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Abstract

In this article, we introduce a modification of the Taylor matrix method using Padé approximation
to obtain an accurate solution of linear system of Fredholm integro-differential equations (FIDEs).
This modification is based on, first, taking truncated Taylor series of the functions and then
substituting their matrix forms into the given equations. Thereby the equation reduces to a matrix
equation, which corresponds to a system of linear algebraic equations with unknown Taylor
coefficients. Finally, we use Padé approximation to obtain an accurate numerical solution of the
proposed problem. To demonstrate the validity and the applicability of the proposed method,
we present some numerical examples. A comparison with the standard Taylor matrix method is
given.

Keywords: Taylor matrix method, Padé approximation, System of Fredholm integro-differential
equations
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1. Introduction

There are several approximate methods for solving linear and non-linear integro-differential
equations, for example, the variational iteration method (Biazar, et al. (2010)), Galerkin methods
with hybrid functions (Maleknejad and Tavassoli (2004)), Tau method (Pour-Mahmoud, et al.
(2005)), collocation method (Akyüz and Yaslan (2011) & Yusufoglu (2014)), power series method
(Gachpazan (2009)) and others (Elzaki and Ezaki (2011), Khader and Ahmed (2015)-Linz (1985)
& Mohamed and Khader (2011)).

The Taylor series is a representation of a function as a sum of terms that are calculated from the
values of the function’s derivatives at a single point. Padé approximation is the best approximation
of a function by a rational function of given order with this technique, the approximate power
series agrees with the power series of the approximating function. The Padé approximation often
gives better approximation of the function than truncating its Taylor series, and it may still work
where the Taylor series not convergent.

In this paper, we solve linear system of Fredholm integro-differential equations of the form

y(m)
r (x) =fr(x) + λr

∫ b

a

[
Kr(x, t)Fr(y1(t), y2(t), ..., yM(t))

]
dt,

r = 1, 2, ...,M, m ∈ N,
(1)

with the initial conditions

y(k)r (a) = γr,k, k = 0, 1, ...,m− 1, r = 1, 2, ...,M, (2)

where m is the order of the derivative, fr(x) and kernel Kr(x, t) are given functions and λr, γr,k
are suitable constants. We assume that the solution is expressed in Taylor polynomials

yr(x) =
N∑

n=0

yr,n(x− c)n, yr,n =
y
(n)
r (c)

n!
, a ≤ c ≤ b, (3)

so, that the Taylor coefficients to be determined are yr,n, r = 1, 2, ...,M, n = 0, 1, ..., N.

2. Matrix relations and the fundamental matrix relation

To construct the matrix form of the proposed problem (1), let us rewrite it in the following form

Dr(x) = fr(x) + λrJr(x), r = 1, 2, ...,M, (4)

where

Dr(x) = y(m)
r (x), and Jr(x) =

∫ b

a

[
Kr(x, t)Fr(y1(t), y2(t), ..., yM(t))

]
dt. (5)
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394 M.M. Khader

Now, we convert the solution yr(x) and its derivative y(m)
r (x), the parts Dr(x) and Jr(x) and the

initial conditions to a matrix form.

I. Matrix relation for the differential part Dr(x)

We first consider the desired solution yr(x), r = 1, 2, ...,M, of Equation (4) defined by the
truncated Taylor series (3). Then, we can write Equation (3) in the form

[yr(x)] = X(x)Yr, r = 1, 2, ...,M, (6)

where
X(x) = [ 1 (x− c) ... (x− c)N ], Yr = [ yr,0 yr,1 ... yr,N ].

On the other hand, it is clear that the relation between the matrix X(x) and its first derivative
X(1)(x) is

X(1)(x) = X(x)BT , (7)

where

B =


0 0 ... 0 0

1 0 ... 0 0

0 2 . . . 0 0
...

... . . . ...
...

0 0 . . . N 0

 .

Using the matrix Equation (7), we can deduce the matrix solution of k-th derivative as follows

X(1)(x) = X(x)BT ,

X(2)(x) = X(1)(x)BT = X(x)(BT )2,

...

X(k)(x) = X(k−1)(x)(BT )(k−1) = X(x)(BT )k.

(8)

Using the relations (6)-(8) we have the matrix relations

y(k)r (x) = X(k)(x)Yr = X(x)(BT )kYr, k = 1, 2, ...,m, r = 1, 2, ...,M. (9)

By substituting the relation (9) into (5), we can construct the formula of the differential part
Dr(x) as follows

[Dr(x)] = X(x)(BT )kYr, r = 1, 2, ...,M. (10)

II. Matrix relation for the integral part Jr(x)

The kernel function Kr(x, t) can be approximated by the truncated Taylor series of degree N
about x = c, t = c in the form

Kr(x, t) =
N∑
i=0

N∑
j=0

kr,ij(x− c)i(t− c)j, r = 1, 2, ...,M, (11)

3
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where kr,ij = 1
i!j!

∂i+jKr(c,c)
∂xi∂tj

, i, j = 0, 1, ..., N. Then, Equation (11) can be written in the form

[Kr(x, t)] = X(x)KrX
T (t), (12)

where
X(t) = [1 (t− c) ... (t− c)N ], Kr = [kr,ij], i, j = 0, 1, ..., N.

By substituting the matrix forms (5) and (12), we have the integral matrix relation

[Jr(x)] =

∫ b

a

X(x)KrX
T (t)Fr

(
Y1, Y2, ..., YM

)
dt, r = 1, 2, ...,M. (13)

III. Matrix representation of the function fr(x)

The matrix representation of the non-homogenous term of Equation (1) can be written in the
form

[fr(x)] =
N∑

n=0

fr,n(x− c)n = X(x)Fr, fr,n =
f
(n)
r (c)

n!
, Fr = [fr,0 fr,1 ... fr,N ]

T . (14)

IV. Matrix relation for the initial-boundary conditions

We can obtain the corresponding matrix forms for the initial-boundary conditions (2) as

X(a)(BT )kYr = [γr,k], k = 0, 1, ...,m− 1, r = 1, 2, ...,M. (15)

3. The Padé approximation of the series solution

The general setup in approximation theory is that a function f is given and that one wants to
approximate it with a simpler function g but in such a way that the difference between f and g is
small. The advantage is that the simpler function g can be handled without too many difficulties,
but the disadvantage is that one loses some information since f and g are different.

Definition 1.

When we obtain the truncated series solution of order at least L+M in x by Taylor method, we use
it to obtain the Padé approximation PA[L/M ](x), for the function y(x). The Padé approximation
is a particular type of rational fraction approximation to the value of the function. The idea is
to match the Taylor series expansion as far as possible. We denote PA[L/M ](x) to R(x) =∑∞

i=0 ai x
i by

PA[L/M ](x) =
PL(x)

QM(x)
, (16)

where PL(x) and QM(x) are polynomials of degree at most L and M , respectively

PL(x) = p0 + p1 x+ p2 x
2 + ...+ pL x

L,

QM(x) = 1 + q1 x+ q2 x
2 + ...+ qM xM .

(17)

4
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396 M.M. Khader

To determine the coefficients of PL(x) and QM(x), we may multiply (16) by QM(x), which
linearizes the coefficient equations. We can write out (16) in more detail as (Baker (1975))

aL+1 + aLq1 + ...+ aL−M+1qM = 0,

aL+2 + aL+1q1 + ...+ aL−M+2qM = 0,

...

aL+M + aL+M−1q1 + ...+ aLqM = 0,

(18)

a0 = p0,

a1 + a0q1 = p1,

a2 + a1q1 + a0q2 = p2,

...

aL + aL−1q1 + ...+ a0qL = pL.

(19)

To solve these equations, we start with Equation (18), which is a set of linear equations for all
the unknowns q′s. Once the q′s are known, then Equation (19) gives an explicit formula for
the unknowns p′s, which complete the solution. Each choice of L, degree of the numerator and
M , degree of the denominator, leads to an approximation. The major difficulty in applying this
technique is how to direct the choice in order to obtain the best approximation. This needs the
use of a criterion for the choice depending on the shape of the solution. A criterion which has
worked well here is the choice of [L/M ] approximation such that L =M (Abassy, et al. (2007),
Baker (1975), & Yang et al. (2009)).

4. Procedure of solution using Padé-Taylor technique

In spite of the advantages of Taylor approximation, it has some drawbacks. By using this
approximation, we can obtain a series, in practice a truncated series solution. Although the
series can be rapidly convergent in a very small region, it is very slow convergence rate in the
wider region we examine and the truncated series solution is an inaccurate solution in that region,
which will greatly restrict the application area of the method. All the truncated series solutions
have the same problem. Many examples given can be used to support this assertion (Yang et al.
(2009)).

In this section, we present a modification of Taylor approximation by using the Padé approxi-
mation and then apply this modification to solve numerically linear system of Fredholm integro-
differential equations. The suggested modification of Taylor approximation can be given by using
the following algorithm.

Algorithm

Step 1. Solve the system of IDEs using standard Taylor approximation;
Step 2. Truncate the obtained series solution by using Taylor approximation;
Step 3. Compute the Padé approximation of the previous step.

5
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This modification often gives an accurate and efficient solution of the integro-differential equations
with high accuracy and enlarge the convergence domain of the truncated Taylor series and can
improve greatly the convergence rate of the truncated Taylor series.

Now, we implement this algorithm for some examples of linear system of Fredholm integro-
differential equations to illustrate our modification.

5. Numerical examples

In this section, to achieve validity, accuracy and support our theoretical discussion of the proposed
technique, we introduce some computational results of numerical examples.

Example 1.

Consider Equation (1) with the following functions and coefficients

f1(x) = −1 + cos(1)− sin(x), f2(x) = cos(x)− sin(1), K1(x, t) = 1, K2(x, t) = 1,

F1(y1, y2) = y2(t), F2(y1, y2) = y1(t), r = 2,m = 1, λ1 = λ2 = 1, a = 0, b = 1.

In this case, Equation (1) takes the form

y′1(x) = −1 + cos(1)− sin(x) +

∫ 1

0

y2(t)dt,

y′2(x) = cos(x)− sin(1) +

∫ 1

0

y1(t)dt,

(20)

with initial conditions y1(0) = 1, y2(0) = 0. The exact solution of this system is y1(x) =

cos(x), y2(x) = sin(x). We apply the suggested algorithm as follows:

1. Solve Equations (20) using Taylor matrix method:

Let us approximate the solution with N = 4 as follows

yr(x) =
4∑

n=0

yr,n(x− c)n, yr,n =
y
(n)
r (c)

n!
, c = 0, r = 1, 2, (21)

using Equation (10) we obtain the matrix relation for the differential part as follows

D[yr] = X(x)BTYr, r = 1, 2, (22)

where

B =



0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 4 0


,
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and the matrix relation for the integral part defined by Equation (13) is given by

J =



0 0 0 0 0 1 0.5 0.33 0.25 0.2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 0.33 0.25 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


,

and F =
[
−0.460 −1 0 0.167 0 0.159 0 −0.5 0 0.042

]T
. Then, the system of integro-

differential equations can be written as a system of algebraic equations PY = F , where

P = BT − J =



0 1 0 0 0 −1 −0.6 −0.33 −0.25 −0.2
0 0 2 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1 −0.5 −0.33 −0.25 −0.2 0 1 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0


.

To confirm the initial conditions, we replace the last two rows of the previous matrix with

u1,0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

u2,0 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0].

By solving the linear system PY = F for the unknowns yr,i, i = 0, 1, 2, 3, 4, r = 1, 2 we obtain

y1,0 = 1, y1,1 = −0.0017, y1,2 = −0.5, y1,3 = 0.0, y1,4 = 0.0417,

y2,0 = 0.0, y2,1 = 0.9994, y2,2 = 0.0, y2,3 = −0.1667, y2,4 = 0.0.

So, the approximate solution using Taylor expansion is given by

y1(x) = 1− 0.0017x− 0.5x2 + 0.0417x4,

y2(x) = 0.9994x− 0.1667x3.

The behavior of the approximate solution and the exact solution is presented in Figure 1.
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Figure 1: Configuration of Jupiter-Europa System in the framework of the Circular Restricted
Three-Body Problem

2. Compute Padé approximation:

The Padé approximation PAr[2/2](x) is given by

PA1[2/2](x) =
1− 0.0020x− 0.4166x2

1− 0.0003x+ 0.0834x2
,

PA2[2/2](x) =
0.9994x

1 + 0.1668x2
.

The behavior of the exact solution and the approximate solution using Padé approximation
is presented in Figure 2. From Figures 1 and 2, we can see that the solution using Padé
approximation is in excellent agreement with the exact solution, and more convergent to the
exact solution for large domain than Taylor solution. This conclusion ensure the advantages of
the proposed technique.

Example 2.

Consider Equation (1) with the following functions and coefficients

f1(x) = ex− (−2 + e)x

e
, f2(x) = −1+ e−x− (−1+ e)x, K1(x, t) = x t, K2(x, t) = x+ t,

F1(y1, y2) = y2(t), F2(y1, y2) = y1(t), r = 2, m = 2, λ1 = λ2 = 1, a = 0, b = 1.

8
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Figure 2: The behavior of the exact solution and the Padé approximate solution at N = 4.

In this case, Equation (1) takes the form

y′′1(x) = ex − (−2 + e)x

e
+

∫ 1

0

x t y2(t)dt,

y′′2(x) = −1 + e−x − (−1 + e)x+

∫ 1

0

(x+ t) y1(t)dt,

(23)

with initial conditions y1(0) = 1, y′1(0) = 1, y2(0) = 1, y′2(0) = −1. The exact solution is
y1(x) = ex, y2(x) = e−x. We apply the suggested algorithm as follows:

1. Solve Equations (23) using Taylor matrix method:

Let us approximate the solution with N = 4 as follows

yr(x) =
4∑

n=0

yr,n(x− c)n, yr,n =
y
(n)
r (c)

n!
, c = 0, r = 1, 2. (24)

using Equation (10) we obtain the matrix relation for the differential part as follows

D[yr] = X(x)(BT )2Yr, r = 1, 2, (25)

where

9
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B =



0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 4 0


,

the matrix relation for the integral part defined by Equation (13) is given by

J =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0.33 0.25 0.2 0.1667

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.5 0.33 0.25 0.2 0.1667 0 0 0 0 0

1 0.5 0.33 0.25 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


,

and F =
[
1 0.7358 0.50 0.1667 0.0417 0 −2.7183 0.50 −0.1667 0.0417

]T
. Then, the

system of integro-differential equations can be written as a system of algebraic equations PY =

F , where

P = (BT )2 − J =



0 0 2 0 0 0 0 0 0 0

0 0 0 6 0 −0.5 −0.33 −0.25 −0.2 −0.1667
0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−0.5 −0.33 −0.25 −0.2 −0.1667 0 0 2 0 0

−1 −0.5 −0.33 −0.25 −0.2 0 0 0 6 0

0 0 0 0 0 0 0 0 0 12

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


.

To confirm the initial conditions, we replace the last four rows of the previous matrix with

u1,0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

u2,0 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

u1,1 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

10
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Figure 3: The behavior of the exact solution and the approximate solution using Taylor
expansion method at N = 4.

u2,1 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0].

By solving the linear system PY = F for the unknowns yr,i, i = 0, 1, 2, 3, 4, r = 1, 2 we obtain

y1,0 = 1, y1,1 = 1, y1,2 = 0.5, y1,3 = 0.1668, y1,4 = 0.0417,

y2,0 = 1, y2,1 = −1, y2,2 = 0.4993, y2,3 = −0.1669, y2,4 = 0.0417.

So, the approximate solution using Taylor expansion is given by

y1(x) = 1 + x+ 0.5x2 + 0.1668x3 + 0.0417x4,

y2(x) = 1− x+ 0.4993x2 − 0.1669x3 + 0.0417x4.

The behavior of the exact solution and the approximate solution is presented in Figure 3.

2. Compute Padé approximation:

The Padé approximation PAr[2/2](x) is given by

PA1[2/2](x) =
1 + 0.498798x+ 0.082599x2

1− 0.501202x+ 0.083801x2
,

PA2[2/2](x) =
1− 0.494746x+ 0.0794194x2

1 + 0.505254x+ 0.0853733x2
.

11

Khader: Application of Taylor-Pade technique for obtaining approximate

Published by Digital Commons @PVAMU, 2017



AAM: Intern. J., Vol. 12, Issue 1 (June 2017) 403

Figure 4: The behavior of the exact solution and the Padé approximate solution at N = 4.

The behavior of the exact solution, and the approximate solution using Padé approximation is
presented in Figure 4. From Figures 3 and 4, we can see that the solution using Padé approximate
is in excellent agreement with the exact solution, and more convergent to the exact solution
for large domain than Taylor solution. This conclusion ensure the advantages of the proposed
technique.

6. Conclusions

In this article, we presented the numerical solutions for system of integro-differential equations by
using Taylor polynomials. Also, to increase the convergence region we used the Padé technique
to improve the solution using Taylor matrix method. From the obtained numerical solution of
the proposed linear system by using the proposed algorithm, we can conclude that our solutions
are excellent agreement with the exact solution and more convergent to the solution using the
standard Taylor matrix method with large domain.
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