1,665 research outputs found

    Developing meshless methods for partial differential equations

    Full text link
    In the past, the world of numerical solutions for Partial Differential Equations has been dominated by Finite Element Method, Finite Difference Method, and Boundary Element Method. These three methods all revolve around using a mesh or grid to solve their problems. This complicates problems with irregular boundaries and domains; In this thesis, we develop methods for solving partial differential equations using Radial Basis Functions. This method is meshless, easy to understand, and even easier to implement

    The collocation and meshless methods for differential equations in R(2)

    Full text link
    In recent years, meshless methods have become popular ones to solve differential equations. In this thesis, we aim at solving differential equations by using Radial Basis Functions, collocation methods and fundamental solutions (MFS). These methods are meshless, easy to understand, and even easier to implement

    Moving-boundary problems solved by adaptive radial basis functions

    Get PDF
    The objective of this paper is to present an alternative approach to the conventional level set methods for solving two-dimensional moving-boundary problems known as the passive transport. Moving boundaries are associated with time-dependent problems and the position of the boundaries need to be determined as a function of time and space. The level set method has become an attractive design tool for tracking, modeling and simulating the motion of free boundaries in fluid mechanics, combustion, computer animation and image processing. Recent research on the numerical method has focused on the idea of using a meshless methodology for the numerical solution of partial differential equations. In the present approach, the moving interface is captured by the level set method at all time with the zero contour of a smooth function known as the level set function. A new approach is used to solve a convective transport equation for advancing the level set function in time. This new approach is based on the asymmetric meshless collocation method and the adaptive greedy algorithm for trial subspaces selection. Numerical simulations are performed to verify the accuracy and stability of the new numerical scheme which is then applied to simulate a bubble that is moving, stretching and circulating in an ambient flow to demonstrate the performance of the new meshless approach. (C) 2010 Elsevier Ltd. All rights reserved

    Inverse heat conduction problems by using particular solutions

    Get PDF
    Based on the method of fundamental solutions, we develop in this paper a new computational method to solve two-dimensional transient heat conduction inverse problems. The main idea is to use particular solutions as radial basis functions (PSRBF) for approximation of the solutions to the inverse heat conduction problems. The heat conduction equations are first analyzed in the Laplace transformed domain and the Durbin inversion method is then used to determine the solutions in the time domain. Least-square and singular value decomposition (SVD) techniques are adopted to solve the ill-conditioned linear system of algebraic equations obtained from the proposed PSRBF method. To demonstrate the effectiveness and simplicity of this approach, several numerical examples are given with satisfactory accuracy and stability.Peer reviewe
    • …
    corecore