose a novel training method which leverages lexical feature for
language modeling. The proposed training strategy is based on curriculum learning and
WordNet’s super-subordinate relation. Although WordNet is an external resources, it’s not
clear how to get lower perplexity using WordNet before this work. This is the first work
shows how the perplexity of large Transformer LMs can be improved by using WordNet.
Also, consistent perplexity reduction can be observed over various models and datasets,
where the improvements are obtained without increasing the training cost. Finally, both
the rare and frequent tokens can be modeling better with our proposed method while other
optimization method may sacrifice the performance on rare tokens.

We’d like to address the limitations of this work: in addition to the super-subordinate
relation and lexical feature, there may be other more effective methods to map words
to classes by using other linguistic knowledge; our experiments are only conducted with
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English, and experiments with other languages should be verified in the future; it is not
sure whether the proposed method can help LM pretraining and downstream tasks. We
hope to investigate these directions in the future.
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Chapter 4

Alignment-Aware Acoustic and Text
Modeling

4.1 Introduction

Self-supervised pretraining methods have shown great power for NLP tasks, and has also
been applied to the speech processing domain for speech representation learning. It has
attracted much attention in the speech community due to its strong performance to many
speech-related downstream tasks, such as speech recognition, speech classification, and
speech translation [6, 20, 68, 150, 43]

However, all these efforts can only support speech understanding tasks which take speech
as input, but for the inverse direction, speech synthesis, which synthesis speech as output,
the potential of representation learning is yet to be realized. For example, one line of work,
such as wav2vec 2.0 [6], HuBERT [43] and SLAM [10], learn discrete quantized speech units
as latent representations. In this way, these models are good at recognizing and extracting
discrete information from speech and successfully improves automatic speech recognition
(ASR), but they are unable to generate continuous acoustic signals for speech synthesis.
On the other hand, another line of work, such as MAM [20] and FAT-MLM [150], show
that reconstructing masked spectrogram with continuous units can improve speech-to-text
translation. However, the quality of their proposed speech reconstruction is far from the
requirement of speech synthesis tasks (see Fig. 4.6(f)).

To address this problem, we propose our framework, Alignment-Aware Acoustic-Text
Pretraining (A3T), where we introduce cross-modal alignment embeddings which make
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Data Reconstructed Tasks
Model ⟨s,x⟩ ⟨s⟩ Masked Speech Text-to-

Speech Editing Speech

wav2vec 2.0 ✓
HuBERT ✓ discrete units
SLAM ✓ ✓

MAM ✓ low-quality
FAT-MLM ✓ ✓ spectrogram

A3T ✓ ✓
high-quality

✓ ✓spectrogram

Table 4.1: Comparisons of A3T with other existing speech pretraining models. Here s
stands for speech input, while x stands for text, and ⟨s,x⟩ denotes parallel speech-text
data.

the model easier to learn the alignment between the acoustic and phoneme input during
multi-modal pretraining, and significantly improve the quality of the reconstructed acous-
tic signals. By leveraging the phoneme segmentation feature and speech-text alignment
feature, the proposed A3T model is improved significantly without increasing any training
cost. Moreover, we borrow several useful ideas from recent text-to-speech (TTS) litera-
ture, including Conformer [37, 38] and Post-Net [122], to further improve the quality of
our reconstructed spectrograms.

The proposed model can be adopted as a speech-editing system, a task that modifies
an existing speech, by reconstructing the desired acoustic signals given original contextual
speech and modified text. Furthermore, the model can be adopted as a multi-speaker TTS
system with our proposed prompt-based decoding method, to synthesis unseen speaker’s
speech without the external speaker verification model (speaker embeddings). Our exper-
iments show that our A3T with prompt-based decoding can outperform the TTS model
equipped with both the speaker embedding [48] and the global style token (GST) [134].

We make the following contributions1:

• We propose the Alignment-Aware Acoustic-Text Pretraining (A3T), which can re-
construct masked spectrograms with high quality.

1See our Demo at:
https://educated-toothpaste-462.notion.site/Demo-fdacf73d17904fad8901548504aece9d
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Figure 1: Illustration of our framework which jointly learns contextualized speech representations
and an inventory of discretized speech units.

on labeled data with a Connectionist Temporal Classification (CTC) loss [14, 4] to be used for
downstream speech recognition tasks (§ 3)

Previous work learned a quantization of the data followed by a contextualized representations with a
self-attention model [5, 4], whereas our approach solves both problems end-to-end. Masking parts
of the input with Transformer networks for speech has been explored [4, 26], but prior work relies
either on a two-step pipeline or their model is trained by reconstructing the filter bank input features.
Other related work includes learning representations from auto-encoding the input data [52, 11] or
directly predicting future timesteps [8].

Our results show that jointly learning discrete speech units with contextualized representations
achieves substantially better results than fixed units learned in a prior step [4]. We also demonstrate
the feasibility of ultra-low resource speech recognition: when using only 10 minutes of labeled data,
our approach achieves word error rate (WER) 4.8/8.2 on the clean/other test sets of Librispeech.
We set a new state of the art on TIMIT phoneme recognition as well as the 100 hour clean subset
of Librispeech. Moreover, when we lower the amount of labeled data to just one hour, we still
outperform the previous state of the art self-training method of [42] while using 100 times less
labeled data and the same amount of unlabeled data. When we use all 960 hours of labeled data from
Librispeech, then our model achieves 1.8/3.3 WER (§ 4, § 5).

2 Model

Our model is composed of a multi-layer convolutional feature encoder f : X 7! Z which takes as
input raw audio X and outputs latent speech representations z1, . . . , zT for T time-steps. They are
then fed to a Transformer g : Z 7! C to build representations c1, . . . , cT capturing information from
the entire sequence [9, 5, 4]. The output of the feature encoder is discretized to qt with a quantization
module Z 7! Q to represent the targets (Figure 1) in the self-supervised objective (§ 3.2). Compared
to vq-wav2vec [5], our model builds context representations over continuous speech representations
and self-attention captures dependencies over the entire sequence of latent representations end-to-end.

Feature encoder. The encoder consists of several blocks containing a temporal convolution fol-
lowed by layer normalization [1] and a GELU activation function [21]. The raw waveform input to
the encoder is normalized to zero mean and unit variance. The total stride of the encoder determines
the number of time-steps T which are input to the Transformer (§ 4.2).

Contextualized representations with Transformers. The output of the feature encoder is fed to
a context network which follows the Transformer architecture [55, 9, 33]. Instead of fixed positional
embeddings which encode absolute positional information, we use a convolutional layer similar
to [37, 4, 57] which acts as relative positional embedding. We add the output of the convolution
followed by a GELU to the inputs and then apply layer normalization.

Quantization module. For self-supervised training we discretize the output of the feature encoder
z to a finite set of speech representations via product quantization [25]. This choice led to good
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Figure 4.1: Previous work for speech representation learning.

• We show that the proposed A3T model has the ability to do speech editing and
outperforms the current SOTA.

• We propose the prompt-based decoding method. We show that our A3T model has
the ability to do speech synthesis for unseen speaker and outperforms the speaker-
embedding-based multi-speaker TTS system.

4.2 Related Work

4.2.1 Speech Synthesis and Editing

Recently, neural TTS systems become capable of generating audios with high natural-
ness [128, 122, 112, 91, 111, 57]. SOTA neural TTS systems generally consist of two
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stages: the text-to-spectrogram stage which generates an intermediate acoustic representa-
tion (linear- or mel-spectrogram) from the text, and the spectrogram-to-wave stage (vocoder)
which converts the aforementioned acoustic representation into actual wave signals [88, 97].2

In the multi-speaker and unseen-speaker settings, the existing TTS models need to be
trained with an additional input feature: speaker embedding [48], which is extracted from
an external speaker verification model trained with tens of thousands of speakers’ audio.
And during the inference for an unseen speaker, the embedding will be extracted from
one of this speaker’s other audio examples. However, the embedding from the speaker
verification model is not optimized directly to capture speaker characteristics relevant to
synthesis, and cannot provide enough information for the TTS model to generate audio
similar to the example.

The input of speech editing includes the original speech, the original and modified text.
[50] propose to insert a regenerated audio clip back into the original recording. However,
due to the absence of speech contextual information, the boundaries of the modified region
would be not smooth. [86] propose to retrieve the modified speech segments from other
utterances of the same speaker and correct the prosody with a context-aware TD-PSOLA
corrector [87]. However, the edited content may not be found in the speech data of the same
speaker. Most recently, [127] use neural TTS model to generate better-modified speech.
This method is only compatible with auto-regressive decoding models and highly relies on
the speaker embeddings, which limits its efficiency and transferability to new speakers.

4.2.2 Speech Pretraining

To improve the Text-to-Speech model from larger-scale pure speech data, one idea is to
do pretraining on speech data. All existing speech pretraining work learn either discrete
units, which can only support speech understanding tasks, or spectorgram, but with very
low quality.

Reconstructing Discrete Units

Wav2vec 2.0 proposed by [6] is the most popular speech pretrain model recently. It masks
the speech input in the latent space and pretrains the model by predicting discrete units
via a contrastive task defined over a quantization of the latent representations, as shown
in Fig. 4.1(a). Similar to wav2vec 2.0, HuBERT [43] and SLAM [10] also learn discrete
2We focus on the text-to-spectrogram stage and use an off-the-shelf vocoder Parallel WaveGAN [141].
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speech units from contextualized representations to represent the latent representations.
Thus these models can achieve good performance in speech recognition tasks, but they are
unable to generate continuous acoustic signals for speech synthesis.

Reconstructing Low-Quality Spectrogram

Recently, [20] propose to learn a speech encoder in a self-supervised fashion on the speech
side, which can utilize speech data without transcription. Fig. 4.1(b) demonstrate the ar-
chitecture of this model, termed Masked Acoustic Modeling (MAM). MAM replaces a span
of speech spectrogram with mask tokens, and learns to recover the masked spectrogram
during training. On the other hand, [150] propose a Fused Acoustic and Text Masked Lan-
guage Model (FAT-MLM) which jointly learns a unified representation for both acoustic
and text input from various types of corpora including parallel data for speech recognition
and machine translation, and even pure speech and text data, as shown in Fig. 4.1(c).

Both MAM and FAT-MLM reconstruct spectrograms, however, the quality of their
spectrogram output is far from the requirement of speech synthesis tasks (see Fig. 4.6(f)),
since these pretrained models are all used in speech understanding task (speech-to-text
translation), where the quality of the reconstructed spectrogram is not very important.

4.3 Model

Although existing speech pretraining models show a strong representation learning ability
and significantly improve upon many down-stream tasks in speech understanding, all these
efforts can not support speech synthesis tasks. To address this problem, we propose the
Alignment-Aware Acoustic-Text Pretraining (A3T) which learns to generate high-quality
spectrogram given speech context and text.

4.3.1 A3T

A3T takes speech and transcription tuples as input, denotes as Ds,x = {⟨s,x⟩(n)}|D|
n=1, where

s = (s1, ..., s|s|) is a sequence of acoustic features si ∈ Rds which can be the spectrogram or
mel-spectrogram of the speech audio, and each si represents the frame-level speech feature,
and x = (x1, ..., x|x|) is the sequence of corresponding transcription.

As shown in Fig. 4.2, we first randomly mask several spans of s by a random masking
function over the input s: ŝ ∼ Maskspan(s, λ), where Maskspan(·) replaces several random
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Figure 4.2: Model architecture of A3T.

spans of s by the probability of λ with the same number of a random initialized masking
vector ϵs ∈ Rds . Then we encode ŝ with a acoustic encoder for acoustic embeddings eŝ. In
this work, we use a nonlinear feed-forward layer as the acoustic encoder.

4.3.2 Cross-modal Alignment Embedding

To strengthen the interaction between the speech and text input, we introduce cross-modal
alignment embedding as one input of encoder, where we sum the ith acoustic embedding
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Figure 4.3: Details of the Embedding block, Conformer block and Post-Net block.

esi or text embedding xi with its positional embedding eposi and alignment embedding
ealni

all together: esi + eposi + ealni
, where previous work have proved the embedding sum

operation is simple and effective [30, 7]. After that, the phoneme embedding and its acous-
tic embeddings will share the same alignment embedding. We use a forced aligner [146]
to pre-process the dataset to get the alignment information, which is shown in Fig. 4.3(a).
Forced alignment refers to the process by which transcriptions are aligned to audio record-
ings to automatically generate phone-level segmentation. This process is similar to speech
recognition but rather than being given a set of possible phoneme candidates by LM, the
exact phonemes are given to the force aligner, and then the aligner identifies which speech
segment belongs to particular phonemes in the transcription.
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4.3.3 Conformer

Given the recent success of Convolution-augmented Transformer (Conformer) on various
speech tasks [37, 38], we adopt Conformer as the backbone of our encoder and decoder.
Compared with Transformer, Conformer introduces a convolution module and an addi-
tional feedforward module, which is shown in Fig. 4.3(b). In our experiments, we find
Conformer is better than Transformer for acoustic-text pretraining.

4.3.4 Post-Net and Loss Function

We follow Tacotron 2 [122] to use Post-Net to refine the generated spectrogram. The
predicted spectorgram is passed through a 5-layer convolution Post-Net to be refined as
shown in Fig. 4.3(c).

The training objective of multi-modal A3T includes a speech reconstruction loss ℓs(Ds,x)
which takes a spectrogram s and a text sequence x as input. We have the following
training objective to reconstruct the original speech signal with the surrounding context
information:3

ℓs(Ds,x) =
∑

⟨s,x⟩∈Ds,x

∥ f([eŝ;x]) + g
(
f([eŝ;x])

)︸ ︷︷ ︸
refined spectrogram

−s∥1

+ ∥ f([eŝ;x])︸ ︷︷ ︸
reconstructed spectrogram

−s∥1
(4.1)

where g is a Post-Net which tries to recover a better original signal from encoded represen-
tation f([eŝ; x̂]). We use mean absolute error (MAE) for measuring the difference between
s and the reconstructed spectrogram.

4.3.5 A3T for Speech Editing

Once A3T finishes the pretraining process, it can be used as a speech editing system directly
with an external duration predictor, which is shown in Fig. 4.4.

Given a speech s, its original phonemes x̃, and the target modified phonemes x, our
system first finds the phonemes that need to be modified x̂. To predict the duration d̂i

of modified phonemes xi ∈ x̂, we use an external duration predictor. Since the duration
3Similar with previous work using masked language model objective, this loss only takes the masked input
into consideration.
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Figure 4.4: Speech editing pipeline.

predictor only takes phoneme sequence as input, we adjust model predicted duration d′
i

according to the origin speech durations as: d̂i = d
′
i

∑|x|
j=1

d̃j

d
′
j

, where d̃′
j/d

′
j is the ratio

between the duration of the original phone x̃j in the given speech and the predicted duration
of the original phone x̃j in the original sentence x̃. We compute this ratio from all phones
in the original sentence x̃ and use it to adjust the predicted duration d′

i and get the final
duration d̂i for phone x̂i.

With this predicted duration, we insert
∑|x̃|

i=1 d̂i · sr/h4 number of [MASK] frames into
the non-modified spectrogram context. This masked spectrogram ŝ is the input of A3T
and f([eŝ;x]) + g

(
f([eŝ;x])

)
is the prediction of the modified portion spectrogram. Then,

4sr stands for sample rate and h stands for hop size.
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we use a vocoder to generate the waveform of this spectrogram and output the final edited
speech by replacing the modified part of the original speech.

(a) Speaker/Style embedding-based method.

(b) Prompt-based decoding.

Figure 4.5: Illustrations for one-shot TTS.
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4.3.6 A3T for Multi-speaker TTS

In addition to the speech editing, we find our model has the potential for unseen speaker
TTS.

Existing popular unseen speaker TTS models [48] are trained with seen speaker em-
beddings and generalizes to unseen speaker embeddings during the inference. However,
such speaker embeddings are extracted from an external speaker verification model which
is trained with tens of thousands of speakers.

In this work, we find our model can achieve comparable naturalness to models with
speaker embeddings for unseen speaker TTS task; What’s more, our generations are more
similar to the unseen speaker’s reference speech. The illustrations of how to synthesis
speech for unseen speakers with our A3T model are shown in Fig. 4.5, which is named
prompt-based A3T. The prompt speech and text are wrapped with blue rectangles, and
the target speech and text are wrapped with red.

The key idea is to concatenate the prompt and the target together into a new utterance
input, where the target speech is consist of n [MASK] and n is predicted by a duration
predictor. By inputting the concatenated speech and text, A3T model will predict the
spectrogram of these masked frames. The role of the reference text and speech in our
model is similar to prompts in language model [18], and hence we call it prompt-based
decoding/generation. Prompts in language model refer to demonstrations or examples, to
perform downstream tasks. Here, the prompts is the speech-text pair, and the downstream
task is to mimic the speech example and generate new audio which is similar to the given
speaker.

4.4 Experiments

In this section, we introduce our experiments for spectrogram reconstruction pretraining
task, speech-editing task, and multi-speaker TTS. The spectrogram reconstruction is our
pretraining task, where we conduct ablation study to show the contributions of different
components and also the effects of different masking rates. The experiment settings of
speech-editing are followed [127], where we deploy two speech-editing systems with two
datasets and evaluate the Mel-cepstral distortion (MCD) score and human-annotated mean
opinion score (MOS) [24]. The multi-speaker TTS experiments include seen speaker TTS
and unseen speaker TTS evaluated with the MOS scores.
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4.4.1 Datasets

Following [127], we conduct our speech-editing experiments with a single-speaker TTS
dataset LJSpeech [46] and a multi-speaker TTS dataset VCTK [140]. The LJSpeech dataset
is a single-speaker dataset with 13K examples in 24 hours. The VCTK dataset is a multi-
speaker dataset with 109 speakers and 44K examples in 44 hours. It should be noted that
after finishing the pretraining process with LJSpeech or VCTK, our A3T will be used as a
speech-editing system without any further finetuning.

We test multi-speaker TTS task with VCTK dataset. For seen multi-speaker TTS, each
speaker’s examples would be split into train and test sets. For unseen multi-speaker TTS,
the test set contains 10 speakers’ examples, and the other 99 speaker’s examples are used
for training.

4.4.2 Configuration Details

Raw audio files are processed with 50 ms frame size and 12.5 ms frame hop with the Hann
window function to extract 80-dimensional log-Mel filterbanks. We use 24K sampling rate
for VCTK and 22K for LJSpeech. The forced alignment and G2P are both carried out
by HTK [145] to convert English words to phones and align phones with audio segments.
For speech-editing systems and prompt-based TTS, we use the publicly available duration
predictor from FastSpeech 2 implemented in ESPnet [44]. We use Parallel-WaveGAN [141]
vocoder for all the systems.

All A3T models pretrained in our experiments share the same architecture: 4 layers
Conformer encoder, 4 layers Conformer decoder, and 5 layers Conv1d Post-Net, with 2
heads multi-head attention in 384-dim. The convolution kernel sizes of the encoder and
decoder are 7 and 31, respectively. The shape of alignment embeddings is (500, 384), where
we assume the number of phones will not exceed 500 for a single input. The shape of input
phone embeddings is (73, 384), and we use a ReLU [1] nonlinear layer to transform 80-dim
log-Mel filterbanks features to 384-dim. The total number of parameters is 67.7M.

During training, we use Adam optimizer with a 1.0 initial learning rate, 4000 warmup
steps, and Noam learning rate scheduler. Instead of setting a fixed batch size, we adjust
the batch size according to the length of the input example and set a maximum batch-
bin (the total number of input elements) for each model. Following MAM [20], 15% frames
will be masked for speech-only input, For speech-text input, we randomly select several
phonemes spans ( 80% phonemes) and mask their corresponding frames. For speech-editing
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(a) Groundtruth spectrogram from LJSpeech.
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(b) Reconstructed spectrogram by A3T.
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(c) Reconstructed spectrogram based on A3T
in 4.6(b) without segment embedding.
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(d) Reconstructed spectrogram based on A3T
in 4.6(c) with Transformer instead of Conformer.
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(e) Reconstructed spectrogram based on A3T
in 4.6(d) without Post-Net.
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(f) Reconstructed spectrogram based on A3T
in 4.6(e) with L2 loss instead of L1 loss. This
model uses the similar architecture of FAT-MLM.

Figure 4.6: An example of ablation study in LJSpeech. Original text is “and of the Ad-
vanced Research Projects Agency of the Department of Defense”. The portion with red
box is “Advanced Research” which is masked in (b,c,d,e,f) subfigures.
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(a) Attention map of A3T w/o alignment em-
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(b) Attention map of A3T with alignment em-
beddings

Figure 4.7: Attention map between speech and text of A3T with and without alignment
embeddings.

experiments, we use 2.4M batch-bin, 1M steps for LJSpeech, and 3M batch-bin, 1.2M steps
for VCTK.

4.4.3 Ablation Study with Spectrogram Reconstruction

Example Model MCD ↓
Fig. 4.6(b) A3T 8.09
Fig. 4.6(c) - Alignment Embeddings 10.73
Fig. 4.6(d) - Conformer 12.43
Fig. 4.6(e) - Post-Net 12.94
Fig. 4.6(f)) - L1 loss 11.55

Table 4.2: Ablation study for A3T pretrained with LJSpeech.

We first conduct an ablation study with LJSpeech dataset for our pretraining task:
spectrogram reconstruction. This task requires A3T to predict the masked frames. We
sample 30 utterances randomly from the test set, and 1/3 phones in the middle of each
sentence are masked. We adopt MCD (Mel-cepstral distortion) to measure the difference
between the ground-truth audio and the reconstructed audio, where lower MCD means
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MaskRate Seen MCD ↓ Unseen MCD ↓
20% 10.35 12.22
50% 7.75 9.99
80% 8.72 9.68

Table 4.3: MCD scores of A3T pretrained in different masking rates with VCTK.

higher similarity. Here we only measure the MCD of the masked/reconstructed region.
We incrementally discard the components of A3T: removing the cross-modal alignment
embedding, replacing the Conformer with Transformer, removing the Post-Net, and using
L2 (MSE) loss instead of L1 (MAE) loss.

Results are shown in Tab. 4.2. We remove modules one by one. For each model, we
show a spectrogram example in Fig. 4.6. By comparing Fig. 4.6(b) and Fig. 4.6(c), we can
see that many details are lost when A3T trained without the alignment embedding, and
the MCD scores rise from 8.09 to 10.73. Similar degrading can be observed after replacing
Conformer with Transformer: the MCD scores rise from 10.73 to 12.43 and the spectrogram
becomes blurrier (Fig. 4.6(d)). Compared with the alignment embedding and Conformer,
Post-Net contributes only 0.49 MCD score, and L2 loss even achieves better MCD score
than L1 loss. However, when looking into the spectrograms, we can see that Fig. 4.6(f) is
blurrier than Fig. 4.6(e), which conforms to the previous finding [58] that L1 loss is better
than L2 loss for speech synthesis. Hence, we choose L1 loss for A3T pretraining. Also,
Fig. 4.6(f) indicates the quality that previous pretrained model (MAM/FAT-MAM) could
achieve, and the other figures show how our A3T transforms Fig. 4.6(f) to Fig. 4.6(b).

We also conduct a study with VCTK to show the impacts of difference masking rates.
Results are shown in Tab. 4.3. We can see that 20% masking rate leads to large MCD scores,
while 50% and 80% are better. Also, 50% masking rate outperforms 80% on the seen test
cases, but not on the unseen. Considering 80% masking rate has a better generalization
on unseen cases, we choose 80% for all the following experiments.

Finally, we plot the attention heat maps of encoder with and without our proposed
cross-modal alignment embedding in Fig. 4.7. The attention matrices are collected from
the encoder’s last layer with a mean-pooling across heads. It should be noted that the
original attention matrix is 310*310, which contains both the speech and phones, and for
clarity, we plot only 11 phones and their corresponding frames in Fig. 4.7. We can see that
our A3T is aware of the speech segmentations and their corresponding phones, while the
baseline model fails to capture such alignment information. This observation demonstrates

64



the effectiveness of our A3T for cross-modal pretraining.
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(c) Baseline 3.

Figure 4.8: Illustrations for speech editing baselines.

4.4.4 Speech Editing

Following [127], we list several baseline systems below:

• Baseline 1: This is a TTS system regenerating a complete waveform from the whole
sentence to be edited.

• Baseline 2: This system generates the modified region with a TTS model and insert
the generation back to the original waveform with a forced aligner.

• Baseline 3: This system is similar to Baseline 1, but we cut the modified region
from the generation and insert it back to the original waveform with a forced aligner.

• EditSpeech [127]: This is a speech-editing system which introduces partial infer-
ence and bidirectional fusion to sequence-to-sequence neural TTS model. EditSpeech
trains two conventional auto-regressive TTS models, one left-to-right and the other
right-to-left (Fig. 4.9(b)). For decoding, the left-to-right TTS model force-decodes
the prefix speech context and synthesizes the modified region, and the right-to-left
TTS model force-decodes the suffix context and generates the modified region re-
versely. Finally, the two synthesized speeches are fused for final output (Fig. 4.9(c)).
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(a) A3T train/decode (b) EditSpeech train

(c) EditSpeech decode

Figure 4.9: Comparisons between A3T and EditSpeech. →: free decoding, 99K: forced
decoding.

Different from EditSpeech, A3T trains a non-auto-regressive encoder to reconstruct
masked acoustic signals, and uses the identical framework for decoding. EditSpeech trains
two auto-regressive TTS models: a left-to-right and a right-to-left. For decoding, these
two models synthesize two speeches and are fused for the output.

Inspired by [127], we also evaluate our speech editing system with an identical recon-
struction task, which is similar to the above ablation experiments but without the ground-
truth duration length and can be evaluated with MCD metric. 30 utterances are randomly
sampled for each dataset, and a part of speech, which corresponds to 1/3 phonemes in the
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middle of each sentence, is masked. The audio of the masked region is replaced with each
system’s generation. A duration model is used to predict the length of masked speech from
phonemes. Results are shown in Tab. 4.4. From this table, we can see that our system
achieves the best MCD score. Besides, alignment embedding is the key to reducing MCD,
which confirms our observation in Fig. 4.6(c). For TTS-based systems, we find that gen-
erating the whole audio and then extracting the modified region is better than generating
the modified region only.

We then conduct the human evaluation with Amazon Mechanical Turk for the real
speech insertion and replacement tasks using the VCTK dataset. To compare our results
with [127], we use the same 15 audio samples and modification operations from their work.
For each audio sample, we have 10 English native speakers to evaluate the naturalness of
synthesized audios. In Tab.4.5, our A3T speech editing system outperforms [127]’s and gets
the highest MOS (Mean opinion score) scores among all these systems. Audio examples
can be found at our demo link.

Model VCTK MCD ↓ LJSpeech MCD ↓
Baseline 1/3 10.66 10.32
Baseline 2 12.06 10.91
A3T 7.76 9.26

w/o Alignment Emb. 11.37 10.30

Table 4.4: MCD evaluation on identity speech reconstruction using VCTK and LJSpeech.

Model Insert Replace

Baseline 1 3.02 ± 0.20 2.64 ± 0.16
Baseline 2 2.89 ± 0.17 2.70 ± 0.16
Baseline 3 2.89 ± 0.17 2.44 ± 0.16
EditSpeech[127] 3.50 ± 0.16 3.58 ± 0.16
A3T 3.53 ± 0.17 3.65 ± 0.15

w/o Alignment Emb. 2.48 ± 0.21 1.98 ± 0.17

Table 4.5: The MOS evaluation (↑) on speech editing task on VCTK with 95% confidence
intervals.
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Model Seen Unseen

FastSpeech 2 3.33 ± 0.10 3.78 ± 0.10
+GST [134] 3.42 ± 0.10 3.81 ± 0.11
A3T 3.61 ± 0.09 3.90 ± 0.10
Groundtruth 3.94 ± 0.08 4.09 ± 0.10

Table 4.6: The MOS evaluation (↑) for speaker similarity on multi-speaker TTS on VCTK
with 95% confidence intervals. The FastSpeech2 model is equipped with X-vectors [124].

Model Seen Unseen

FastSpeech 2 3.34 ± 0.11 3.85 ± 0.11
+GST [134] 3.27 ± 0.11 3.72 ± 0.11
A3T 3.63 ± 0.10 3.94 ± 0.11
Groundtruth 4.04 ± 0.08 4.05 ± 0.10

Table 4.7: The MOS evaluation (↑) for speech quality on multi-speaker TTS on VCTK
with 95% confidence intervals. The FastSpeech2 model is equipped with X-vectors [124].

4.4.5 Prompt-based Multi-speaker TTS

We also conduct human evaluation for multi-speaker TTS systems with seen speaker and
unseen speaker testing cases. The quality of the generations and the speaker similarity
between the generation and the reference are evaluated, and the results are shown in
Tab. 4.6 and Tab. 4.7. From this table, we can see that the style embedding GST [134]
improves the similarity scores but harms the quality scores, while our A3T model is the
most favourable system in both the speaker similarity and the speech quality. Strikingly,
we observe that, the average score of the Unseen cases are higher than the Seen, which
is counterintuitive. However, when looking into the MOS of the groundtruth, the gap is
still there and we believe this is due to the difference of these two test cases set . Audio
examples can be found at our demo link.

4.5 Summary

In this chapter, we introduce Alignment-Aware Acoustic-Text Pretraining (A3T) which
can reconstruct masked acoustic signals with high quality. The distinctive feature of our
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proposed A3T model is that it leverages both the segmentation and alignment feature of
natural language for text-speech sequence modeling. Our experiments show the importance
of these features. This is the first pretraining method for speech synthesis that can generate
high-quality speech without any finetuning. Our proposed A3T model can do speech editing
and outperforms the previous SOTA models. Also, A3T improves multi-speaker speech
synthesis without any external speaker verification model.

Although we only focus on the speech synthesis task in this chapter, our proposed A3T
model can be applied to other sequence modeling tasks, such as hand-writing synthesis. In
this case, the pretrained model may generate high-quality images which can help to repair
damaged handwriting images. We leave this direction for future work.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis is about modeling language sequences to achieve lower perplexity, better gener-
ation, and benefit downstream language tasks. Although increasing the training data and
model parameters can achieve the above objectives, we argue that such improvements are
limited by the training cost and the availability of the training data.

In this thesis, we emphasize the importance of language features, including the seg-
mentation feature, lexical feature, and alignment feature, which are essential for language
modeling. This thesis presents three new techniques that improve language sequence mod-
eling with the above language features, including better model architecture with segmen-
tation feature in Chapter 2, better training method with the lexical feature in Chapter 3,
and modeling cross-modal (text and speech) sequences with both the segmentation and
alignment feature in Chapter 4.

Improving Text Sequence Modeling with Segmentation Feature. The input of
language modeling is usually a long document with different sentence and paragraph seg-
ments. Although vanilla position encoding can help Transformer be aware of the token
position by assigning a unique index to each token, the token index in a sentence, sentence
index in a paragraph, and paragraph index in a document are all implicit. With our pro-
posed method in Chapter 2, we can explicitly encode the segment position information into
the Transformer, which reduces the LM perplexity, boosts the pretraining, and benefits the
downstream tasks. We illustrate the importance of the segmentation feature by comparing
the proposed Segatron with the vanilla Transformer in various settings, which also shows
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the effectiveness of the proposed method. The proposed Segatron works for both the lan-
guage models with relative position encoding and the pretrained language models with
absolute position encoding.

Improving Rare Words Modeling with Lexical Feature. Performance improve-
ment of today’s neural LMs is often achieved at the cost of increased computational re-
sources. Exploring training strategies that can achieve lower perplexity without increasing
the computational resources is an important direction. In Chapter 3, we revisit curricu-
lum learning and propose a novel training strategy for the Transformer language model
to gradually learn the lexical knowledge by curriculum training, which can achieve lower
perplexity without increasing the computational resources. The proposed method is based
on WordNet’s super-subordinate relation and curriculum learning. Although WordNet is
an external resource, it was not clear how to get lower perplexity using WordNet before
this work. This is the first work that shows how the perplexity of Transformer LMs can
be improved by leveraging hypernym relationships. Also, we provide an extensive ablation
study highlighting crucial elements of our method. The results confirm that our method
is effective and the lexical feature can reduce the perplexities with curriculum learning.

Facilitating Acoustic-Text Sequence Modeling with Segmentation and Align-
ment Features. Acoustic pretraining has improved many speech-related tasks, such as
speech recognition, speech classification and speech-to-text translation. However, all the
above tasks are in the direction of speech understanding, but for the inverse direction, speech
synthesis, the potential of representation learning is yet to be realized, due to the chal-
lenging nature of generating high-quality speech. To address this problem, we introduce
our framework Alignment-Aware Acoustic-Text Pretraining (A3T) in Chapter 4, which
reconstructs masked acoustic signals with text input and acoustic-text alignment during
training. The key idea is to use the acoustic-text alignment feature and phoneme segmen-
tation feature to guide the acoustic reconstruction. In this way, the pretrained model can
generate high quality of reconstructed spectrogram, which can be applied to the speech
editing and unseen speaker TTS directly. Experiments show A3T outperforms the state-
of-the-art models on speech editing, and improves multi-speaker speech synthesis without
the external speaker verification model. The results demonstrate the effectiveness of the
proposed method and the necessity of the alignment feature and phoneme segmentation
feature for acoustic-text sequence modeling.
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5.2 Future work

Exploration of Other Language Features for Language Modeling. In this thesis,
we introduce the segment feature, linguistic feature, and alignment feature, and show how
these features can help language sequence modeling. However, for each kind of feature,
many variants at different levels can be explored. For example, we explore the paragraph
segment, sentence segment, and phoneme segment of the segment feature. We show these
features can help both text sequence modeling and speech sequence modeling. In addi-
tion to these segments, there are many other language segments, i.e. subword segments,
phrase segments, semantic role segments, etc. Also, for linguistic features, this thesis only
introduces a super-subordinate lexical feature. Other linguistic features such as POS tag,
entity, and dependency relation can be incorporated into LM training with our proposed
curriculum training method too. And for the alignment feature, we use the phoneme-frame
alignment to facilitate the pretraining of speech-text sequence. In addition to speech-text
alignment, cross-lingual text alignment features may also be effective to improve cross-
lingual pretraining.

Extending Language Sequence Modeling Methods to Other Sequences. This the-
sis mainly focuses on the exploration of language features for language sequence modeling.
There are many other sequences in the world, i.e. biology sequence (genetic and peptide)
and image sequence (video and hand-writing), and distinct features can be found for these
sequences. We argue that the proposed methods which work for language sequences have
the potential to be extended to other sequences. For example, various relationships can
be found among different frames of the video image sequence, where related frames can be
grouped. These features are similar to the language segment feature, where Segatron and
A3T may be applied to modeling such a sequence. Another example could be the hand-
writing image. The sequence modeling of hand-writing image and transcript is similar to
the modeling of speech-text, and A3T can be applied for such pretraining. In this case,
the pretrained model may generate high-quality images which can help to repair damaged
handwriting documents.

Language Modeling on a Large Scale. GPT-3 has shown great potential in few-
shot learning and text generation, trained with 300 billion tokens and 175B parameters.
However, training such a large model is costly. In this project, we would like to answer
this question: Can multiple experts outperform a super expert? In other words, can
ten 17.5B models compete or outperform one 175B model? To answer this question, we
will first explore the relationship between model size and training data in the context of
GPT pretraining. We would also explore how to schedule the data distribution during the
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training of multiple LMs. Finally, how to select one from all generations of multiple LMs
will be investigated. This research direction is important to the NLP community, where the
possible impacts include: a new direction for large LM pretraining; GPT-3 could become
easier to be trained without a large amount of GPUs; GPT-3 could be investigated with
GPUs of the university labs, while the current large model can only be investigated with
super GPU clusters like Azure, AWS, and Google Cloud.

Multilingual Language Modeling. Multilingual pretrained LMs have achieved SOTA
results on low-resource and cross-lingual NLP tasks. These strong PLMs are either pre-
trained with MLM with monolingual inputs or parallel sequence pair inputs. The former
learns MLM for different languages and the latter learns bilingual alignments with MLM
task. However, we argue that these pretraining tasks are too easier to learn the alignments
among different languages. We will present a more challenging pretraining task: Sentence
level code-switching MLM, where we will map sentences in a document into different lan-
guages, and conduct MLM on the mapped document. The training would be on top of
existing multilingual PLMs, e.g. mT5 and XLM. And the mapping processing will be
relying on Wikipedia where a document in different languages can be found. This project
can further improve the existing multilingual pretrained models and benefit low-resource
language tasks and cross-lingual understanding tasks.
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