2,294 research outputs found

    Solution of minimum spanning forest problems with reliability constraints

    Get PDF
    We propose the reliability constrained k-rooted minimum spanning forest, a relevant optimization problem whose aim is to find a k-rooted minimum cost forest that connects given customers to a number of supply vertices, in such a way that a minimum required reliability on each path between a customer and a supply vertex is satisfied and the cost is a minimum. The reliability of an edge is the probability that no failure occurs on that edge, whereas the reliability of a path is the product of the reliabilities of the edges in such path. The problem has relevant applications in the design of networks, in fields such as telecommunications, electricity and transports. For its solution, we propose a mixed integer linear programming model, and an adaptive large neighborhood search metaheuristic which invokes several shaking and local search operators. Extensive computational tests prove that the metaheuristic can provide good quality solutions in very short computing times

    Optimal Trees

    Get PDF
    Not Availabl

    The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks

    Full text link
    It is challenging to design large and low-cost communication networks. In this paper, we formulate this challenge as the prize-collecting Steiner Tree Problem (PCSTP). The objective is to minimize the costs of transmission routes and the disconnected monetary or informational profits. Initially, we note that the PCSTP is MAX SNP-hard. Then, we propose some post-processing techniques to improve suboptimal solutions to PCSTP. Based on these techniques, we propose two fast heuristic algorithms: the first one is a quasilinear time heuristic algorithm that is faster and consumes less memory than other algorithms; and the second one is an improvement of a stateof-the-art polynomial time heuristic algorithm that can find high-quality solutions at a speed that is only inferior to the first one. We demonstrate the competitiveness of our heuristic algorithms by comparing them with the state-of-the-art ones on the largest existing benchmark instances (169 800 vertices and 338 551 edges). Moreover, we generate new instances that are even larger (1 000 000 vertices and 10 000 000 edges) to further demonstrate their advantages in large networks. The state-ofthe-art algorithms are too slow to find high-quality solutions for instances of this size, whereas our new heuristic algorithms can do this in around 6 to 45s on a personal computer. Ultimately, we apply our post-processing techniques to update the bestknown solution for a notoriously difficult benchmark instance to show that they can improve near-optimal solutions to PCSTP. In conclusion, we demonstrate the usefulness of our heuristic algorithms and post-processing techniques for designing large and low-cost communication networks

    Cost allocation in connection and conflict problems on networks: a cooperative game theoretic approach

    Get PDF
    This thesis examines settings where multiple decision makers with conflicting interests benefit from cooperation in joint combinatorial optimisation problems. It draws on cooperative game theory, polyhedral theory and graph theory to address cost sharing in joint single-source shortest path problems and joint weighted minimum colouring problems. The primary focus of the thesis are problems where each agent corresponds to a vertex of an undirected complete graph, in which a special vertex represents the common supplier. The joint combinatorial optimisation problem consists of determining the shortest paths from the supplier to all other vertices in the graph. The optimal solution is a shortest path tree of the graph and the aim is to allocate the cost of this shortest path tree amongst the agents. The thesis defines shortest path tree problems, proposes allocation rules and analyses the properties of these allocation rules. It furthermore introduces shortest path tree games and studies the properties of these games. Various core allocations for shortest path tree games are introduced and polyhedral properties of the core are studied. Moreover, computational results on finding the core and the nucleolus of shortest path tree games for the application of cost allocation in Wireless Multihop Networks are presented. The secondary focus of the thesis are problems where each agent is interested in having access to a number of facilities but can be in conflict with other agents. If two agents are in conflict, then they should have access to disjoint sets of facilities. The aim is to allocate the cost of the minimum number of facilities required by the agents amongst them. The thesis models these cost allocation problems as a class of cooperative games called weighted minimum colouring games, and characterises total balancedness and submodularity of this class of games using the properties of the underlying graph

    Opinion Optimization in Directed Social Networks

    Full text link
    Shifting social opinions has far-reaching implications in various aspects, such as public health campaigns, product marketing, and political candidates. In this paper, we study a problem of opinion optimization based on the popular Friedkin-Johnsen (FJ) model for opinion dynamics in an unweighted directed social network with nn nodes and mm edges. In the FJ model, the internal opinion of every node lies in the closed interval [0,1][0, 1], with 0 and 1 being polar opposites of opinions about a certain issue. Concretely, we focus on the problem of selecting a small number of kn k\ll n nodes and changing their internal opinions to 0, in order to minimize the average opinion at equilibrium. We then design an algorithm that returns the optimal solution to the problem in O(n3)O(n^3) time. To speed up the computation, we further develop a fast algorithm by sampling spanning forests, the time complexity of which is O(ln) O(ln) , with ll being the number of samplings. Finally, we execute extensive experiments on various real directed networks, which show that the effectiveness of our two algorithms is similar to each other, both of which outperform several baseline strategies of node selection. Moreover, our fast algorithm is more efficient than the first one, which is scalable to massive graphs with more than twenty million nodes

    Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

    Get PDF
    Given an undirected graph, we study the capacitated vertex separator problem that asks to find a subset of vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the analysis and protection of communication or social networks against possible viral attacks and for matrix decomposition algorithms. In this article, we provide a new bilevel interpretation of the problem and model it as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on the subset of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph. This approach allows us to develop a computational framework based on an integer programming formulation in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families of strengthening inequalities and show that they can be separated in polynomial time. We also show how to extend these results to a min-max version of the problem. Our extensive computational study conducted on available benchmark instances from the literature reveals that our new exact method is competitive against the state-of-the-art algorithms for the capacitated vertex separator problem and is able to improve the best-known results for several difficult classes of instances. The ideas exploited in our framework can also be extended to other vertex/edge deletion/ insertion problems or graph partitioning problems by modeling them as two-player Stackel- berg games and solving them through bilevel optimization

    {RAMA}: {A} Rapid Multicut Algorithm on {GPU}

    Get PDF
    We propose a highly parallel primal-dual algorithm for the multicut (a.k.a. correlation clustering) problem, a classical graph clustering problem widely used in machine learning and computer vision. Our algorithm consists of three steps executed recursively: (1) Finding conflicted cycles that correspond to violated inequalities of the underlying multicut relaxation, (2) Performing message passing between the edges and cycles to optimize the Lagrange relaxation coming from the found violated cycles producing reduced costs and (3) Contracting edges with high reduced costs through matrix-matrix multiplications. Our algorithm produces primal solutions and dual lower bounds that estimate the distance to optimum. We implement our algorithm on GPUs and show resulting one to two order-of-magnitudes improvements in execution speed without sacrificing solution quality compared to traditional serial algorithms that run on CPUs. We can solve very large scale benchmark problems with up to O(108)\mathcal{O}(10^8) variables in a few seconds with small primal-dual gaps. We make our code available at https://github.com/pawelswoboda/RAMA
    corecore