
RAMA: A Rapid Multicut Algorithm on GPU

Ahmed Abbas Paul Swoboda
Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract

We propose a highly parallel primal-dual algorithm for
the multicut (a.k.a. correlation clustering) problem, a classi-
cal graph clustering problem widely used in machine learn-
ing and computer vision. Our algorithm consists of three
steps executed recursively: (1) Finding conflicted cycles that
correspond to violated inequalities of the underlying multi-
cut relaxation, (2) Performing message passing between the
edges and cycles to optimize the Lagrange relaxation com-
ing from the found violated cycles producing reduced costs
and (3) Contracting edges with high reduced costs through
matrix-matrix multiplications.

Our algorithm produces primal solutions and lower
bounds that estimate the distance to optimum. We implement
our algorithm on GPUs and show resulting one to two orders-
of-magnitudes improvements in execution speed without sac-
rificing solution quality compared to traditional sequential
algorithms that run on CPUs. We can solve very large scale
benchmark problems with up to O(108) variables in a few
seconds with small primal-dual gaps. Our code is available
at https://github.com/pawelswoboda/RAMA.

1. Introduction

Decomposing a graph into meaningful clusters is a funda-
mental problem in combinatorial optimization. The multicut
problem [15] (also known as correlation clustering [10]) is
a popular approach to decompose a graph into an arbitrary
number of clusters based on affinites between nodes.

The multicut problem and its extensions such as higher
order multicut [27, 32], lifted multicut [30], (asymmetric)
multiway cut [14, 36], lifted disjoint paths [21] and joint
multicut and node labeling [41] have found numerous ap-
plications in machine learning, computer vision, biomedi-
cal image analysis, data mining and beyond. Examples in-
clude unsupervised image segmentation [4,5,7,58], instance-
separating semantic segmentation [2, 33], multiple object
tracking [21, 53], cell tracking [25], articulated human body
pose estimation [22], motion segmentation [31], image and
mesh segmentation [30], connectomics [6, 13, 48] and many
more.

Multicut and its extensions are NP-hard to solve [10, 18].
Since large problem instances with millions or even billions
of variables typically occur, powerful approximative algo-
rithms have been developed [11, 12, 30, 39, 52]. However,
even simple heuristics such as [30] require very large running
times for very large instances. In particular, some instances,
such as those investigated in [48] could not be solved in ac-
ceptable time (hence ad-hoc decomposition techniques were
used). In other scenarios very fast running times are essen-
tial, e.g. when multicut is used in end-to-end training [2, 49].
Hence, the need for parallelization arises, preferably on
GPUs. The parallelism offered by GPUs is typically difficult
to exploit due to irregular data structures and the inherently
sequential nature of most combinatorial optimization algo-
rithms. This makes design of combinatorial optimization
algorithms challenging on GPUs. An additional benefit of
running our algorithms on GPU is that memory transfers
between CPU and GPU are avoided when used in a deep
learning pipeline.

Our contribution is a new primal-dual method that can be
massively parallelized and run on GPU. This results in faster
runtimes than previous multicut solvers while still computing
solutions which are similar or better than CPU based solvers
in terms of objective. Yet, our approach is rooted in solving
a principled polyhedral relaxation and yields both a primal
solution and a dual lower bound. In particular, finding primal
solutions and approximate dual solving is interleaved such
that both components of our algorithm can profit from each
other. In more detail, our algorithmic contribution can be
categorized as follows

Primal: Edge Contraction: Finding a primal solution de-
pends similarly as in [30] on contracting edges that are
highly likely to end up in the same component of the
final clustering. To this end we propose to use a lin-
ear algebra approach by expressing edge contractions as
sparse matrix-matrix multiplications. This allows us to
accelerate edge contraction by exploiting highly parallel
matrix-matrix multiplication GPU primitives.

Dual: Lagrange Relaxation & Message Passing: To find
good edge contraction candidates, we consider approxi-
mately solving a polyhedral relaxation by searching for
conflicting cycles, adding them to a Lagrange relaxation

8193

and updating the resulting Lagrange multipliers iteratively
by message passing. We propose a new message passing
scheme that is both massively parallelizable yet yields
monotonic increases w.r.t. the dual objective, speeding up
the scheme of [52] by orders of magnitude.

Recursive Primal-Dual: We interleave the above opera-
tions of finding and solving a Lagrange relaxation and
contracting edges, yielding the final graph decomposition.
Hence, our algorithm goes beyond classical polyhedral
approaches [26, 44, 52] that only consider the original
graph.

On the experimental side we obtain primal solutions that
are of comparable or better quality to those obtained by es-
tablished high-quality heuristics [30, 38] in a fraction of the
execution time but with additional dual lower bounds that
help in estimating the quality of the solutions. We perform
experiments on 2D and 3D instance segmentation problems
for scene understanding [17] and connectomics [48] contain-
ing up to O(108) variables.

2. Related Work

Preprocessing and Inprocessing: For fixing variables to
their optimal values and shrinking the problem before or
during optimization, persistency or partial optimality meth-
ods have been proposed in [3, 37, 38]. These methods apply
a family of criteria that, when passed, prove that any solu-
tion can be improved if its values do not coincide with the
persistently fixed variables.

Primal heuristics: For obtaining primal solutions without
optimality guarantees or estimates on the distance to opti-
mum, a large number of methods have been proposed with
different execution time/solution quality trade-offs. The
first heuristic for multicut, the classical Kernighan&Lin
move-making algorithm was originally proposed in [29] and
slightly generalized in [30]. The algorithm consists of trying
various moves such as joining two components, moving a
node from one component to the next etc. and performing
sequences of moves that decrease the objective. The faster
but simpler greedy additive edge contraction (GAEC) heuris-
tic, a move making algorithm that only can join individual
components, was proposed in [30]. It is used in [30] to initial-
ize the more complex Kernighan&Lin algorithm. Variants
involving different join selection strategies were proposed
in [28]. The greedy edge fixation algorithm [30] generalizes
GAEC in that it can additionally mark edges as cut, con-
straining their endpoints to be in distinct components. The
more involved Cut, Glue & Cut (CGC) move-making heuris-
tic [12] works by alternating bipartitioning of the graph and
exchanging nodes in pairs of clusters. The latter operation is
performed by computing a max-cut on a planar subgraph via
reduction to perfect matching. CGC was extended to a more

general class of possible “fusion moves” in [11]. A parallel
algorithm for the simpler problem of unweighted correlation
clustering problem was given in [46]. A comparative survey
of some of the above primal heuristics is given in [40].

LP-based algorithms: For obtaining dual lower bounds
that estimate the distance to the optimum or even certify
optimality of a solution a number of LP-relaxation based
algorithms have been proposed. These algorithms can be
used inside branch and bound and their computational results
can be used to guide primal heuristics to provide increas-
ingly better solutions. Quite surprisingly, it has been shown
by [26, 32] that multicut problems of moderately large sizes
can be solved with commercial integer linear programming
(ILP) solvers like Gurobi [19] in a cutting plane framework
in reasonable time to global optimality. Column generation
based on solving perfect matching subproblems has been
proposed in [42,58]. Still, the above approaches break down
when truly large scale problems need to be solved, since the
underlying LP-relaxations are still solved by traditional LP-
solvers that do not scale linearly with problem size and are
not explicitly adapted to the multicut problem. Additionally,
violated inequality separation (cutting planes) requires solv-
ing weighted shortest path problems which is not possible
in linear time. The message passing algorithm [50] approx-
imately solves a dual LP-relaxation faster than traditional
LP-solvers and has faster separation routines than those of
primal LP-solvers as well, thereby scaling to larger problems.
An even faster, but less powerful, approximate cycle packing
algorithm was proposed in [38].

Other efficient clustering Methods: The mutex water-
shed [57] and its generalizations [9] are closely related to
the greedy additive edge fixation heuristic for multicut [40].
The corresponding algorithms can be executed faster than
their multicut counterparts on CPU, but are sequential. Fast
GPU schemes [8] were proposed for agglomerative cluster-
ing. Last, spectral clustering can be implemented on GPU
with runtime gains [24, 43]. All these approaches however
are not based on any energy minimization problem, hence do
not come with the theoretical benefits that an optimization
formulation offers.

3. Method
A decomposition (or clustering) of a graph G = (V,E)

is a partition {V1, . . . , Vk} of the node set such that V1 ∪
. . . ,∪Vk = V and Vi ∩ Vj = ∅ ∀i ̸= j. The cut
δ(V1, . . . , Vk) induced by a decomposition is the subset of
edges that straddle distinct clusters. Such edges are said to
be cut. See Figure 1 for an illustration of a cut into three
components.

The space of all multicuts is

MG =

{
δ(V1, . . . , Vk) :

k ∈ N
V1∪̇ . . . ∪̇Vk = V

}
. (1)

8194

Figure 1. Decomposition of a graph into three components (green).
The corresponding cut consists of the dashed edges straddling
distinct components (red).

The associated minimum cost multicut problem is defined
by an additional edge cost vector c ∈ RE . For any edge
uv ∈ E, negative costs cuv < 0 favour the nodes u and v
to be in distinct components. Positive costs cuv > 0 favour
these nodes to lie in the same component. The minimum
cost multicut problem is

min
y∈MG

⟨c, y⟩, (2)

where yuv for edge uv ∈ E is 1 (resp. 0) if u and v belong
to distinct (resp. same) components.

Below we detail the key components of our algorithm:
Starting from a graph where each node is a cluster, primal up-
dates consist of edge contractions that iteratively merge clus-
ters by join operations. Dual updates optimize a Lagrange
relaxation via message passing to obtain better edge costs
and lower bound. Primal and dual updates are interleaved to
yield our primal-dual multicut algorithm. We additionally
detail how each operation can be done in a highly parallel
manner.

3.1. Primal: Parallel Edge Contraction

The idea of edge contraction algorithms is to iteratively
choose edges with large positive costs. Such edges prefer
their endpoints to be in the same component, hence they
are contracted and end up in the same cluster. Edge con-
traction is performed until no contraction candidates are
found. The special case of greedy additive edge contraction
(GAEC) [30] chooses in each iteration an edge with max-
imum edge weight for contraction and stops if each edge
in the contracted graph has negative weight. The following
Lemma describes the operation of edge contraction.

Lemma 1. Let an undirected graph G = (V,E, c) and a
set of edges S ⊆ E to contract be given. Also let G′ =
(V ′, E′, c′) be the graph obtained after edge contraction.

(a) The corresponding surjective contraction mapping f :
V → V ′ mapping node set V onto the contracted node
set V ′ is up to isomorphism uniquely defined by f(u) =
f(v) ⇐⇒ ∃uv-path(V, S). The contracted edge set
is given by E′ = {f(u)f(v) : f(u) ̸= f(v), uv ∈ E}.

p

r s

q

t

1

−2 −3 1

3 4

1

p q

r′

1

−2 −3 + 1

3 + 4 + 1

Figure 2. Contraction of a graph with contraction set S = {rs, st}
where vertices r, s and t are merged to form a cluster r′. The
corresponding contraction mapping is f(p) = p, f(q) = q, f(r) =
f(s) = f(t) = r′. Notice that edges qs and qt become parallel
edges after contraction and their costs are added. Also notice the
presence of self-loop in the contracted graph with cost indicating
intra-cluster similarity.

(b) The edge weights for contracted edges are c′ij =∑
uv∈E:f(u)=i,f(v)=j cuv, ∀ij ∈ E′.

Lemma 1(a) relates the contraction mapping f with the
set S of edges to contract. If two nodes have the same value
in f then there must be a path between them in graph (V, S).
Moreover, the edges whose end points are not contracted
are preserved in E′. Lemma 1(b) provides the costs of
contracted edges that are obtained by summing the costs
of parallel edges. An illustration of the lemma is given in
Figure 2.

In order to perform edge contraction fast we will use a
linear algebraic representation that will allow to use highly
parallel (sparse) matrix-matrix multiplication.

Definition 2 (Adjacency Matrix). Given a weighted graph
G = (V,E, c) its (symmetric) adjacency matrix A ∈ RV×V

is defined by Auv =

{
cuv, uv ∈ E

0, otherwise
.

We will perform edge contraction with the help of an
edge contraction matrix defined as follows.

Definition 3 (Edge Contraction Matrix). Given a weighted
graph G = (V,E, c) and an edge set S ⊂ E to contract, let
f be the contraction mapping and V ′ the contracted node set.
The edge contraction matrix KS ∈ {0, 1}V×V ′

is defined as

(KS)uu′ =

{
1, f(u) = u′

0, otherwise
.

Lemma 4. Given a weighted graph G = (V,E, c), an edge
set S ⊆ E to contract and an associated edge contraction
mapping f

(a) the adjacency matrix of the contracted graph is equal
to K⊤

S AKS − diag(K⊤
S AKS), where diag(·) is the

diagonal part of a matrix,

(b) it holds for the diagonal entry (K⊤
S AKS)u′u′ =∑

uv∈E:u′=f(u)=f(v) cuv .

8195

Lemma 4(a) provides a way to compute the contracted
graph in parallel by sparse matrix-matrix multiplication.
Lemma 4(b) allows to efficiently judge whether the newly
formed clusters decrease the multicut objective. Specifi-
cally if the diagonal contains all positive terms then the
corresponding multicut objective will also decrease after
contraction.

A primal update iteration is given in Algorithm 1 that
performs edge contraction as in Lemma 4(a).

Algorithm 1: Parallel-Edge-Contraction
Data: Graph G = (V,E, c)
Result: Contracted Graph G′ = (V ′, E′, c′),

contraction mapping f : V → V ′

1 Compute contraction set S ⊆ E
2 Compute adjacency matrix A from G
3 Construct contraction mapping f : V → V ′

4 Construct contraction matrix KS

5 A′ = K⊤
S AKS − diag(K⊤

S AKS)
6 Compute contracted graph G′ = (V ′, E′, c′) from A′

Finding contraction edge set S: A vital step for ensuring a
good primal update is selecting the edge set S for contraction
in Algorithm 1. On one hand, we would like to choose edges
in a conservative manner to avoid erroneous contractions.
On the other hand, we need to contract as much edges as
possible for efficiency. We propose two approaches allowing
us to be at the sweet spot for both criterion as follows.

Maximum matching: Perform a fast maximum matching
on the positive edges in using a GPU version of the Luby-
Jones handshaking algorithm [16] and select the matched
edges for contraction.

Maximum spanning forest without conflicts: Compute a
maximum spanning forest on the positive edges with a
fast GPU version of Borůvka’s algorithm [55] to find
initial contraction candidates. Afterwards, iterate over all
negative edges ij, find the unique path between i and j
in the forest (if it exists) and remove the smallest positive
edge. We make use of GPU connected components [23]
to check for presence of these paths and to compute the
final contraction mapping.

Both of the above strategies ensure that the resulting join
operation decreases the multicut objective. We first find
contraction edges via maximum matching. If not enough
edges are found (i.e. fewer than 0.1|V |), we switch to the
spanning forest based approach. Note that if we chose only
one largest positive edge for contraction, Algorithm 1 spe-
cializes to GAEC [30]. Since our algorithm depends upon
many simultaneous edge contractions for efficiency, we do
not use this strategy.

3.2. Dual: Conflicted Cycles & Message passing

Solving a dual of multicut problem (2) can help in obtain-
ing a lower bound on the objective value and also yields a
reparametrization of the edge costs which can help in bet-
ter primal updates. Our dual algorithm works on the cycle
relaxation for the multicut problem [15]. We present for its
solution massively parallel inequality separation routines to
search for the most useful violated constraints and efficient
dual block coordinate ascent procedure for optimizing the
resulting relaxation.

3.2.1 Cycle Inequalities & Lagrange Relaxation

Since the multicut problem is NP-hard [10, 18], we can-
not hope to obtain a feasible polyhedral description of
conv(MG). A good relaxation for most practical prob-
lems is given in terms of cycle inequalities. Given a cycle
C = {e1, . . . , el} ⊆ E, a feasible multicut must either not
contain any cut edge or should contain at least two cut edges.
This constraint is expressed as

∀C ∈ cycles(G) : ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (3)

Cycle inequalities together with the binary constraints
ye ∈ {0, 1} actually define MG [15]. In other words, when
relaxing ye ∈ [0, 1] we obtain a linear program relaxation to
conv(MG) with all integral points being valid multicuts.

While cycle inequalities (3) give us a polyhedral relax-
ation of the multicut problem (2), our algorithm will operate
on a Lagrangean decomposition that was proposed in [50]. It
consists of two types of subproblems joined together via La-
grange variables: (i) edge subproblems for each edge e ∈ E
and (ii) triangle subproblems (i.e. cycles of length 3) for a

subset of triangles T ⊂
(
E
3

)
. Triangulation of cycles of

length more than three is done to get triangles defining the
same polyhedral relaxation as the one with all possible cycle
inequalities (3) without loss of generality [15]. We define
the set of feasible multicuts on triangle graphs as

MT = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} ,
(4)

which is a special case of (3) representing that either all edges
are cut/joined or exactly two edges are cut. Given a set of
edge and triangle subproblems our Lagrange decomposition
is

max
λ

∑
uv∈E

min
y∈{0,1}

cλuv · y +
∑
t∈T

min
y∈MT

⟨cλt , y⟩︸ ︷︷ ︸
=:LB(λ)

(5)

where the reparametrized edge costs cλuv ∈ R and triangle

8196

costs cλt ∈ R3 for triangle t = {ij, jk, ki} ∈ T are

cλuv = cuv +
∑

t∈T :uv∈t

λt,uv (6a)

cλt = −(λt,ij , λt,jk, λt,ki) (6b)

LB(λ) in (5) is a lower bound on the cost of the optimum
multicut for any λ. The optimum objective value of (5)
equals that of the polyhedral relaxation [52].

3.2.2 Cycle Inequality Separation

For the dual problem (5) one would need to enumerate
all possible cycle inequalities (3). However, as mentioned
in [38] we can restrict only to conflicted cycles of G for
efficiency without loosening the relaxation. A cycle is called
a conflicted cycle if it contains exactly one repulsive edge.

Definition 5 (Conflicted cycles). Let the set of attractive
edges in E be E+ = {ce > 0 : ∀e ∈ E} and repulsive edges
E− = {ce < 0 : ∀e ∈ E}. Then conflicted cycles of G is
the set {C ∈ cycles(G) : |C ∩ E−| = 1}.

Lemma 6. The search for conflicted cycles can be per-
formed in parallel for each ij ∈ E− by finding shortest path
w.r.t. hop distance between i and j in the graph G = (V,E+)
making good use of parallelization capabilities of GPUs.

3.2.3 Dual Block Coordinate Ascent (DBCA)

DBCA (a.k.a. message passing) was studied in [50] for multi-
cut. However, the resulting message passing schemes are not
easily parallelizable. The underlying reason for the inherent
sequential nature of these schemes is that the effectiveness of
the proposed message passing operations depend on the pre-
vious ones being executed. We propose a message passing
scheme for multicut that is invariant to the message passing
schedule, hence allowing parallel computation.

As in [50], our scheme iteratively improves the lower
bound (5) by message passing between edges and triangles.

For each message passing operation we need to compute
min-marginals, i.e. the difference of optimal costs on sub-
problems obtained by fixing a specified variable to 1 and 0.
For edge costs the min-marginal is just the reparametrized
edge cost. For triangle subproblems it is given as follows

Definition 7 (Marginalization for triangle subproblems). Let
t ∈ T be a triangle containing an edge e.

mt→e(c
λ
t) = min

ye=1
y∈MT

⟨cλt , y⟩ − min
ye=0
y∈MT

⟨cλt , y⟩ (7)

is called min-marginal for triangle t and edge e.

The message passing algorithm iteratively sets min-
marginal to zero first for edge subproblems and then for

triangles described in Algorithm 2. By sending back and
forth messages the subproblems communicate their local
optima and ultimately the min-marginals converge towards
agreement (i.e. their corresponding edge labels y are con-
sistent). In [52] it was shown that each such operation is
non-decreasing in the dual objective value, yielding an over-
all monotonic convergence. Message are passed from edges
to triangles in lines 2-5. After this step the reparametrized
edge costs cλe become zero. We perform multiple triangle to
edge message passing updates (line 8-13) similar to the way
it was done in [54] that distribute messages uniformly among
all triangles which contain that edge. After this operation
min-marginals for cλt become zero.

Algorithm 2: Parallel-Message-Passing
Data: Graph G = (V,E, c), triangles T , Lagrange

multipliers λ.
Result: Updated Lagrange multipliers λ
// Messages from edges to triangles

1 for e ∈ E in parallel do
2 α = cλe
3 for t ∈ T : e ∈ t do
4 λt,e− = α

|t∈T :e∈t|
5 end
6 end
// Messages from triangles to edges

7 for t = {ij, jk, ki} ∈ T in parallel do
8 λt,ij+ = 1

3mt→ij(c
λ
t)

9 λt,ik+ = 1
2mt→ik(c

λ
t)

10 λt,jk+ = mt→jk(c
λ
t)

11 λt,ij+ = 1
2mt→ij(c

λ
t)

12 λt,ik+ = mt→ik(c
λ
t)

13 λt,ij+ = mt→ij(c
λ
t)

14 end

Convergence of Message Passing. Algorithm 2 converges
towards fixed points, similar to other DBCA schemes for
graphical models [34, 35, 54, 56]. These fixed points are
characterized with the help of arc consistency and need not
coincide with the optimal dual solution, but are typically
close to them. Below, we characterize these fixed points.

Definition 8 (Locally Optimal Solutions). Define the locally
optimal solutions for edge e ∈ E as

cλe := {x ∈ {0, 1} : x · cλe = min(0, cλe)} (8)

and similarly for triangle t ∈ T as

cλt := {x ∈ MT : ⟨cλt , x⟩ = min
x′∈MT

⟨cλt , x′⟩} (9)

8197

a b

c

de

Message
passing

a b

c

de

Edge
contraction

abc

de

Figure 3. Example iteration of our primal-dual multicut solver on
a graph with repulsive and attractive edges. Width of the edges
indicate abs. cost. First we detect conflicted cycles and triangulate
to get triangles (indicated by ⟳). Next, dual update reparametrizes
edge costs which resolves the conflicted cycles. Lastly a primal
update is done by contracting attractive edges.

Define the projection of triangle solutions onto one of its
edges as

Πe(cλt) := {x ∈ {0, 1} : ∃x′ ∈ cλt s.t. x′
e = x} (10)

Definition 9 (Arc-Consistency). Lagrange multipliers λ are
arc-consistent if Πe(cλt) = cλe for all t ∈ T and e ⊂ t.

However, note that arc-consistency is not necessary for
dual optimality. A necessary criterion is edge-triangle agree-
ment.

Definition 10 (Edge-Triangle Agreement). Lagrange multi-
pliers are in edge-triangle agreement if there exist non-empty
subsets ξe ⊆ cλe for all e ∈ E and ξt ⊆ cλt for all t ∈ T
such that ξ is arc-consistent, i.e. ξe = Πe(ξt) for all t ∈ T
and e ⊂ t.

In words, edge-triangle agreement signifies that there
exists a subset (also called kernel in [56]) of locally optimal
solutions that are arc-consistent.

Theorem 11. Algorithm 2 converges to edge-triangle agree-
ment.

3.3. Primal-Dual Updates

While the two building blocks of our multicut solver i.e.
edge contraction and cycle separation with message passing
can be used in isolation to compute a primal solution and
lower bound, we propose an interleaved primal-dual solver
in Algorithm 3.

In each iteration we separate cycles and perform mes-
sage passing to get reparameterized edge costs. We use
these reparametrized edge costs to perform parallel edge
contraction. This interleaved process continues until no edge
contraction candidate can be found. Such scheme has the
following benefits

Better edge contraction costs: The reparametrization in
line 6 produces edge costs cλ that are more indicative
of whether an edge is contracted or not in the final solu-
tion thus yielding better primal updates in line 8. In case

Algorithm 3: Primal-Dual Multicut

Data: Graph G = (V,E, c)
Result: Contraction mapping f : V → V ′

// Init. each node as a separate cluster

1 f = V → V , f(v) = v ∀v ∈ V
2 while G has positive edges without conflicts do

// Find conflicted cycles (Lemma. 6)

3 T = Cycle-Separation(G)
4 for iter= 1, . . . , k do
5 λ = Parallel-Message-Pass.(G,T)

// Reparametrize edge costs

6 ce = cλe ∀e ∈ E by (6a)
7 end
8 G, f ′ = Parallel-Edge-Contract.(G)

// Update contraction mapping

9 f(v) = f ′(f(v)) ∀v ∈ V

10 end

the relaxation (5) is tight, the sign of cλe perfectly predicts
whether an edge e is separating two clusters or is inside
one.

Better cycle separation: For fast execution times we stop
cycle separation for cycles greater than a given length (5
in our case). Since cycle separation is performed again
after edge contraction, this corresponds to finding longer
cycles in the original graph. Such approach alleviates the
need to perform a more exhaustive and time-consuming
initial search.

Note that a valid lower bound can be obtained from Algo-
rithm 3 by recording (5) after cycle separation and message
passing on the original graph.

4. Experiments
We evaluate solvers on multicut problems for neuron

segmentation for connectomics in the fruit-fly brain [48]
and unsupervised image segmentation on Cityscapes [17].
We use a single NVIDIA Volta V100 (16GB) GPU for our
solvers unless otherwise stated and an AMD EPYC 7702
for CPU solvers. Our solvers are implemented using the
CUDA [45] and Thrust [20] GPU programming frameworks.

Datasets We have chosen three datasets containing the
largest multicut problem instances we are aware of. The
instances are available in [51].

Connectomics-SP: Contains neuron segmentation problems
from the fruit-fly brain [48]. The raw data is taken
from the CREMI-challenge [1] acquired by [59] and
converted to multiple multicut instances by [48]. For
this conversion [48] also reduced the problem size by
creating super-pixels. The majority of these instances
are different crops of one global problem. There are 3

8198

small (400000 − 600000 edges), 3 medium (4 − 5 mil-
lion edges) and 5 large (28− 650 million edges) multicut
instances. For the largest problem we use NVIDIA RTX
8000 (48GB) GPU.

Connectomics-Raw: We use the 3 test volumes (sample A+,
B+, C+) from the CREMI-challenge [1] segmenting di-
rectly on the pixel level without conversion to super-
pixels. Conversion to multicut instances is carried out
using [47]. We report results on two types of instances:
(i) The three full problems where the underlying volumes
have size 1250 × 1250 × 125 with around 700 million
edges and (ii) six cropped problems created by halving
each volume and creating the corresponding multicut in-
stances each containing almost 340 million edges. For all
these instances we use NVIDIA RTX 8000 (48GB) GPU.

Cityscapes: Unsupervised image segmentation on 59 high
resolution images (2048× 1024) taken from the valida-
tion set [17]. Conversion to multicut instances is done
by computing the edge affinities produced by [2] on a
grid graph with 4-connectivity and additional coarsely
sampled longer range edges. Each instance contains ap-
proximately 2 million nodes and 9 million edges.

Algorithms As baseline methods we have chosen, to our
knowledge, the fastest primal heuristics from the literature.

GAEC [30]: The greedy additive edge contraction corre-
sponds to Algorithm 2 with choosing a single highest
edge to contract. We use our own CPU implementation
that is around 1.5 times faster than the one provided by
the authors.

KLj [30]: The Kernighan&Lin with joins algorithm per-
forms local move operations which can improve the ob-
jective. To avoid large runtimes the output of GAEC is
used for initialization.

GEF [40]: The greedy edge fixation algorithm is similar to
GAEC but additionally visits negative valued (repulsive)
edges and adds non-link constraints between their end-
points.

BEC [28]: Balanced edge contraction, a variant of GAEC
which chooses edges to contract based on their cost nor-
malized by the size of the two endpoints.

ICP [38]: The iterated cycle packing algorithm searches
for cycles and greedily solves a packing problem that
approximately solves the multicut dual (5).

P: Our purely primal Algorithm 1 using the maximum
matching and spanning forest based edge contraction
strategy.

PD: Our primal-dual Algorithm 3 which additionally makes
use of the dual information. We find conflicted cycles up
to length 5 on original graph and up to a length of 3 for
later iterations on contracted graphs.

−2.5 −2 −1.5 −1 −0.5
·106

1

10

100

Objective value (lower is better)

R
un

tim
e

[s
]

BEC GEF GAEC PD+ PD P

Figure 4. Comparison of primal solutions from Cityscapes dataset.
Our purely primal algorithm (P) is 30× faster than GAEC [30] and
GEF [40], although with worse objective values. Incorporating
dual information enables our solvers (PD, PD+) to even surpass
the sequential solvers in objective while being faster by an order
of magnitude. Error bars mark the 0.25, 0.75-quantile. (KLj not
shown due to high runtime).

−2.5 −2 −1.5 −1
·1061

10

100

Lower bound

R
un

tim
e

[s
]

ICP D

Figure 5. Comparison of lower bounds from Cityscapes dataset.
Our parallel message passing scheme (D) is more than an order
of magnitude faster than ICP [38] and gives slightly better lower
bounds. Error bars mark the 0.25, 0.75-quantile.

0B 0.1B 0.2B 0.3B 0.4B 0.5B
0

250
500
750

1,000

12s 22s 36s

Instance size |E|

R
un

tim
e

[s
]

GAEC PD

Figure 6. Runtime scaling comparison computed on different crops
of CREMI test data showing that RAMA scales very well as com-
pared to GAEC [30] w.r.t. increasing problem sizes

PD+: Variant of PD which always considers conflicted cy-
cles up to a length 5 for reparametrization which can
lead to even better primal solutions although with higher
runtime.

D: Our dual cycle separation algorithm followed by message
passing on the original graph via Algorithm 2 producing
lower bounds.

8199

Connectomics-SP Connectomics-Raw Cityscapes

Small (3) Med. (3) Large (5) Crops (6) Full (3) (59)

Method C(×105) t(s) C(×105) t(s) C(×105) t(s) C(×108) t(s) C(×108) t(s) C(×106) t(s)

Primal

KLj [30] −1.794 3.8 −9.225 125 † † † † † † −1.858 5e4
GAEC [30] −1.794 0.4 −9.224 4.7 −1.512 280 −1.464 570 −2.963 1140 −1.826 13
GEF [40] −1.793 0.7 −9.223 9.0 −1.511 699 −1.458 582 −2.949 1762 −1.743 14
BEC [28] −1.787 0.5 −9.199 5.6 −1.507 309 −1.402 1688 −2.838 4150 −1.613 36
P −1.780 0.1 −9.173 0.6 −1.505 6 −1.430 9 −2.895 19 −1.711 0.4
PD −1.791 0.2 −9.217 1.0 −1.509 13 −1.477 24 −2.981 32 −1.846 1
PD+ −1.791 0.3 −9.219 1.4 −1.509 20 −1.480 115 −2.995 224 −1.862 2.2

Dual

ICP [38] −1.798 0.8 −9.246 11.3 −1.518 1235 −1.507 513 −3.053 1091 −1.930 41.1
D −1.797 0.2 −9.241 0.8 −1.517 13 −1.499 34 * * −1.928 1.3

Table 1. Comparison of results on all datasets. (C: cost, t(s): time in seconds, †: timed out, *: out of GPU memory). We report average
primal and dual costs and runtime over instances within each category. In terms of primal solutions our primal-dual solvers (PD, PD+)
achieve objectives close to or better than sequential solvers while being substantially faster especially on larger instances. Moreover, our
parallel message passing approach (D) gives better lower bounds than ICP with up to two orders of magnitude reduction in runtime.

Discussion Results on all datasets are given in Table 1.
On the Connectomics-SP dataset we attain primal objectives
very close to those produced by GAEC [30] but faster by
more than an order of magnitude on large instances.

For the Cityscapes and Connectomics-Raw datasets we
achieve even better primal solutions than sequential algo-
rithms by incorporating dual information while also being
substantially faster. Our best solver (PD+) is more than 104

times faster than KLj [30] and produces better solutions.
Distributions of runtimes and primal resp. dual objectives for
all instances of Cityscapes are shown in Figures 4 and 5. We
compare the scaling behaviour of our solver w.r.t increasing
instance sizes in Figure 6 showing that RAMA scales much
more efficiently than GAEC. An example visual comparison
of results is given in Figure 7 in Appendix.

Lastly, our dual algorithm (D) produces speedups of up
to two orders of magnitude and better lower bounds com-
pared to the serial ICP [38], except on the full instances of
Connectomics-Raw where we run out of GPU memory.

Runtime breakdown Runtime breakdown of our PD al-
gorithm is given in Table 2. Most of the time is spent in
finding conflicted cycles which we found to be challenging
to implement on GPU while keeping runtime and memory
consumption low. Future improvements offer a potential for
even better results and speedups by finding longer cycles
more efficiently.

5. Conclusion

We have demonstrated that multicut, an important com-
binatorial optimization problem for machine learning and

Finding S Contract. Conf. cycles Message passing

30% 7% 43% 20%

Table 2. Runtime breakdown for PD algorithm on Cityscapes

computer vision, can be effectively parallelized on GPU.
Our approach produces better solutions than state of the art
efficient heuristics on grid graphs and comparable ones on
super-pixel graphs while being faster by one to two orders-of-
magnitude. We believe that performance gap on super-pixel
graphs is due to a graph structure containing much more
(and longer) conflicted cycles. Since our implementation can
only find cycles of length up to 5, better implementations
that can efficiently handle longer cycles might yield further
improvements.

In contrast to CPU algorithms, where execution speed is
the limiting factor, for our GPU algorithm, comparatively
smaller amount of GPU-memory limits application to even
larger instances. We hope that our work will enable more
compute intensive applications of multicut, where until now
the slower serial CPU codepath has hindered its adoption.

6. Acknowledgments

We would like to thank Shweta Mahajan and Jan-Hendrik
Lange for insightful discussions and Constantin Pape, Adrian
Wolny and Anna Kreshuk for their suggestions regarding
the experiments. We also thank all anonymous reviewers for
their valuable feedback.

8200

References
[1] CREMI MICCAI Challenge on circuit reconstruction from

Electron Microscopy Images. https://cremi.org. 6, 7
[2] Ahmed Abbas and Paul Swoboda. Combinatorial Optimiza-

tion for Panoptic Segmentation: A Fully Differentiable Ap-
proach. Advances in Neural Information Processing Systems,
34, 2021. 1, 7

[3] Amir Alush and Jacob Goldberger. Ensemble segmentation
using efficient integer linear programming. IEEE transactions
on pattern analysis and machine intelligence, 34(10):1966–
1977, 2012. 2

[4] Amir Alush and Jacob Goldberger. Break and conquer: Effi-
cient correlation clustering for image segmentation. In Inter-
national Workshop on Similarity-Based Pattern Recognition,
pages 134–147. Springer, 2013. 1

[5] Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich
Köthe, and Fred A. Hamprecht. Probabilistic image seg-
mentation with closedness constraints. In ICCV, 2011. 1

[6] Bjoern Andres, Thorben Kröger, Kevin L. Briggman, Win-
fried Denk, Natalya Korogod, Graham Knott, Ullrich Köthe,
and Fred A. Hamprecht. Globally optimal closed-surface
segmentation for connectomics. In ECCV, 2012. 1

[7] Bjoern Andres, Julian Yarkony, BS Manjunath, Steffen Kirch-
hoff, Engin Turetken, Charless C Fowlkes, and Hanspeter
Pfister. Segmenting planar superpixel adjacency graphs wrt
non-planar superpixel affinity graphs. In International Work-
shop on Energy Minimization Methods in Computer Vision
and Pattern Recognition, pages 266–279. Springer, 2013. 1

[8] Bas Fagginger Auer and Rob H Bisseling. Graph coarsening
and clustering on the GPU. Graph Partitioning and Graph
Clustering, 588:223, 2012. 2

[9] Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten
Beier, Anna Kreshuk, and Fred A Hamprecht. A gener-
alized framework for agglomerative clustering of signed
graphs applied to instance segmentation. arXiv preprint
arXiv:1906.11713, 2019. 2

[10] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
clustering. Machine learning, 56(1-3):89–113, 2004. 1, 4

[11] Thorsten Beier, Björn Andres, Ullrich Köthe, and Fred A
Hamprecht. An efficient fusion move algorithm for the mini-
mum cost lifted multicut problem. In European Conference
on Computer Vision. Springer, 2016. 1, 2

[12] Thorsten Beier, Thorben Kroeger, Jorg H Kappes, Ullrich
Kothe, and Fred A Hamprecht. Cut, glue & cut: A fast,
approximate solver for multicut partitioning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014. 1, 2

[13] Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo
Prange, Stuart Berg, Davi D Bock, Albert Cardona, Gra-
ham W Knott, Stephen M Plaza, Louis K Scheffer, et al. Mul-
ticut brings automated neurite segmentation closer to human
performance. Nature methods, 14(2):101, 2017. 1

[14] Sunil Chopra and Mendu R Rao. On the multiway cut poly-
hedron. Networks, 21(1):51–89, 1991. 1

[15] Sunil Chopra and Mendu R Rao. The partition problem.
Mathematical Programming, 59(1-3):87–115, 1993. 1, 4

[16] Jonathan Cohen and Patrice Castonguay. Efficient graph
matching and coloring on the gpu. In GTC. NVIDIA, 2012. 4

[17] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
2016. 2, 6, 7

[18] Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole
Immorlica. Correlation clustering in general weighted graphs.
Theoretical Computer Science, 361(2-3):172–187, 2006. 1, 4

[19] LLC Gurobi Optimization. Gurobi optimizer reference man-
ual, 2019. 2

[20] Jared Hoberock and Nathan Bell. Thrust: A parallel template
library, 2010. Version 1.7.0. 6, 13

[21] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn, and
Paul Swoboda. Lifted disjoint paths with application in multi-
ple object tracking. In International Conference on Machine
Learning, pages 4364–4375. PMLR, 2020. 1

[22] Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin,
Siyu Tang, Evgeny Levinkov, Bjoern Andres, and Bernt
Schiele. Arttrack: Articulated multi-person tracking in the
wild. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), July 2017. 1

[23] Jayadharini Jaiganesh and Martin Burtscher. A high-
performance connected components implementation for
GPUs. In Proceedings of the 27th International Symposium
on High-Performance Parallel and Distributed Computing,
pages 92–104, 2018. 4

[24] Yu Jin and Joseph F JaJa. A high performance implementation
of spectral clustering on CPU-GPU platforms. In Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE
International, pages 825–834. IEEE, 2016. 2

[25] Florian Jug, Evgeny Levinkov, Corinna Blasse, Eugene W
Myers, and Bjoern Andres. Moral lineage tracing. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016. 1

[26] Jörg Hendrik Kappes, Markus Speth, Björn Andres, Gerhard
Reinelt, and Christoph Schn. Globally optimal image parti-
tioning by multicuts. In International Workshop on Energy
Minimization Methods in Computer Vision and Pattern Recog-
nition. Springer, 2011. 2

[27] Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and
Christoph Schnörr. Higher-order segmentation via multicuts.
Computer Vision and Image Understanding, 143:104–119,
2016. 1

[28] Amirhossein Kardoost and Margret Keuper. Solving mini-
mum cost lifted multicut problems by node agglomeration. In
Asian Conference on Computer Vision, pages 74–89. Springer,
2018. 2, 7, 8

[29] Brian W Kernighan and Shen Lin. An efficient heuristic pro-
cedure for partitioning graphs. Bell system technical journal,
49(2):291–307, 1970. 2

[30] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guil-
laume Lavoué, Thomas Brox, and Bjorn Andres. Efficient
decomposition of image and mesh graphs by lifted multi-
cuts. In Proceedings of the IEEE International Conference
on Computer Vision, 2015. 1, 2, 3, 4, 7, 8, 14

8201

[31] Margret Keuper, Siyu Tang, Bjoern Andres, Thomas Brox,
and Bernt Schiele. Motion segmentation & multiple object
tracking by correlation co-clustering. IEEE transactions on
pattern analysis and machine intelligence, 42(1):140–153,
2018. 1

[32] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and
Chang D Yoo. Higher-order correlation clustering for image
segmentation. In Advances in neural information processing
systems, 2011. 1, 2

[33] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bog-
dan Savchynskyy, and Carsten Rother. Instancecut: from
edges to instances with multicut. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017. 1

[34] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. In International Work-
shop on Artificial Intelligence and Statistics, pages 182–189.
PMLR, 2005. 5, 11

[35] Vladimir Kolmogorov. A new look at reweighted message
passing. IEEE transactions on pattern analysis and machine
intelligence, 37(5):919–930, 2014. 5, 11

[36] Thorben Kroeger, Jörg H Kappes, Thorsten Beier, Ullrich
Koethe, and Fred A Hamprecht. Asymmetric cuts: Joint
image labeling and partitioning. In German Conference on
Pattern Recognition. Springer, 2014. 1

[37] Jan-Hendrik Lange, Bjoern Andres, and Paul Swoboda. Com-
binatorial persistency criteria for multicut and max-cut. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6093–6102, 2019. 2

[38] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern Andres.
Partial optimality and fast lower bounds for weighted corre-
lation clustering. In International Conference on Machine
Learning, 2018. 2, 5, 7, 8

[39] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. A
comparative study of local search algorithms for correlation
clustering. In German Conference on Pattern Recognition.
Springer, 2017. 1

[40] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. A
comparative study of local search algorithms for correlation
clustering. In GCPR, 2017. 2, 7, 8

[41] Evgeny Levinkov, Jonas Uhrig, Siyu Tang, Mohamed Om-
ran, Eldar Insafutdinov, Alexander Kirillov, Carsten Rother,
Thomas Brox, Bernt Schiele, and Bjoern Andres. Joint graph
decomposition & node labeling: Problem, algorithms, appli-
cations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 1

[42] Jovita Lukasik, Margret Keuper, Maneesh Singh, and Julian
Yarkony. A benders decomposition approach to correlation
clustering. In 2020 IEEE/ACM Workshop on Machine Learn-
ing in High Performance Computing Environments (MLHPC)
and Workshop on Artificial Intelligence and Machine Learn-
ing for Scientific Applications (AI4S). IEEE, 2020. 2

[43] Maxim Naumov and Timothy Moon. Parallel spectral graph
partitioning. tech. rep., NVIDIA tech. rep, 2016. 2

[44] Sebastian Nowozin and Stefanie Jegelka. Solution stability
in linear programming relaxations: Graph partitioning and
unsupervised learning. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 769–
776, 2009. 2

[45] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA,
release: 11.2, 2021. 6

[46] Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Ben-
jamin Recht, Kannan Ramchandran, and Michael I Jordan.
Parallel correlation clustering on big graphs. In Advances in
Neural Information Processing Systems, 2015. 2

[47] Constantin Pape. torch-em. https://github.com/
constantinpape/torch-em, 2021. 7

[48] Constantin Pape, Thorsten Beier, Peter Li, Viren Jain, Davi D
Bock, and Anna Kreshuk. Solving large multicut problems
for connectomics via domain decomposition. In Proceedings
of the IEEE International Conference on Computer Vision,
2017. 1, 2, 6

[49] Jie Song, Bjoern Andres, Michael J Black, Otmar Hilliges,
and Siyu Tang. End-to-end learning for graph decomposition.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019. 1

[50] Paul Swoboda and Bjoern Andres. A message passing algo-
rithm for the minimum cost multicut problem. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 2, 4, 5

[51] Paul Swoboda, Andrea Hornakova, Paul Roetzer, and Ahmed
Abbas. Structured Prediction Problem Archive. arXiv preprint
arXiv:2202.03574, 2022. 6

[52] Paul Swoboda, Jan Kuske, and Bogdan Savchynskyy. A dual
ascent framework for lagrangean decomposition of combina-
torial problems. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1, 2, 5

[53] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt
Schiele. Multiple people tracking by lifted multicut and per-
son re-identification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 1

[54] Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother,
and Bogdan Savchynskyy. MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models. In Proceedings
of the European Conference on Computer Vision (ECCV),
2018. 5, 11

[55] W Hwu Wen-mei. GPU Computing Gems Jade Edition. El-
sevier, 2011. 4

[56] Tomas Werner. A linear programming approach to max-sum
problem: A review. IEEE transactions on pattern analysis
and machine intelligence, 29(7):1165–1179, 2007. 5, 6

[57] Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Ra-
haman, Anna Kreshuk, Ullrich Köthe, and Fred A Hamprecht.
The mutex watershed and its objective: Efficient, parameter-
free graph partitioning. IEEE transactions on pattern analysis
and machine intelligence, 2020. 2

[58] Julian Yarkony, Alexander Ihler, and Charless C Fowlkes.
Fast planar correlation clustering for image segmentation. In
European Conference on Computer Vision. Springer, 2012. 1,
2

[59] Zhihao Zheng, J Scott Lauritzen, Eric Perlman, Camenzind G
Robinson, Matthew Nichols, Daniel Milkie, Omar Torrens,
John Price, Corey B Fisher, Nadiya Sharifi, et al. A complete
electron microscopy volume of the brain of adult Drosophila
melanogaster. Cell, 174(3):730–743, 2018. 6

8202

