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Abstract Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the
full three-dimensional two-body 7' -matrix without invoking the partial-wave decomposition. The separable
expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed
in the Low equation to calculate the T-matrix elements. The finite-rank expansions of the free resolvent
are generated via projections onto certain finite-dimensional approximation subspaces. Types of operator
approximations considered include one-sided projections (right or left projections), tensor-product (or outer)
projection and inner projection. Boolean combination of projections is explored as a means of going beyond
tensor-product projection. Two types of multivariate basis functions are employed to construct the finite-
dimensional approximation spaces and their projectors: (i) Tensor-product bases built from univariate local
piecewise polynomials, and (ii) multivariate radial functions. Various combinations of approximation schemes
and expansion bases are applied to the nucleon-nucleon scattering employing a model two-nucleon potential.
The inner-projection approximation to the free resolvent is found to exhibit the best convergence with respect
to the basis size. Our calculations indicate that radial function bases are very promising in the context of
multivariable integral equations.

1 Introduction

The usual line of approach to quantum scattering calculations has almost always been through the elimination
of angular variables via expansions over angular-momentum states. Certain drawbacks of this strategy have
been noted in recent years, especially for high-energy collisions and within the context of few-body problems.
As a result, computational methods that avoid the traditional decomposition of wave functions and scattering
amplitudes into partial waves have been explored recently by a number of groups [1-12]. Various direct multi-
variable methods have been investigated for the solution of two-body Lippmann Schwinger (LS) equation.
Most studies [1,3,5-9] employed the Nystrom method (i.e., discretization of the integral equation via a suitable
multi-variate quadrature) [13]. Although the Nystrom method can produce very accurate results, the matrix
dimensions in the multi-variable Nystrom approach can grow very fast to computationally prohibitive levels.
Multi-variable methods that lead to a reduction in the matrix sizes are therefore of considerable interest.

A variety of weighted-residual methods, such as Galerkin [2,4], collocation [11], Schwinger variational
methods [11], with various choices of multivariate bases have been considered. Among these, multivariable
version of the Schwinger variational method (with local interpolation polynomials as the expansion basis)
and some of its variants have been shown to be quite effective [11]. In a similar vein, a multivariate Bateman
interpolation of the momentum-space kernel of the potential have proved to be a relatively simple and effective
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method [12]. It is interesting to note that both these methods can also be viewed as the result of certain
finite-rank separable approximations of the interaction potential [11,14].

An alternative to the direct solution of the LS equation for 7'-matrix is to solve the analog of the LS equation
for the resolvent and then to use the Low equation to construct the T-matrix. As separable expansions of the
interaction potential lead to separable expansions of the T-operator, separable expansions of the free resolvent
give rise to separable expansions of the full resolvent. Hence analogs of projection schemes that are used to
obtain separable expansions of the interaction potential can also be employed for the free resolvent. Given a
finite-dimensional approximation space and its (orthogonal) projector P, we can introduce for an operator F
the following approximations on this subspace:

F° = PFP tensor-product (or outer) projection (1)
FL = PF left projection 2)
FR = Fp right projection (3)
F!' = FP(PFP)"'PF inner projection 4)

where the terminology of outer and inner projections for F© and F', respectively, is adopted from Ref. [15].

An important tool in multivariate interpolation and approximation by projections is the Boolean combina-
tion of projection operators [16—18]. This idea gives rise to the so-called blending-function methods [16-19]
for interpolation of multivariate functions. An early application of this idea to scattering equations can be
found in [20] where the bivariate kernel of an integral equation is expanded in terms of blending functions
(which are sections of the bivariate kernel). In our present context, the Boolean combination of right, left and
outer projections is defined as

F? = PF + FP — PFP=F" + FR — FO. )

The use of these five type of projections for the free resolvent G in suitably constructed approximation
spaces lead to finite-rank expansions for the full resolvent G, which can then be used to calculate the T-matrix.
We find that, for a given basis (and the P associated with it), inner and Boolean projections provide the most
promising computational schemes. We note in passing that some of these projection schemes are intimately
related to Schwinger-type variational methods for the resolvent [14,21-26]. All previous applications of these
methods, however, have been on single-variable scattering equations that result from expansions over internal
states and partial wave analysis.

Standard approach to building a multivariate approximation space is through tensor-product of univariate-
bases. We use this approach with local piecewise polynomials defined over a grid in each univariate variable as
employed, e.g., in finite-element methods [27,28]. However, tensor-product schemes suffer from the curse of
dimensionality. Radial basis functions (rbf’s) [16,17,29-33] have emerged in recent years as powerful tools in
multivariate interpolation and approximation. Interpolation of scattered data [29,30] and meshless methods for
partial differential equations [31-33] are two areas where rbf’s have become a standard tool. We have employed
a variety of rbf’s to build the projection operators needed for the approximation of two- and three-dimensional
resolvents. Our results are very promising.

Plan of this article is as follows: In Sect. 2, we fix notation, introduce finite-rank approximations for the
free resolvent Gy, and derive the working equations for the computation of 7-matrix elements. In Sect. 3, a
new projection approximation based on Boolean combination of left, right and outer projections is formulated.
Section 4 discusses the two-variable versions of the equations for central potentials that follow from the
elimination of the azimuthal angle. In Sect. 5, tensor-product and radial bases for multivariate approximation
are introduced. Results of two- and three-dimensional calculations for a model two-nucleon potential are
presented and compared in Sect. 6 for different methods and bases. Our concluding remarks are made in
Sect. 7.

2 Finite-Rank Resolvent Approximations

The basic equation for two-particle scattering is the Lippmann—Schwinger (LS) equation which reads in
operator form

T'(z) =V +VGo@T (), (6)
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where T is the transition operator, V the two-body potential, Gy = (z — Hpy)~! the free resolvent, with Hy
being the free hamiltonian and z the (complex) energy of the two-body system. Working in the center-of-mass
frame, the eigenstates of Hy will be denoted as |q >, viz., Hylq > = (¢*>/2u1)|q > . For on-shell scattering,
z=E+i0,with E = qg /21, where w is the reduced mass. The quantities of computational interest are the
momentum-space matrix elements 7(q, q; z) (= (q|T(z)|q’) ) which satisfy the three-dimensional integral
equation

Ve.q)T4q".q)
T(q.q) = V(g q) + / dq” 7 7
2= q°/2n
where energy dependence of T-matrix elements has been suppressed.
The formal solution of Eq. (1) is the Low equation
Tiz) =V +VG@RYV, ®

where G = (z — H)™! is the full resolvent, with H = Hy + V being the full Hamiltonian. The full resolvent
satisfies

G(z) = Go(2) +Go() VG(2). 9

Equations (6) and (8) will be referred to as the T-LS and G-LS equations, respectively. As the T-LS equation
reduces to algebraic equations for finite-rank potentials, the G-LS equation is similarly converted into a system
of algebraic equations when G is approximated by a finite-rank expansion.

The solutions to LS equations are typically sought within a finite-dimensional approximation space S 4. If
we let P denote the orthogonal projector to this approximation space, the following finite-rank approximations
for G can be introduced

G§ =PGoP, (10)
Gk = PGy, (11)
GE =GoP, (12)
Gy = GoP(PGoP)"'PGo. (13)

Following the terminology of Lowdin [15], G g) will be referred to as the outer-projection (OP) approximation,
while G(’) as the inner-projection (IP) approximation of G¢. The one-sided projections Gé and G{f are termed
as left-projection (LP) and right-projection (RP) approximations, respectively. The exact solutions of the G-LS
equation with these separable approximations of Gg read

G% = PGyP [P(Gy — GoPVPGy)P1 ' PGoP, (14)
Gt =P [PU-GyV)P1 ' PG, (15)
GR=GoP[P(1=VG)PI'P (16)
G!' = GoP [P(Gy — GoVGo)P 1 PGo. (17)

Use of these approximations in the Low equation leads to the approximate 7'-matrices:
TA =V + VGV, (18)

where A = O, L, R, or I. We note that the same T'-matrix approximations 74 embodied in Eq. 18 would follow
from using G4, with A = O, L, R or I, directly in the T-LS equation. We also note that the IP-approximation
G is equivalent to the solution of the G-LS equation via a Schwinger-type variational principle [21-23] (which
in this context is sometimes referred to as the Newton variational principle [24,26]), while LP-approximation
G corresponds to solution of the G-LS equation via the Galerkin method [11].

As the resolvent operators by themselves are not compact for z = E + i0, a word of caution must be
mentioned about the finite-rank expansions 10-13 and 14—17. In this article, these finite-rank expansions are
meant to be used in contexts like VGoV and VGV. As shown by Lovelace in [34], the kernel V G of the
LS equation is compact for z = E 4 i0 in a suitable Banach space (namely, the Banach space C; of bounded
continuous differentiable functions with bounded continuous derivatives) for a fairly large class of potentials.
Also, as shown in Refs. [35,36], for potentials that satify a certain mild condition (which, however, excludes
the Coulomb potential), the symmetrized kernel V12Go(z)VY/2, and hence V Gy, is compact in the limit
z = E 40 in the Hilbert Space as well. Of course, it is a well-known fact that compact kernels can be
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uniformly approximated by finite-rank expansions. If we multiply the resolvent expansions 10—17 with V
from both sides, we can view the resulting expressions as finite-rank expansions of the compact operators
VGoV or VGV.

We specify the approximation subspace S 4 by choosing aset {¢,(q), n = 1,2, ..., N } of basis functions.
These multivariate basis functions are linearly independent, but not necessarily orthonormal. The projection
operator onto the approximation subspace S 4 is given as

P = Eyllvzl 2,11\//:1 |‘pn > (A_l)n,n’ < ‘Pn’| (19)
= 3N lon > < @wl = BN 160 > < ol (20)

where A is the overlap matrix, viz., A,y = (¢ul@,) and @,(q) is the biorthogonal partner of ¢,(q), viz.,
@0 >=ZN_1 1oy > (A Dy
Upon using the explicit form of the projector in Eq. (19), the T-matrix elements are obtained as

7%, q) = V@ d)+ .Sy @Vie) DO, (orV1d) 1)
TH(a.q) = V(@ 4) + . Zy @lVIgn) D, (00 1GoVIg), (22)
TR@.q') = V(@.q4) + Z. Sy @1V Golga) DE (o VId). (23)
T'(q.4) = V(Q.q) + S, Z @]V Golgn)D!, (g |GoVIq). (24)

where

-1
(0 = (Go ' = AT'VATY),,, (25)

)
[(DL)_' = (gall = GoV ). 6)
)

dn,n
17
(o* = (gull = VGolgw), @7)
dn,n’
—17]
(o) | = (0ulGo — GoVGolgw) @8)
n,n’

In Eq. (25), the matrices Go and V consist of the elements (Gg),y = (¢n|Goley) and (V) = (@n|Vien) .

Correct handling of the singular integrals (¢, |Gol@.), {(@n|lV Golen), (0nlGoV @), and (@, |V GoV @)
is crucial for the computational implementation of these resolvent approximations. A subtraction procedure
has been described in Ref. [11] for numerical treatment of such integrals.

3 Boolean Combination of Projection Approximations

In multivariate interpolation theory [16,17], the blending-function methods are used to go beyond the tensor-
product interpolation. Blending-type approach to the interpolation of a multivariate function employ as basis
functions certain sections (or cuts) of the multivariate function and involve Boolean combination of interpo-
latory projections [16—19]. The same technique can be used in the context of multivariate approximation by
orthogonal projectors.

To formulate the Boolean approximation, e.g., for 6-variate functions (in variables q and q’), we first
distinguish between the orthogonal projector P onto approximation space S 4 for the vector-variable q, and
the orthogonal projector P’ onto the approximation space S :4 for the vector variable q'. These approximation
spaces could in fact be chosen to be different, but in the present work 8:4 is taken as a replica of S 4. The
extensions of P and P’ to the space of two-vector-variable (6-variate) functions (like the potential kernel
V(q,q'))are givenas P = P®7 and P = I®7P', where I and I’ are the identity operators in the respective
function spaces for the variables q and q'. The Boolean sum P @& PisdefinedasPOP = P+P —PP.
AsPand P commute, it is easily verified that P @ Pisa projector. If the multivariate function F(q, q’) is the
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momentum space kernel of an operator F, the Boolean approximation for this kernel function can be written
as

PoPIF@q) =D ou@(@lFla) + D (alFIgn)el(q)

n

=D on@(Gal FIgn) 03 (@) (29)

In operator form, F¥ = PF 4+ FP — PFP, where superscript B stands for Boolean. Thus, the Boolean
approximation is a particular combination of the left-, right- and outer-projections considered in the previous
section. Other combinations like (PF + FP)/2,or (PF 4+ FP + PFP)/3 are conceivable, but will not be
pursued in the present paper.

To get further insight into the Boolean projection, we introduce an extended basis {®, 7, ..., Py},
where ®; = ¢; and ®y4; = F|@; > fori = 1,..., N. Thus the original basis functions ¢(q) are augmented
by the functions {(q|F|@,), which reproduce the q-dependence of the kernel F(q, q'). Let us also define the

2N x 2N matrix F via
~ -F 1
P- (7 0)

where F is the N x N matrix with elements F;; = (¢;|F|¢;), and I is the N x N unit matrix. The Boolean
approximation of F can then be written as a rank-2N separable expansion:

2N 2N

FB = ZZ |q)n>ﬁnm<q>m|

n=1 m=1
In the present paper we use the Boolean approximation of Gy to obtain a rank-2N expansion for G:

2N 2N

GB = Z Z |q)" > [(Gal _V)_l]nm < (Dml, (30)

n=1 m=1

where (V)ym = (®,|V|®,), and
~ _(—Go I
G- ("0 1).

Here Gg is the N x N matrix consisting of matrix elements (¢, |Go|¢,), while the 2N x 2N matrix
V is composed of four N x N blocks whose elements are V,,, = (@u|V|om)s VaNtm = (@nlV Golom),
Vvsnm = (@nlGoV|om) and Vi N4m = (@n|GoV Golep), withn =1,...,N,andm = 1,..., N. The
T-matrix that results from using G? in the Low equation is denoted as T 5.

4 Reduced Two-Variable Equations

For central potentials, V(q, q) and T(q, q') depend only on ¢, ¢’ and Xqq'- Here, x4, denotes the cosine
of the angle between vectors q and q’ . If we denote the polar and azimuthal angles of the momentum vectors
q by 6 and ¢, respectively, then x,, = q - q = cos 049 = xx' + s5'cos (p — ¢'), where x = cos 6
and s = +/1 — x2. To emphasize this functional dependence on Xq4q'» We Will occasionally use the notation
T(q,q', xq4q) to stand for T(q, q).

For central potentials, the azimuthal-angle dependence in 7-matrix elements can be integrated out so that
T-LS and G-LS equations become integral equations in two variables. Towards this end, we introduce the
averaged momentum states |gx > via

2 2
lgx >= <2n)—1/2/ do |q >= <2n>—1/2/ dolgbe > . 31)

0 0
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We next introduce reduced matrix elements of a two-body operator F via

F(g,x;q',x) = (gx|Flg'x"y = 2m)™! / de / d¢' F(q.q). (32)

If the operator F is rotationally invariant, its kernel F(q, q') depend on azimuthal angles only through the
difference ¢ — ¢'. Therefore, integration over one of the azimuthal angles can be carried out to obtain

21 27

F(g,x;q',x) = / d¢ F(q,q) = / d¢' F(q,q)). (33)

0 0

This observation allows us to integrate Eq. (2) over ¢ to obtain the reduced two-variable T-LS equation

T(q.x:q . x")=V(g.x;:q'.x)
1

o
Vig.x;q", x)T(q",x"; ¢, x)
+2 / 24 //d’ 34
w | g7dq a —q"?+i0 (34)
0

—1

In operator form, we write
T =V +VGoT, (35)

which is to be understood as an operator equation in the space of two-variable functions (of ¢ and x). (Operators,
matrix elements and other quantities associated with the reduced representation will be distinguished from
those of three-dimensional representation by a caret over the symbol). Of course, reduced versions of G-LS
and Low equations follow naturally

G=0Go+ GG, (36)
T=V4+VGV. 37)

The solutions of these equatlons are sought in a bivariate approximation space S 4 spanned by basis functions
xm(g,x), i=1,2,. , N.The projector P onto SA is given as

75 = ZN 121\// 1|Xm > (A )mm/ < Xm’| (38)

where A is the overlap matrix, viz., Am,m/ = (Xm|xm') - Expressions for reduced T-matrix approximations
T4(q,x;q,x"),withA = O, L, R, I, B, follow from Egs. (21)—(24) and (30) with appropriate replacements
of three-dimensional states and operators with their reduced two-variable counterparts.

5 Multivariate Basis Functions

Most straightforward approach to multivariate approximation is through the tensor-product approach in which a
multivariate basis is constructed via tensor products of univariate bases. Refinement of tensor-product approx-
imation is possible via the so-called Boolean combination of projection operators (Blending methods). Of
course, the tensor-product methods suffer from the curse of dimensionality. Among various directions taken to
overcome the dimensionality problem, the use of radial-functions has become a powerful tool in multivariate
approximation theory for approximating scattered data and solving partial differential equations.
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5.1 Tensor-Product Bases

The approximation spaces 84 and S, are constructed as tensor products of univariate spaces: Sy = Sq ® Sy
and Sy = §; ® Sy ® Sy . Here the space S, is N,-dimensional and spanned by basis functions {u;(g), i =
1,2,..., Ng}. The space Sy is Ny-dimensional and spanned by {v;(x), j = 1,2, ..., N}. Similarly, the
space Sy is Ny-dimensional and and spanned by {wi(¢), k = 1,2, ..., Ny}. Hence, SA is of dimension

N = N, N, and spanned by the tensor-product basis {x;; (¢, x) = u;(g)v;(x)}. On the other hand, the three-
variable space S, is of dimension N = N, N, Ny, and spanned by the tensor-product basis {¢;ji(q, x, ¢) =
ui (@) (xX)wi (@)}

The basis sets in the g, x and ¢ variables are linearly independent, but not necessarily orthonor-
mal. The overlap matrices A and A are a direct-product matrices: A = A; ® Ay,and A = Ay ®
A, ® Ay, where (Ay); i = (uiluir), (Ax)j i = (vjlvj) and (Ag)kr = (wilwy). The inner prod-

ucts are taken as (ujlu;) = [5° q*dqui(@ uy(q), (vjlvy) = f_ll dxvi(x) vy (x) and (wilwp) =

Jo© dpw (@) wj(@).

In the tensor product approach we choose the univariate basis functions as local piecewise quadratic
polynomials [27,28] defined over a grid, as in the finite element method. The procedure for the construction of
the grids for ¢,x and ¢ is the same as decribed earlier in [11]. This procedure generates a computational cutoff
Gmax for the g-variable. These univariate grids are denoted {g;, i = 1,2,..., Ny}, {x;, j =1,2,..., Ny},
and {¢x, k = 1,2,..., Ny }. Cartesian product {g;} x {x;} x {¢x} generates the interpolation grid for the
three-dimensional case, while the cartesian product {g;} x {x;} gives the interpolation grid for the reduced
two-variable case. There is one local quadratic function per grid point for each variable. The local quadratic
associated with grid point g; is denoted as u; (¢) and it has the cardinal property u; (¢;/) = 8;;-. These functions
are depicted, e.g., in Refs. [27,28,37]. The local basis functions in x and ¢ are similarly indexed and have the
cardinal property, viz., vj(x;/) = ;7 and wi(¢r) = Sgp.

For our purposes, quadratic interpolates are found to provide sufficient flexibility, although higher order
interpolates like cubic hermites or cubic splines [27] could also be used. Use of global univariate bases in place
of localized bases is a possibility.

One simple device to build up correlation between univariate variables is to introduce potential-weighted
bases (VWB): |, >= V|u;vjwi > in the 3-dimensional case, and x,, = \7|uiv j > for the 2-dimensional
case. As will be demonstrated in Sect. 6, the incorporation of the potential into the basis turns out to be very
effective in reducing the rank of the separable expansions needed for converged results.

5.2 Radial Basis Functions

Radial basis functions(rbf) have recently emerged as popular tools in multivariate interpolation and approxima-
tion [17,29-33,38—40]. Scattered-data interpolation and meshless (or mesh-free) methods for the solution of
partial differential equations are two main areas where rbf’s have drawn considerable attention. In the present
work, we demonstrate that rbf’s provide a convenient choice for the multivariate bases needed to construct the
various projection approximations to the resolvent operators.

The salient features of the rbf approach is as follows: To construct a D-variate radial basis, a set of nodes
(called rbf centers) are chosen over the computational domain of interest in the D-dimensional space R This
set of nodes do not have to be regularly spaced or have a structured pattern. The distribution and density of
nodes can vary over the computational domain as needed. As opposed to the case of finite element bases where a
partitioning of computational domain into conforming finite elements is needed, rbf’s depend only on the node
positions. Topological connectivity of the chosen set of nodes is not needed in the definition of radial functions.
One radial function is associated with each node and the basis function centered at a given node depends only
on the distance of the field point from that node. This radial dependence of the rbf’s has the same functional
form v (r) for all nodes, where ¥ is a univariate positive-definite function, and r is the (scaled) radial distance
from the node. As distances between points are relatively easy to calculate in any number of space dimensions,
the effort with which radial functions are evaluated is insensitive to the dimension D. Also the number of nodes
is not directly tied to the dimension D. What makes radial functions most useful in multivariate interpolation
and approximation is the fact that interpolation/approximation problem becomes relatively insensitive to the
dimension D. Instead of having to deal with multivariate functions (whose complexity increases with D), we



Z. C. Kuruoglu

can work with the same univariate function v for all cases of D. In what follows, we illustrate the details of
the rbf approach for the D = 3 case.

To construct aradial basis for the 3-dimensional momentum space, aset{q,, n = 1,2, ..., N} of N distinct
centers (or nodes) in three-dimensional momentum space are chosen. We define one rbf, ¢, (q), associated
with each node q,,. The rbf ¢, (q) is centered at q, and depends only on the distance from point q to center
q,. Thus each basis function ¢, is radially symmetric about its center q,. How rapidly an rbf changes with
distance from the center can be adjusted individually by introducing a shape parameter R, for each center.

The radial nature of the rbf’s is specified through the choice of a univariate positive-definite function ¥
defined over [0, 00). Different types of rbf’s follow from different choices for ¢. Given a function v, a set of
centers {(,}, and the associated set of shape parameters {R,}, the radial basis functions are given as

on (@) = ¥ (ry)

where

_ lla — qull2
Ry

n

with ||q — q,||2 being the Euclidean distance between q and the center q,. The function v () may be locally or
globally supported. Many choices of both types have been studied in the literature [17,31-33]. In the present
work we have considered the following rbf’s:

[ Gaussian
(1 +r3Hl/2 Multiquadric (MQ)

V(r) = | 1+ ri)_l/ 2 Inverse Multiqugdric (InvMQ)
1+~ Inverse Quadratic (InvQ)
(1—r)*(1+4r) Wendland
In[2+4r)/(1+41r)]

Note that Wendland function vanishes for » > 1. Hence the Wendland function is a compactly supported rbf,
while all others in the above list are globally supported.

For the treatment of the reduced-dimension LS equation in variables ¢ and x, we choose a set of N 1bf
centers {(¢,, X»)} in the computational ¢ — x domain. The bivariate radial functions y,,(q, x) are then defined
as

Xm(q,x) = ¥(rm)

where r,, is the scaled Euclidean distance between points (g, x) and (g, X ), Viz.,

Va4 +4% —2qgm cosa
_ T

m

where cos @ = xx;, + V1 —x2/1 — x2.

The question of how to choose the rbf centers and their shape parameters is non-trivial and there are no
generally applicable answers [38—40]. In the present work, the Cartesian-product set {g;, x;, ¢} of grid points
used in the previous section to construct the tensor-product finite-element bases is also used as the set of rbf
centers. In other words, our rbf centers lie on concentric spheres of radius ¢g;, i =1, ..., Ny. On the sphere
of radius g;, we have N, Ny rbf centers that are equally spaced with respect to the x and ¢ variables. Note
that the point g (= 0) of the g-grid requires special attention because all (g1 = 0, x;, ¢ ) represent the same
point (namely, the origin). Therefore, the first point g; of the g-grid is shifted from 0 to a small nonzero value.
Typically we set g1 = g2/10. Similarly, the grid points x = 31 of the x-grid are offset slightly. This way we
generate N, N, Ny distinct rbf centers.

For the rbf shape parameters R, we have used two schemes: For compact-support rbf’s, we set R,, = d R,
where d is a scale factor at our disposal and R, is the distance of the nth center from its nearest neighboring
center. For global rbf’s, we assign an average radius Ry, for each rbf center q, = (g;, xj, ¢x) via Ryye =
[4(qi3Jrl — ql.3)/(3NxN¢,]1/3, and set R, = d Ryy. Here, d is a scale parameter as before.

For the two-dimensional case, the Cartesian-product set {g;, x;} of grid points in the [0, gpax] x [—1, +1]
domain used for the construction of tensor-product basis also serves as the set of rbf centers. That is, rbf



Finite-Rank Multivariate-Basis Expansions

centers lie on concentric circles of radius g;,7 = 1, ..., N,. For each g;, there are N, rbf centers equally
spaced with respect to x. Again, the grid point g; of the g-grid is shifted from O to a small nonzero value
(namely, g = ¢g2/10). To each rbf center (g;, x;), we associate a shape parameter as follows: For compact
rbf’s, we take R,, = dR,,,, where R, is the distance to the nearest neighboring center. For global rbf’s, on the
other hand, we assign an average radius R, for each rbf center (g;, x;) via Rqyg = [47 (qiz+1 — ql.z) /Ny] 12,
and set R, = d Ry, for centers located on the circle of radius g;. Here, as in the three-dimensional case, the
scale factor d can be used to adjust the shape of the rbf’s.

6 Calculations

Various approximation schemes and multivariable bases discussed in the previous sections have been tested
on the Malfliet-Tjon III ( MT-IIT) model for the two-nucleon potential:

V(r) = VeRe MR — Ve 1T
whose momentum-space representation is given as

Via.q) = - x “
’ 22\ @-a)2+pup  @—q)P+uy
For this potential the azimuthal integration in Eq. (4) can be carried out analytically to give
Vr/m
\/(qz +q? —2qq'xx" + p%)? — 4g2q(1 — x2)(1 — x?)
VA/JT
\/(612 +q?% = 2qq'xx' + p3)? — 4q2q"2 (1 = x2)(1 — x?)

The parameters for MT-III potential are taken from Ref. [4]: V4 = 626.8932MeV fm, Vg = 1438.723 MeV fm,
wa = 1.55fm~! and g = 3.11 fm~!. For the two-nucleon calculations, we set nucleon mass and /i to unity
and take fm as the unit of length. The nucleon mass adopted yields the conversion factor 1fm~2 = 41.47 MeV.

Vg, x;q' x") =

6.1 Results of Two-Dimensional Calculations

For general potentials, V (¢, x; ¢’, x") may not be available analytically. Its numerical generation by applying
a suitable quadrature to the integral over the azimuthal angle ¢ is quite feasible. For the present potential,
the use of a composite 64-point Gauss-Legendre rule for the ¢-integral in Eq. (33) produced results that were
indistinguishable within 7-8 digits from those of the analytical reduced potential.

Proper treatment of the singular integrals (¢, |Golen’), (@n|V Golen'), (onlGoVpn),and (¢,|VGoV @)
is crucial for the computational implementation of these resolvent approximations. A subtraction procedure
and a multi-variable tensor-product quadrature scheme described in detail in Ref. [11] has been used for the
numerical treatment of such integrals. Reference solutions against which resolvent approximations are tested
have been obtained by either direct quadrature discretization (Nystrom method) of the two-dimensional T-
LS equation or by Pade resummation of the Born series generated from its iteration. The set of quadrature
points typically involved 160 x 80 points over the computational ¢ — x domain [0, gqx] X [—1, +1]. These
two-dimensional reference results are stable within at least 6 digits with respect to further refinements of the
computational parameters (like gmax, number of quadrature points and their distribution).

Tables 1 and 2 show the convergence pattern of the IP-approximation with a tensor-product basis of
piecewise quadratic polynomials. Results accurate to 3 digits can be obtained with rather coarse discretizations
(with, e.g., N; = 9 and N, = 11). For convergence within 6 digits after the decimal point, the size of the
tensor-product basis must be in the order of N, ~ 20 — 30 and N, ~ 20 — 30. However, if the original tensor
product basis {u;(q)v;(x)} is replaced by the potential-weighted basis {(gx|V|u;v;)}, convergence pattern is
considerably improved.

Table 3 compares the results of OP, LP, Boolean and IP approximations with the largest tensor-product
basis (N, = 41, Ny = 41) employed in this study. Table 4 probes the convergence of various methods with
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Table 1 Convergence of the IP approximation of Go using the tensor-product basis of piecewise-quadratic polynomials

Method Ny Re (gox|T |goxo) Im (gox|T |goxo)
x=+4+1.0 x=0.0 x=-—1.0 x=+4+1.0 x=0.0 x=-—1.0
E = 150 MeV
1P 9 —6.095328 0.490984 0.239080 —1.907536 0.287980 0.367198
13 —6.090332 0.491713 0.234337 —1.933994 0.285816 0.365106
17 —6.092751 0.491766 0.233976 —1.937120 0.286124 0.365652
21 —6.092729 0.491776 0.233972 —1.937179 0.286100 0.365637
27 —6.092767 0.491768 0.233959 —1.937229 0.286099 0.365648
33 —6.092770 0.491768 0.233959 —1.937235 0.286097 0.365648
41 —6.092772 0.491768 0.233958 —1.937239 0.286097 0.365649
IP-VWB 9 —6.097483 0.492231 0.235879 —1.928775 0.289381 0.367841
13 —6.092786 0.491770 0.233960 —1.937216 0.286102 0.365655
17 —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
21 —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
27 —6.092786 0.491770 0.233960 —1.933722 0.286102 0.365655
33 —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
Nystrom —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
E =400 MeV
1P 9 —6.136830 0.465277 0.255380 —1.175239 0.108642 —0.0794744
13 —6.157386 0.454539 0.248863 —1.305827 0.110026 —0.0775728
17 —6.163203 0.455086 0.249271 —1.310641 0.110849 —0.0776028
21 —6.163002 0.454932 0.249126 —1.310805 0.110697 —0.0776746
27 —6.163434 0.454939 0.249147 —1.311044 0.110759 —0.0776380
33 —6.163390 0.454933 0.249139 —1.311099 0.110746 —0.0776480
41 —6.163455 0.454931 0.249139 —1.311075 0.110752 —0.0776432
IP-VWB 9 —6.183678 0.465101 0.257227 —1.262780 0.114459 —0.0795470
13 —6.163603 0.455166 0.249315 —1.310091 0.110823 —0.0776345
17 —6.163801 0.454936 0.249144 —1.311594 0.110756 —0.0776068
21 —6.163807 0.454930 0.249139 —1.311640 0.110753 —0.0776419
27 —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776421
33 —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420
Nystrom —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420

Listed are the on-shell T-matrix elements (gox |7 (E)|goxo) withxo = 1.0 at E = 150 and E = 450 MeV. Parameter N, denotes
the number of piecewise quadratic polynomials in the g variable. The number (N, ) of piecewise quadratic polynomials in the
x-variable is 31 for the calculations reported in this table

Table 2 Convergence of the IP approximation of G with respect to the number (N, ) of piecewise quadratic polynomials in the

x-basis for a fixed g-basis consisting of 33 piecewise quadratic polynomials

Method Ny Re {(gox|T |g0x0) Im (gox|T |gox0)
x=+1.0 x =0.0 x=-—1.0 x=+1.0 x =0.0 x=-—1.0
E = 150 MeV
1P 11 —6.091085 0.491789 0.233958 —1.935609 0.286136 0.365613
21 —6.092703 0.491769 0.233959 —1.937179 0.286098 0.365647
31 —6.092770 0.491768 0.233959 —1.937235 0.286097 0.365648
IP-VWB 11 —6.092767 0.491768 0.233952 —1.937239 0.286097 0.365646
21 —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
31 —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
Nystrom —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
E = 400 MeV
1P 11 —6.149251 0.454841 0.249151 —1.278361 0.110736 —0.0776603
21 —6.162056 0.454930 0.249140 —1.308555 0.110743 —0.0776474
31 —6.163390 0.454933 0.249139 —1.311099 0.110746 —0.0776480
IP-VWB 11 —6.161686 0.454934 0.248812 —1.308431 0.110759 —0.0781604
21 —6.163799 0.454930 0.249138 —1.311631 0.110753 —0.0776423
31 —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420
Nystrom —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420

Shown are the on-shell T-matrix elements {gox|T (E)|goxo) with xo = 1.0 at £ = 150 and E = 400 MeV

the size of x-basis for a moderate-size g-basis (N, = 21). (Results of RP approximation 7% are not shown

separately because TX and T® come out identical on-shell). The results of OP and LP approximations are
clearly inferior to those of the IP approximation. Even with the largest basis, OP and LP approaches do not



Finite-Rank Multivariate-Basis Expansions

Table 3 Comparison of various resolvent approximations using the tensor-product basis

Method Re (qox|T |g0x0) Im (qox|T |q0x0)
Xx=+1.0 x =0.0 x=-—1.0 x=+1.0 x=0.0 x=-—1.0

E = 150MeV
OP —6.088620 0.491327 0.233246 —1.940596 0.286578 0.364989
OP + iter. —6.092003 0.491939 0.234658 —1.936514 0.285725 0.364793
LP —6.090704 0.491548 0.233602 —1.938924 0.286338 0.365321
LP + iter. —6.093047 0.491574 0.234244 —1.936934 0.286063 0.365561
Boolean —6.092782 0.491768 0.233958 —1.937242 0.286097 0.365649
Boolean + iter. —6.092783 0.491768 0.233958 —1.937248 0.286097 0.365649
1P —6.092780 0.491768 0.233958 —1.937245 0.286097 0.365649
IP + iter —6.092783 0.491768 0.233958 —1.937247 0.286097 0.365649
Nystrom —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649

E = 400MeV
OP —6.153884 0.453209 0.248960 —1.326018 0.112519 —0.0762300
OP + iter. —6.160412 0.455191 0.249733 —1.311109 0.109069 —0.0786572
LP —6.158874 0.454077 0.249049 —1.318762 0.111647 —0.0769387
LP + iter. —6.163062 0.454873 0.249140 —1.311011 0.110593 —0.0776062
Boolean —6.163733 0.454934 0.249141 —1.311413 0.110752 —0.0776439
Boolean + iter. —6.163812 0.454932 0.249140 —1.311627 0.110753 —0.0776431
1P —6.163698 0.454931 0.249139 —1.311477 0.110752 —0.0776433
IP + iter. —6.163802 0.454930 0.249139 —1.311622 0.110753 —0.0776426
Nystrom —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.776420

Shown are the on-shell T-matrix elements (gox|7 (E)|goxo) with xo = 1.0 at energies E = 150 and E = 400 MeV. For these
calculations, the dimension (N, x N,) of the tensor-product approximation space is 41 x 41 = 1, 681

go beyond 3—4 digit accuracy. Table 3 also illustrates the commonly known adage that the accuracy of an
approximate solution 74 can be improved by using it on the righthand side of the LS equation to obtain an
iterated solution: 77'¢" = V 4+ VGoTA.

Results of the Boolean approximation are on par with those of the IP approximation. However, it must
be recalled that the basis size involved in the Boolean approach is double the size of the IP method. It
involves simultaneous use of the tensor-product basis {u; (q)v; (x)} and the GO-weighted basis {{gx|Golu;v;)}.
Evidently, the incorporation of the singular nature of G in momentum space (or, equivalently, the asymptotic
outgoing-wave behaviour in coordinate space) into the multivariate basis improves the capacity of the basis to
represent the full resolvent.

In the calculations reported in Tables 5, 6 and 7, the tensor-product basis (of piecewise quadratics) have been
replaced by bivariate radial functions. Again IP method emerges as the best among the methods considered.
Already with 231 rbf centers in the ¢ — x domain (which corresponds to a cartesian product of 21 ¢ nodes
and 11 x nodes), all radial functions produce results on par or better than those of the tensor-product basis of
similar size. Table 7 compares the convergence pattern of OP,LP, Boolean and IP methods with the number of
centers for the Wendland basis. It is remarkable that OP and LP approaches perform considerably better with
radial functions than with the tensor-product bases, but non-monotonic variation of results with the number
of rbf centers is noticeable. Boolean combination of OP, LP and RP methods, however, appear to converge
monotonically as the number of rbf centers is increased.

6.2 Results of Three-Dimensional Calculations

Resolvent approximations have also been tested in the context of the full three-dimensional G-LS equation.
However due to the curse of dimensionality in operation, it has not been possible to push these calculations
to convergence. Pade scheme have been used to solve the three-dimensional T-LS equation. Although Pade
resummation converges rather rapidly, its accuracy is adversely affected by the fact that relatively small set of
quadrature points are used to evaluate the multivariable integrals. For instance, the results labeled as Pade-3D
in Table 8 have been calculated by evaluating the three-dimensional integrals with a tensor-product quadrature
rule involving 40 points in g-variable, 30 points in x-variable and 30 points in ¢-variable. Results labeled as
Nystrom-2D, however, are the accurate reference solutions mentioned in Sect. 6.1.

Table 8 also shows the results of OP, LP and IP methods using a tensor-product basis of piecewise quadratic
polynomials with N, = 21, Ny = 11 and Ny = 10. Thus, the dimension of approximation space is 2,310.
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Table 4 Comparison of various resolvent approximations using the tensor-product basis

Method Ny Re (qox|T |g0x0) Im (gox|T |g0x0)
Xx=+1.0 x=0.0 x=-—1.0 X =+1.0 x =0.0 x=-—1.0
E = 150MeV
OP 11 —6.050796 0.486775 0.226491 —1.964443 0.290271 0.359933
21 —6.052422 0.486756 0.226490 —1.968109 0.290232 0.359968
31 —6.052488 0.486756 0.226490 —1.968168 0.290231 0.359968
41 —6.052496 0.486756 0.226490 —1.968174 0.290231 0.359969
LP 11 —6.071318 0.489333 0.230219 —1.951354 0.288262 0.362935
21 —6.072940 0.489314 0.230220 —1.952972 0.288223 0.362969
31 —6.073006 0.489313 0.230220 —1.953029 0.288223 0.362970
41 —6.073014 0.489313 0.230220 —1.953035 0.288223 0.362970
Boolean 11 —6.091313 0.491815 0.233985 —1.935286 0.286124 0.365648
21 —6.092931 0.491795 0.233982 —1.936855 0.286087 0.365682
31 —6.092997 0.491796 0.233982 —1.936911 0.286086 0.365683
41 —6.093005 0.491795 0.233982 —1.936917 0.286086 0.365670
1P 11 —6.091044 0.491796 0.233971 —1.935554 0.286139 0.365602
21 —6.092663 0.491767 0.233977 —1.937124 0.286101 0.365636
31 —6.092729 0.491776 0.233972 —1.937179 0.286100 0.365637
41 —6.092737 0.491776 0.233972 —1.937186 0.286100 0.365637
E =400MeV
OP 11 —6.072871 0.443803 0.250896 —1.374743 0.121643 —0.0683724
21 —6.084576 0.443905 0.250884 —1.409815 0.121666 —0.0683590
31 —6.085840 0.443908 0.250884 —1.412804 0.121669 —0.0683597
41 —6.086065 0.443908 0.250884 —1.413292 0.121670 —0.0683598
LP 11 —6.113277 0.449542 0.250101 —1.327036 0.116526 —0.0731390
21 —6.125568 0.449636 0.250089 —1.359599 0.116539 —0.0731259
31 —6.126885 0.449640 0.250089 —1.362333 0.116542 —0.0731265
41 —6.127119 0.449640 0.250089 —1.362777 0.116542 —0.0731266
Boolean 11 —6.150681 0.455095 0.249241 —1.275314 0.110668 —0.0777760
21 —6.163494 0.455185 0.249230 —1.305312 0.110675 —0.0777633
31 —6.164859 0.455188 0.249230 —1.307789 0.110678 —0.0777639
41 —6.165102 0.455088 0.249229 —1.308187 0.110678 —0.0777639
1P 11 —6.148864 0.454839 0.249138 —1.278115 0.110686 —0.0776869
21 —6.161642 0.454999 0.249126 —1.308306 0.110694 —0.0776740
31 —6.163002 0.454932 0.249126 —1.310805 0.110697 —0.0776746
41 —6.163245 0.454932 0.249126 —1.311208 0.110697 —0.0776747

Shown are the on-shell T-matrix elements (gox|7 (E)|goxo) with xg = 1.0 for E = 150 and £ = 400 MeV. For calculations of
this table, N; = 21 in all cases

Table 5 Performance of various (bivariate) radial basis functions when used in the IP approximation of Go

Method Re (qox|T |goxo) Im (qox|T |q0x0)
x=+1.0 x=0.0 x=-1.0 x=+1.0 x=0.0 x=-1.0
E =150 MeV
Gaussian (d = +/10) —6.092764 0.491768 0.233952 —1.937232 0.286097 0.365644
MQ (d =1.0) —6.092179 0.491755 0.234282 —1.936620 0.286040 0.365979
InvMQ (d = 5.0) —6.092731 0.491769 0.233964 —1.937212 0.286096 0.365641
InvQ (d =5.0) —6.092755 0.491768 0.233955 —1.921122 0.284281 0.365797
Wendland (d = 10.0) —6.092570 0.491782 0.233975 —1.936910 0.286095 0.365534
In %i:z (d =5.0) —6.092776 0.491768 0.233955 —1.937238 0.286097 0.365647
Nystrom —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
E = 400 MeV
Gaussian (d = +/10) —6.163473 0.454965 0.249276 —1.310618 0.110735 —0.0777593
MQ (d = 1.0) —6.160253 0.454589 0.250117 —1.308697 0.110671 —0.0774024
IMQ (d =5.0) —6.163428 0.454903 0.249062 —1.311004 0.110705 —0.0775127
IQ(d =5.0) —6.163989 0.454930 0.249137 —1.311194 0.110748 —0.0776247
Wendland (d = 10.0) —6.163167 0.455062 0.249350 —1.309150 0.110791 —0.0776762
In %Ez (d =5.0) —6.163477 0.454941 0.249184 —1.311214 0.110767 —0.0777083
Nystrom —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420

Shown are the on-shell T-matrix elements (gox|7 (E)|qoxo) with xo = 1.0 for £ = 150 and E = 400 MeV. The radial functions
are defined on a set of 231 distinct centers on the ¢ — x domain [0, g4 ] X [—1, +1]
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Table 6 Performance of various (bivariate) radial basis functions when used in IP and LP approximations of Go

Re (qox|T |goxo) Im (gox|T |g0x0)
Method basis x=+1.0 x = 0.0 x=-—1.0 x =410 x =0.0 x=-1.0
E =150 MeV
1P Gaussian (d = +/10) —6.092663 0.491777 0.233972 —1.937247 0.286097 0.365649
InvQ (d = 5.0) —6.092781 0.491768 0.233958 —1.937247 0.286097 0.365649
Wendland (d=10.0) —6.092771 0.491775 0.233958 —1.937153 0.286094 0.365623
In ﬁ;; (d=5.0) —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649
LP Gaussian (d = +/10) —6.090884 0.491915 0.230938 —1.935244 0.286603 0.365390
InvQ (d = 5.0) —6.092561 0.491741 0.234375 —1.937056 0.286119 0.365823
Wendland (d=10.0) —6.090044 0.490727 0.235869 —1.934338 0.286532 0.363096
In ﬁ:z (d=15.0) —6.092439 0.491794 0.234088 —1.937329 0.286101 0.365614
E = 400 MeV
1P Gaussian (d = +/10) —6.163838 0.454937 0.249190 —1.311469 0.110755 —0.0776373
InvQ (d = 5.0) —6.163777 0.454931 0.249146 —1.311573 0.110754 —0.0776354
Wendland (d=10.0) —6.163738 0.454930 0.249085 —1.311366 0.110753 —0.0777676
In ﬁ;; (d=5.0) —6.163826 0.454930 0.249115 —1.311557 0.110752 —0.0776139
LP Gaussian (d = +/10) —6.174845 0.454084 0.306404 —1.308773 0.108478 —0.0820547
InvQ (d = 5.0) —6.159844 0.454167 0.244644 —1.305525 0.109061 —0.0882137
Wendland (d=10.0) —6.162339 0.454877 0.249744 —1.299845 0.110222 —0.0846201
In ﬁ)’z (d=15.0) —6.161167 0.455008 0.249363 —1.307953 0.110606 —0.0766466

Shown are the on-shell T-matrix elements (gox |7 (E)|goxo) with xg = 1.0 at E = 150 and E = 400 MeV. The radial functions
are centered on a set of 441 distinct points on the ¢ — x domain [0, gax] X [—1, +1]

Table 7 Comparison of OP, LP and Boolean approximations of Go using the bivariate Wendland basis

Method M Re {(gox|T |gox0) Im (gox|7 |gox0)
x=+1.0 x =0.0 x=-—1.0 x=+1.0 x=0.0 x=1.0
E =150 MeV
OP 231 —6.091106 0.490865 0.235448 —1.937147 0.285410 0.361145
441 —6.056424 0.488286 0.218072 —1.934505 0.288241 0.353813
651 —6.092499 0.489720 0.243889 —1.948270 0.286235 0.374949
861 —6.088869 0.489910 0.236200 —1.918956 0.286754 0.353752
LP 231 —6.093267 0.490788 0.236521 —1.939694 0.285304 0.365142
441 —6.090044 0.490727 0.235869 —1.934338 0.286532 0.363096
651 —6.093157 0.491018 0.236820 —1.939919 0.286141 0.367178
861 —6.095006 0.490847 0.238181 —1.932682 0.286864 0.362796
Boolean 231 —6.093029 0.491778 0.233985 —1.936870 0.286123 0.365680
441 —6.092854 0.491782 0.233982 —1.937190 0.286099 0.365643
651 —6.092800 0.491777 0.233982 —1.937206 0.286096 0.365659
1P 231 —6.092570 0.491782 0.233975 —1.936910 0.286094 0.365534
441 —6.092771 0.491775 0.233939 —1.937153 0.286094 0.365623
651 —6.092774 0.491767 0.233965 —1.937230 0.286093 0.365652
861 —6.092789 0.491765 0.233971 —1.937221 0.286094 0.365637
E =400 MeV
OP 231 —6.194285 0.452618 0.250896 —1.374743 0.107831 —0.0971512
441 —6.149205 0.455888 0.250884 —1.409815 0.106721 —0.0898881
651 —6.166962 0.456883 0.250884 —1.412804 0.110950 —0.0756300
LP 231 —6.176016 0.451855 0.253027 —1.299107 0.108194 —0.0847729
441 —6.162339 0.454877 0.249744 —1.299845 0.110222 —0.0846201
651 —6.167219 0.455428 0.253542 —1.314644 0.110682 —0.0773862
861 —6.165342 0.454515 0.255816 —1.304422 0.111774 —0.0789717
Boolean 231 —6.164102 0.455095 0.249241 —1.310827 0.110892 —0.0777429
441 —6.164020 0.455185 0.249230 —1.310975 0.110771 —0.0776589
651 —6.163696 0.455188 0.249230 —1.311352 0.110747 —0.0776342
1P 231 —6.163167 0.455062 0.249350 —1.309150 0.110791 —0.0776762
441 —6.163738 0.454930 0.249085 —1.311366 0.110753 —0.0776676
651 —6.163701 0.454931 0.249125 —1.311543 0.110753 —0.0776384
861 —6.163668 0.454926 0.249121 —1.311518 0.110744 —0.0776859

Shown are the on-shell T-matrix elements (gox |7 (E)|goxo) with xg = 1.0 for E = 150 and E = 400MeV. M is the number of
rbf centers on the ¢ — x domain [0, gqx] X [—1, +1]



Z. C. Kuruoglu

Table 8 Comparison of various approximations for G in three dimensions using the tensor-product basis with Ny = 21, Ny = 11,

Ny =10
Method Re (qox¢|T (E)|q0x0¢0) Im {(gox¢|T (E)|gox0¢0)
x=+4+1.0 x =0.0 x=-—1.0 x=+4+1.0 x =0.0 x=-1.0

E = 150MeV
OP —6.050835 0.486736 0.226459 —1.966466 0.290246 0.359925
LP —6.071355 0.489295 0.234407 —1.951377 0.288254 0.362928
1P —6.091083 0.491757 0.233940 —1.935576 0.286114 0.365595
Pade—3D —6.092824 0.491728 0.233923 —1.937272 0.286080 0.365641
Nystrom—2D —6.092782 0.491768 0.233958 —1.937247 0.286097 0.365649

E = 400MeV
OP —6.072866 0.443774 0.250872 —1.374531 0.121675 —0.0683482
LP —6.113269 0.449501 0.250068 —1.326851 0.116554 —0.0731135
1P —6.148847 0.454795 0.249100 —1.277946 0.110718 —0.0776597
Pade-3D —6.163566 0.454879 0.249100 —1.311157 0.110788 —0.0776149
Nystrom-2D —6.163808 0.454930 0.249139 —1.311641 0.110753 —0.0776420

Shown are the on-shell T-matrix elements (gox¢|7 (E)|qoxo¢po) With xg = 1.0, ¢ = ¢9 = 0, at E = 150 and E = 400 MeV

Table 9 Performance of various (trivariate) radial basis functions when used in the inner projection approximation of G

Radial function Re (qox¢|T |qoxopo) Im (qox¢|T |qox0p0)

x=+1.0 x=0.0 x=-—1.0 x=+1.0 x=0.0 x=-—1.0
E =150 MeV
Gaussian (d = +/10) —6.092817 0.491732 0.233926 —1.937268 0.286080 0.365640
MQ (d = 1.0) —6.092127 0.492149 0.234387 —1.937622 0.286505 0.365693
InvMQ (d = 5.0) —6.092800 0.491767 0.233924 —1.937273 0.286091 0.365653
InvQ (d = 5.0) —6.092832 0.491868 0.233922 —1.937288 0.286079 0.365615
Wendland (d = 10.0) —6.092811 0.491731 0.233925 —1.937268 0.286081 0.365642
In ﬁ)’z (d =10.0) —6.092816 0.491735 0.233927 —1.937266 0.286090 0.365640
E = 400 MeV
Gaussian (d = +/10) —6.163206 0.454811 0.249074 —1.310680 0.110693 —0.0777749
MQ (d = 1.0) —6.158134 0.458354 0.236632 —1.302579 0.095672 —0.0861740
InvMQ (d = 5.0) —6.161537 0.454433 0.248144 —1.308317 0.110914 —0.0773247
InvQ (d = 5.0) —6.159566 0.455068 0.249082 —1.305325 0.108946 —0.0752253
Wendland (d = 10.0) —6.161539 0.454866 0.249062 —1.308019 0.110791 —0.0778165
In 22 (d =10.0) —6.163229 0.455586 0.249017 —1.310083 0.110680 —0.0777075

1412
Shown are the on-shell T-matrix elements (qox¢|T (E)|qoxo¢o) with xo = 1.0, ¢ = ¢o = 0 for two energies, E = 150 and 400
MeV. The radial functions are centered on a set of 2,310 distinct points on the ¢ — x — ¢ domain [0, gpuax] X [—1, +1] x [0, 277]

At this level of approximation, even the IP method is hard pressed to produce more than 2-3 digit accuracy,
especially at the higher energy. Note that, for OP, LP and IP calculations of Tables 8 and 9, the integrals
over q have been evaluated using a 60 x 30 x 30 set of quadrature points over the ¢ — x — ¢ domain
[0, gmax] x [—1, +1] x [0, 27].

In Table 9, a variety of tri-variate radial basis functions have been used in the three-dimensional IP approxi-
mation for G¢. The number of rbf centers is 2,310. With the possible exception of the Multiquadrics (MQ) basis,
all radial functions considered appear to perform better than the tensor-product basis of piecewise quadratics.
Note that shape parameter d used in these tests have been chosen in a somewhat haphazard manner. Further
improvements could in fact follow from optimization of the parameter d for each type of rbf and for each
choice of rbf centers.

7 Conclusion

Present study amply demonstrate that resolvent-based methods can be used to directly calculate the full two-
body T-matrix without partial wave decomposition. In an earlier article [11], we had approached the same
problem from the view point of potential approximations. The methods considered in [11] correspond to
various ways of generating separable expansions of the interaction potential in finite approximation spaces.
The present article utilizes separable expansions of the free-resolvent obtained by means of several types of
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projection approximations. In both studies, methods based on inner-projections stand out as the most efficient
scheme. In fact, if the same tensor-product bases of piecewise quadratic polynomials is used to form inner-
projection approximations V! and G{, the T-matrix results converge faster for the present resolvent-based
scheme than the potential-based scheme of Ref. [11].

Of the 5 types of projections considered, approximations of G via inner projection and Boolean projection
perform more satisfactorily than the others. In connection with IP approximation, this finding in multi-variable
context is in line with the similar observations in earlier studies of Schwinger-type variational methods in the
context of partial-wave LS integral equations in single variable [14,24]. Some insight into this finding can
be gained by looking at the coordinate-space kernels of G(’) and Gg. Both (r|G(’)|r’ ) and (r|Gg [r’) have the
correct behaviour at asymptotic radial distances r or r’. In contrast, the outer and one-sided projections are
deficient in this regard. The rank of the Boolean projection, however, is twice the rank of inner projection, and
the computational implementation of the Boolean approach is inherently more involved.

Of paramount importance in multidimensional calculations is how to construct the approximation space.
Tensor-product approach is straightforward, but is ultimately handicapped by the lack of correlation or entangle-
ment between univariate variables used construct the multivariate basis. This in turn gives rise to the infamous
“curse of dimensionality”. To cope with the dimension problem, we need ways of introducing entanglement of
variables into the basis functions. Even the selection of variables may make a difference: We used (g, cos6, ¢),
but (¢, 6, ¢) or even cartesian components (x, y, z) could be used to build the tensor-product basis. (In fact
the Gaussian rbf can be considered as a product of three univariate Gaussians).

In the present study, the incorporation of the potential into the tensor-product finite-element basis has been
found to significantly improve the performance of the IP method. By this simple device, variables ¢ and x are
entagled, and basis functions become more appropriate for the context of the LS equation. Incidentally, this
idea of V-weighted basis (VWB) has its counterpart in Ref. [11] in the form of Go-weighted basis. In a way the
idea behind the blending-function methods [16-20] in the context of multivariate interpolation is similar: the
sections (or cuts) of a multivariate-function are used as basis functions to form a finite-rank expansion of that
multivariate function. We note that Pade method of solving T-LS equation also involves a similar idea, namely,
a multivariate basis is generated by applying the powers of the kernel V G on the initial momentum state
|qo>. Results of the present article, as well as those of [11], show that more effective bases may be generated
by transforming a primitive basis under the action of operators like V, Go, VG or GoV, depending on the
context.

The use of the radial basis functions has emerged during the last two decades as an alternative to tensor-
product bases. Their popularity seems to have further increased with the advent of local compact-support rbf’s
like Wendland functions [31,38,39]. We have tested several types of rbf’s to solve the G-LS equation and
the results are very encouraging. We believe that these rbf results can further be improved by optimizing the
distribution of the rbf centers and the shape parameter associated with each center. Although the set of rbf
centers does not have to be on a regular grid, in our implementation we have used the same cartesian-product
grid of the tensor-product approach. Optimal choice of rbf centers is a difficult issue that needs to be studied
further. Also the shape parameters have not been optimized thoroughly in our calculations. In principle, the
optimal shape parameter would vary with number and distribution of rbf centers. There are also many more
types of rbf’s than we considered in this study.

The most appealing feature of radial functions is the fact that multivariate interpolation/approximation
problem becomes insensitive to the dimension. Node placement does not have to be regular and number of
nodes (hence the basis size) does not necessarily grow with the number of variables as fast as it does for
tensor-product bases. Therefore, radial basis functions are likely to become practical and powerful tools to
solve multivariate integral equations of few-body scattering problems without resorting to angular-momentum
decompositions.

For instance, three-particle Faddeev equations as elaborated in Refs. [41—43] without invoking partial wave
expansion are integral equations in 5 variables. Nystrom method of quadrature discretization is impractical in
this case because number of quadrature points needed over this 5-dimensional computational domain can get
prohibitively high. Currently these equations are solved via Pade resummation of the Neumann series [42]. (It
is interesting to note that the Pade approach is also a dimension-insensitive method).

As an alternative to the Pade approach, one could expand the 3-body amplitudes of interest in a basis of
S-variate radial functions and then use either collocation or Galerkin approach in the Faddeev equations to
obtain a system of algebraic equations for the expansion coefficients. Matrix elements to be calculated would
involve multidimensional integrals similar to the ones encountered in the Pade method. If one can come up
with efficient ways of choosing a set of rbf centers in the 5-dimensional computational domain, dimension-
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independent aspect of the rbf’s could make such approaches competitive. Of course, use of rbf’s in such a
context would not be limited to collocation and Galerkin approaches. By writing Faddeev equations in the
standard (matrix) LS form 7 =V + VGo7 and identifying the “potential” V and the “free resolvent” Gy as
appropriate (see, e.g., p. 63—-66 in Ref. [44]), one can introduce three-particle analogs of all the two-particle
methods studied in this paper and in [11]. In particular, the inner projections of V' and Gy in a rbf basis will
lead to Schwinger-type variational approximations for 7" and, as such, may be expected to better perform than
collocation or Galerkin methods.
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