595 research outputs found

    Hybrid functions approach to solve a class of Fredholm and Volterra integro-differential equations

    Full text link
    In this paper, we use a numerical method that involves hybrid and block-pulse functions to approximate solutions of systems of a class of Fredholm and Volterra integro-differential equations. The key point is to derive a new approximation for the derivatives of the solutions and then reduce the integro-differential equation to a system of algebraic equations that can be solved using classical methods. Some numerical examples are dedicated for showing efficiency and validity of the method that we introduce

    On FIDEs System by Modified Sumudu Decomposition Method

    Get PDF
    In this paper, the technique of modified Sumudu decomposition method has been employed to solve a system of Fredholm integro-differential equations with initial conditions. Two examples are discussed to show applicability, reliability and the performance of the modified sumudu decomposition method. This study showed the capability, simplicity and effectiveness of the modified approach. Keywords: Modified Sumudu decomposition method; System of Fredholm integro-differential equations

    Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

    Full text link
    In this paper, indirect collocation approach based on compactly supported radial basis function is applied for solving Volterras population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterras model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the problem, we use the well-known CSRBF: Wendland3,5. Numerical results and residual norm 2 show good accuracy and rate of convergence.Comment: 8 pages , 1 figure. arXiv admin note: text overlap with arXiv:1008.233

    Multiple Perturbed Collocation Tau Method for Solving Nonlinear Integro-Differential Equations

    Get PDF
    The purpose of the study was to investigate the numerical solution of non-linear Fredholm and Volterra integro-differential equations by the proposed method called Multiple Perturbed Collocation Tau Method (MPCTM). We assumed a perturbed approximate solution in terms of Chebyshev  polynomial basis function and then determined the derivatives of the perturbed approximate solution which are then substituted into the special classes of the problems considered. Thus, resulting into n-folds integration, the resulting equation is then collocated at equally spaced interior points and the unknown constants in the approximate solution are then obtained by Newton’s method which are then substituted back into the approximate solution.Illustrative examples are given to demonstrate the efficiency, computational cost and accuracy of the method. The results obtained with some numerical examples are compared favorable with some existing numerical methods in literature and with the exact solutions where they are known in closed form.Keywords: Nonlinear Problems, Tau Method, Integro-Differential, Newton’s method

    A Hybrid Radial Basis Function - Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell

    Get PDF
    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral (PS) methods in a “2+1” approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be “scattered” over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth’s mantle,which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle.Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number 7 · 103 and 105. The algorithmic simplicity of the code (mostly due to RBFs)allows it to be written in less than 400 lines of Matlab and run on a single workstation. We find that our method is very competitive with those currently used in the literature

    Application of Taylor-Pade technique for obtaining approximate solution for system of linear Fredholm integro-dierential equations

    Get PDF
    In this article, we introduce a modification of the Taylor matrix method using Pad´e approximation to obtain an accurate solution of linear system of Fredholm integro-differential equations (FIDEs). This modification is based on, first, taking truncated Taylor series of the functions and then substituting their matrix forms into the given equations. Thereby the equation reduces to a matrix equation, which corresponds to a system of linear algebraic equations with unknown Taylor coefficients. Finally, we use Pad´e approximation to obtain an accurate numerical solution of the proposed problem. To demonstrate the validity and the applicability of the proposed method, we present some numerical examples. A comparison with the standard Taylor matrix method is given
    • …
    corecore